
Becoming Action-aware through
Reasoning about Logged Plan Execution Traces

Lorenz Mösenlechner, Nikolaus Demmel, Michael Beetz

Intelligent Autonomous Systems Group
Department of Informatics

Technische Universität München
Boltzmannstr. 3, D-85748 Garching

{moesenle,demmeln,beetz}@cs.tum.edu

Abstract— Robots that know what they are doing can solve
their tasks more reliably, flexibly, and efficiently. They can even
explain what they were doing, how and why. In this paper
we describe a system that not only is capable of executing
flexible and reliable plans on a robotic platform but can also
explain control decisions and the reason for specific actions,
diagnose the cause of failures and answer queries about the
robot’s beliefs. For instance, when queried why it opened
the cupboard door, the robot might answer that it did so
because it believed Michael’s cup to be in there. This type of
reasoning is not only helpful for debugging but also provides
the mechanisms for complex monitoring and failure handling
that is not based on local failures and exception handling but
on the expressive formulation of error patterns in first order
logics. Our system is based on semantic annotations of plans,
a fast logging mechanism and the computation of predicates in
a first-order representation based on the execution trace.

I. INTRODUCTION

Robots that know what they are doing can solve their tasks
much more competently, reliably, and flexibly and can even
explain what they were doing, how and why. An action-aware
robot should be capable of answering queries with respect to
what it was doing in the following ways. For example, after
a table setting activity the robot answers the query about
why it did not put butter from the table into fridge with that
when it completed the cleaning the table task, it could not
perceive any more items lying on the table. This is not only
an interesting feature for debugging control programs but
allows for sophisticated handling of unwanted situations that
are far more complex than simple execution failures such as
dropping an object.

To give answers like the ones above, the robot must know
the structure of its plans, the intentions and roles of subplans,
it must infer its task relevant beliefs at given stages of plan
execution and remember the success and failures of subplans.

In this paper we describe an extension of a plan-based
robot control system CRAM (Cognitive Robotic Abstract
Machine) [1] that realizes just this functionality. CRAM is
a framework for the development of cognitive robot control
software, including robot control, reasoning and belief state
management. Among others, it contains a plan language
that has been designed in particular for the domain of
mobile robotics. It contains special language constructs for

concurrency, task synchronization and program variables that
reflect the state of the world. We extended CRAM to log the
execution of plans, including the values of plan parameters,
the activation and deactivation of subplans, their outcomes,
and the beliefs of the robot in the course of the episode.
Our extensions not only include logging, but also a first-
order representation of the logged data which allows for the
formal specification of the questions we want to answer and
for making inferences on the logged data structures to answer
these questions.

II. RELATED WORK

In this paper we describe a system that can reflect itself,
i.e. that can answer questions about the internal data struc-
tures, the course of action and the decision making process.
The only similar system the authors know about that runs
fully integrated on a robot platform and is able to reflect
about itself is the GRACE system [2] which gave a talk
about itself at a conference on artificial intelligence. This
included information about it’s capabilities and the tasks
being executed.

Similar systems in the area of artificial intelligence are
meta level architectures, such as a Prolog interpreter imple-
mented with Prolog clauses [3]. In this approach, programs
are interpreted as data that can be reasoned about. Thus,
aspects of the interpretation are made explicit. But in contrast
to these systems that are applied on disembodied problems
inside a more or less static problem domain specified as
facts in knowledge bases, our system allows to reason about
plans that are executed on a robotic platform that acts in a
complex and dynamic environment. Our system allows to
handle uncertain knowledge and beliefs, and grounds the
knowledge representation in the underlying data structures
of the robot.

The work described in this paper is based on an enhanced
version of the declarative and expressive plan language
described in [4]. There, the authors develop a plan language
for the definition of complex robot behavior. The constraints
for plan design, in particular the specification of declarative
goals indicating the purpose of code parts, have been shown
in [5]. Besides the modeling of navigation tasks, our system

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2231

scales with respect to reasoning about perception (based
on computer vision), the relation between objects and their
representation in the robot’s belief, as well as reasoning about
complex manipulation tasks.

The first order representation described in this paper can
be compared to Temporal Action Logics (TAL) [6]. Whereas
TAL’s authors define a language for reasoning about action
and change, we add a concept of intention. That means, we
cannot only describe what happened but also what the robot
wanted to achieve.

III. SYSTEM OVERVIEW

Logging

Belief
state Sensors

Task
Tree

...

...
...

Interpreter Plan Actuators

Plan Execution

Fig. 1. Plan execution

CRAM provides a framework to write robot control pro-
grams that can not only be executed but are also transparent
in the sense that they can be reasoned about. To answer
questions such as “why didn’t you pick up the cup on
the table?”, such a system must provide 1) the ability to
record all important aspects of program execution and 2)
mechanisms to turn the recorded data into a representation
that allows to make inferences, i.e. a representation in first-
order logic.

Figure 1 gives an overview of the execution component
of CRAM. When CRAM gets a task to achieve, it first
selects a suitable plan from a plan library and starts executing
it. A plan in CRAM is a concurrent, reactive, perception
guided control program that is carefully designed to allow
for inferring the purpose of control routines, to make in-
ferences about intentions, the belief state of the robot and
errors occurring during plan execution. It contains explicit
annotations in the form of special statements that assert the
semantics of the plan in first-order logic. For instance, a
plan that places an object Obj at Location Table is annotated
by Achieve(Loc(Obj, Table)) and one of its sub-plans is
Achieve(ObjectInHand(Obj)).

Plan execution incrementally creates and updates a task
tree that holds the stack frames of the control routines that are
generated during plan execution. Sensor measurements and
actions in the world continuously update the belief state. This
information is recorded by a logging component that allows
to reconstruct the complete state of program execution at any
point in time.

In order to answer questions about the reason for failures
of tasks, the purpose of tasks or which actions have been
performed and why, a first-order representation of logged

episodes is created. This includes predicates for accessing
the task tree, for querying the stack frames, for investigating
the semantic annotations, the belief state and percepts. For
instance, to assert the status of a task at time t, we use the
term

Holds(TaskStatus(tsk, status), t)

In this section we will show how plans are represented and
executed and how the belief state is represented and accessed
in the control program.

A. Plan execution

The execution of a plan is completely (but not necessarily
deterministically) determined by the program state: the pro-
gram counter and the variable values. In program execution
these data are usually kept in a stack of task frames. Thus,
everything that the robot “believes” in to decide on the course
of action is at sometime somewhere on its execution stack.
An example of a stack frame, which we call a task data
structure is depicted in Figure 2. The task data structure
contains the following data. The task environment contains
the variables in the scope of the task, their values at different
stages of execution, and the state of plan execution when
these values were assigned. Thus the local variable OBS was
initialized to () and then set to the set of object descriptions
(DES-17 DES-18) at the end of task t-7. The task status
contains the change of the task status during plan execution
and when the status changed.

TASK T-6
SUPERTASK T-4
TASK-EXPR (ACHIEVE (OBJECT-CARRIED DES-17))
TASK-CODE-PATH ((POLICY-PRIMARY) (STEP-NODE 1)

(COMMAND 1) (STEP 2))
TASK-ENVIRONMENT OBS (BEGIN-TASK T-4) ()

(END-TASK T-7) (DES-17 DES-18)
TASK-STATUS TI10 CREATED TI10 ACTIVE

TI13 DONE

Fig. 2. Conceptual view of an executed task.

The location of the task in the task tree is denoted by a
unique path, also saved in the task structure, as well as the
executed expression.

B. Plan Representation

In order to reason about logged execution scenarios, plans
must be written in a way such that the reasoning system can
infer the purpose of a certain plan part. We annotate control
routines by first-order expressions that state their purpose.
The annotations are descriptions of the actions and the states
in the world that these actions operate on. That includes
achieving states and perceiving them. The states that the
actions operate on are called occasions. More specifically,
occasions are states of the world that hold over time intervals
during program execution. By naming a control routine
Achieve(s), the programmer asserts that the purpose of the
routine is to achieve state s, i.e. the corresponding occasion.
Thus, if there is a control routine Achieve(s) on the execution
stack the system infers that the robot currently has the
intention to achieve state s. A routine to achieve state s
that terminates with a successful status implies that the

2232

robot beliefs that the occasion s now holds. On the other
hand, when the control flow reaches an achieve statement
that already holds, the control routine succeeds immediately
because the occasion does not need to be achieved anymore.

Fig. 3. The robot placed the mug on the table. Thus, it beliefs that the
occasion On(Mug, Table) holds.

The task tree provides information about the control flow
at a high level of detail and contains all stack frames that have
been generated from all control structures. This also includes
loops, variable assignments and call to helper functions.
Plans (i.e. procedures with first-order annotations) on the
other hand form a more abstract tree that overlays the task
tree and contains the information about the semantics of
the control program. Figure 4 shows the plan tree of the
goal Achieve(Loc(Obj, Loc)) that places the object Obj at
the location Loc.

In the plan tree, the fact that Achieve(s2) is a child node
of Achieve(s1) indicates that it directly helps to achieve
s1. Let us consider a more specific example. Assume that
we want to know why the robot didn’t pick up the cup
that is standing on the table. The corresponding achieve
statement is Achieve(Loc(Obj, Table)) which has three sub-
plans: Perceive(ObjVisible(Obj)), Achieve(ObjInHand(Obj))
and Achieve(ObjPlacedAt(Obj, Table)). The status of the task
that corresponds to the perceive plan might be Failed which
indicates that the system was unable to see the object.

Achieve(Loc(Obj, Loc))

Perceive(Loc(Obj, Loc))

Achieve(ObjInHand(Obj))

...
...

Achieve(ObjPlacedAt(Obj, Loc))

...
...

...

Fig. 4. Example of a plan three that is generated by Achieve(Loc(Obj,
Loc)). It shows the relationship between the sub-plans. For instance, the
reason for executing the statement Achieve(ObjInHand(Obj)) was to place
the object at location Loc.

Although being very simple, the example above shows
how the concept of a hierarchical plan tree allows for
inferring the purpose of a specific plan. Besides the already
introduced Achieve, plans also contain Perceive statements
which have a different semantics. Perceiving an occasion

means to check if it still holds in the current environment.
This does not include any activities that permanently change
the environment. For instance, objects are not picked up and
placed somewhere else by perceive, but it is possible that
a cupboard door is opened to check if an object is still in
the cupboard, as long as the door is closed again. Perceive is
necessary on control programs that operate robots in dynamic
environments that can change without the robot observing the
change. That means, a control program needs to deal with
wrong belief states, continuously check for consistency and
update the belief state when necessary. Thus, every achieve
statement normally first perceives if its occasion already
holds.

Robot control programs interact with the world based on
perception. Therefore, the representation of the real world
and, specifically, objects in it are an important property
of robot control programs. Furthermore, locations where to
perform actions cannot be hard coded, since they depend
on the objects that are manipulated, the capabilities of the
hardware, for instance the robot’s arms, and the environment.
The constraints for the motion planner that controls the arms
might differ from object to object and must be based on
perceived properties such as if the mug is filled or empty.

We represent objects and entities such as parameterizations
for the arms and locations as designators, first-order objects
that are constructed from a set of symbolic properties de-
scribing the entity. For instance, we state the location the
robot should stand in order to grasp the mug as

graspPos = LocationDesig(Purpose(Grasp), Obj(Mug))

instead of a tree dimensional pose. This description is then
resolved on demand, not before the real three dimensional
coordinates of the location are needed. For example a loca-
tion to drive to is resolved when the navigation action is per-
formed, not before. The instantiation of a three dimensional
pose that satisfies the description can take into account the
current context and situation in the belief state. Therefore,
it is possible that two designators with the same description
resolve to different entities. With designators, we decouple
the high-level parameterization of entities describing the
interaction in the world from the numeric representation of
these parameters. This not only allows for maximal flexibility
at execution time but also provides semantic information
for reasoning about the control program since the symbolic
properties of objects are grounded in the robot’s knowledge
representation.

As a simple example, let us consider that we want to grasp
a white mug that stands on the table. The designators that
are involved here are:

1) a location designator that describes the location on the
table: table=LocationDesig(On(Table)).

2) an object designator that describes the white mug on
the table: mug=ObjectDesig(Type(Mug), Color(White),
At(table)).

3) a trajectory description the arm needs to follow
to grasp the mug: grasp=TrajectoryDesig(To(Grasp),
Obj(mug))

2233

Locations designators are resolved by using a semantic map
of the environment. The system uses a connection to the
KnowRob [7] knowledge processing system to resolve the
symbolic descriptions of the location designator and generate
three dimensional poses that can be used, for instance, to
navigate to. Object designators are used by the perception
subsystem to select search and classification algorithms and
build an internal representation of the object. This includes
properties that have actually been perceived and the object’s
pose. Finally, the trajectory designator is translated into a
set of constraints that are used by the motion planner to
find a motion that fits the description. Please note that this
in particular includes context information. For instance, if
perception detects that the mug is filled with coffee, it
asserts a corresponding property Contains(Liquid) to the
object designator. This information is used to constrain the
trajectory to hold the mug upright.

C. Belief state representation

Let us now consider how the “belief state” of the robot
is encoded in control programs. As already mentioned, the
belief state is implicitly represented by the variables used
in the control program and the execution environment. This
includes the set of known objects, including their locations,
properties such as color and designators referencing the
object, the set of occasions that currently hold and the
dynamically evolving task tree including the status of tasks.
Dynamic properties such as the current location of the robot
within the 2D map of the environment but also the state of
tasks are represented in the control program as “Fluents”.
The plan language we use has special support for fluents.
They can be combined to so-called fluent networks, which
are still fluents, to represent more complex conditions in the
world (see Figure 5).

>

>

<

<cup−handle−orientation(ax, ay, az)

angle−distance

position−distance

hand−position(x, y, z)

cup−handle−position(x, y, z)

hand−orientation(ax, ay, az)

angle−tolerance

position−tolerance

min−hand−force

cup−gripped?

left−finger−hand−force

right−finger−hand−force

and

Fig. 5. The fluent network building the fluent cup-gripped?.

Fluents are used to wait for conditions and trigger actions.
We support this by special expressions in the plan language,
namely WaitFor to wait for a specific fluent to become true
and Whenever to execute code whenever a fluent becomes
true.

D. System Design

In the previous sections, we have discussed how high level
plans are written. In this section we will show how the link
to the robot’s low level components is made.

The low level components of the robot can be split into the
three main modules perception, manipulation and navigation

High Level
Plans Belief state

Occasions

Perception Navigation ManipulationProcess
Modules

Designators

Events

Fig. 6. System Architecture

which are independent of each other. The low level com-
ponents are implemented as asynchronously running action
servers, connected to the system over a middleware, namely
ROS [8]. We represent these low level modules in the plan as
“Process Modules”. A process module provides an interface
that is used by high level plans to parameterize it and the
low level backend that controls the hardware.

Process modules appear as black boxes to the plan, with
a clear and uniform interface. They are parameterized by
designators which are resolved inside the process module by
taking into account the current situation. Resolving means
translating the symbolic description of the designator into
numeric control parameters of the underlying system mod-
ules that are sent over the middleware. Process modules can
be activated, canceled or transition to the done state when
their action succeeds. On activation, it reads the designator
from the input slot, resolves it and sends the parameters to
the low-level process. During execution of the action, the low
level process sends feedback information that is accessible to
the plan through status and feedback fluents. After successful
execution of the action, the result slot is set. Figure 7 shows
the navigation process module.

Navigation
Process
Module

Designator
CurrentPoseFluent

ParticleCloudFluent

Activate Deactivate

Process Status Return Value

Control Inputs

Process
Parameters

Feedback
Fluents

Status Signals

Fig. 7. Process module encapsulating a navigation control process. The
input is a location designator, symbolically describing the goal pose and the
context this code is executed in (e.g. LocationDesig(To(see), Obj(Cup))).
The feedback fluents provide information about the status of the current
navigation task. The process module can be activated and deactivated and
provides success and failure signals.

IV. RECORDING

Let us continue by taking a look at how logging of the
program state works. In CRAM we collect all information
relevant to a specific plan execution in a data structure called
episode knowledge. This data structure includes the current
task tree and an execution trace of changes in the state.

Since all relevant program state is kept in fluents, in order
to keep track of state changes we simply log all changes
in fluent values at a low level. Whenever a fluents value
is changed either by plan execution or by changes from

2234

process modules, CRAM automatically adds a snapshot of
the new value together with a timestamp and an unique
fluent-identifier to the execution trace. We call this snapshot
a traced instance. For example the estimated position of the
robot is stored in a fluent as explained above. Whenever the
navigation process module updates that fluent, a correspond-
ing traced instance with new position and current timestamp
will be logged. Similarly since every task’s status is stored
in a fluent, each status change will have a corresponding
traced instance in the execution trace. In other words the
execution trace is the set of all traced instances, which in
our implementation is organized in a hash table.

We distinguish between two kinds of episode knowledge
which share the same interface for querying the recorded
information. Live episode knowledge on the one hand is used
during plan execution. It allows for new traced instances to
be added to the execution trace. Once plan execution has
completed, this live episode knowledge can be saved to disk
as offline episode knowledge. The main difference between
live and offline episode knowledge is that the former has to
account for possible queries while the plan is still executed
and thus answers every query by processing the raw traced
instances on demand. In contrast the latter pre-processes the
logged data and also omits details from the task tree that are
needed for execution but not for reasoning1.

Currently logging is done in memory and persistency is
achieved by saving and loading the whole episode knowledge
to and from disk. We found that approach to be practical, as
neither memory consumption nor performance is an issue
at the moment. However the system was designed with
extensibility in mind. Possible future extension could be
more sophisticated data structures for the execution trace or
logging directly to disk2.

V. REPRESENTING EXECUTION SCENARIOS

Let us now consider the first-order representation of ex-
ecution scenarios that we use for detailed analysis of the
episode. It is based on occasions that were to achieve and
have been achieved, events that are generated from the fluents
of the process modules and intentions that are encoded in the
relationship of plans and their sub-plans within the plan tree
and the belief state encoded in the variable values on the
execution stack. The concepts of events and occasions are
defined on basic predicates that directly access to the logged
data. Table I lists the predicates used in our system.
Asserting Events. Events represent temporal entities of low
level control and perception that cause state changes. Most
often, events are caused by actions that are performed by
the executed plan. We assert the occurrence of an event ev
at time ti with Occurs(ev, ti). Events happen at discrete time
instances and are generated by the low-level control routines
such as the motion planner, arm controllers, tactile sensors
in the robot grippers, etc. More specifically, the Occurs pred-
icate is calculated from logged fluent values. For instance,

1For instance thread resources of the underlying multiprocessing library
2This might be useful if memory is scarce on the robots hardware

Occasions and Events
Holds(occ, ti) Occasion assertion in the belief

state.
Occurs(event, ti) Assert the occurrence of an event

in the belief state.
Predicates for interfacing the execution log.

FluentValueAt(fluent, value, t) Assert the value of a fluent at a
specific time.

Task(task) task is a task on the interpretation
stack.

TaskGoal(task, goal) Unifies the goal of the task.
TaskStart(task, t) Unifies the start time of the task.
TaskEnd(task, t) Unifies the end time of the task.
Subtask(task, subtask) Asserts that subtask is a direct

subtask of task.
Subtask+(task, subtask) Assets that subtask is a subtask of

task.
TaskOutcome(task, status) Unifies the final status of a task

(Failed, Done or Evaporated).
TaskResult(task, result) Unifies the result of a task.
TaskFailureDescription(task, error) Unifies the failure object of a

failed task.
FailureClass(error, class) Unifies the class of failure.
FailureAttribute(error, name, value) Unifies a slot in a failure object.
DesignatorEqual(desig1, desig2) Assert that two designators are

equal.
DesignatorValueAt(desig, value, t) Reads the reference value of a

designator at time t.
DesignatorPropertyAt(desig, prop, t) Asserts a property of the designa-

tor at time t.

TABLE I
BASIC PREDICATES.

when grasping an object, the fluent cup-gripped? changes
its value and the corresponding event Collision(Gripper, obj)
is asserted. A successful result of the manipulation process
module then leads to the assertion of the event PickUp(obj).
Table II summarizes the most important events.

LocChange(obj) An object changed its location
LocChange(Robot) The robot changed its location
Collision(obj1, obj2) obj1 and obj2 started colliding
CollisionEnd(obj1, obj2) obj1 and obj2 stopped colliding
PickUp(obj) obj has been picked up
PutDown(obj) obj has been put down
ObjectPerceived(obj) The object has been perceived

TABLE II
EVENT STATEMENTS.

Asserting States of the World. Occasions are states that
hold over time intervals where time instants are inter-
vals without duration. The sentence Holds(occ, ti) rep-
resents that the occasion holds at time specification ti.
The term During(t1, t2) indicates that the occasion holds
during any subinterval of the time interval [t1, t2) and
Throughout(t1, t2) specifies that the occasion holds through-
out the complete time interval. The Holds predicate for
occasions is defined over events and fluent values. For
instance, we define Holds(ObjectInHand(obj)) by

Holds(ObjectInHand(Obj1), During(t1, t2)) ⇔ ∃t1, t2.
Occurs(PickUp(Obj1), t) ∧ t1 ≤ t < t2

The other occasions are defined accordingly. Table III
summarizes the occasions defined in our system. Please note
that occasions are not defined on the achieve statements of
high level plan structures since these are just annotations
of what the specific plan is intended to do. In contrast, we
ground occasions as far as possible in the low level data

2235

structures and use the annotation of plans for monitoring
and failure handling.

Loc(obj, loc) The location of an object
Loc(Robot, loc) The location of the robot
ObjectVisible(obj) The object is visible to the robot
ObjectInHand(obj) The object is carried by the robot
ObjectPlacedAt(obj, loc) The object has been placed at location.
TaskStatus(task, status) The status of a task.

TABLE III
OCCASION STATEMENTS.

Asserting Intentions. In order to infer the intentions of
a plan we have to consider the interpretation stack more
carefully. Achieving a state s has been an intention if the
routine Achieve(s) that was on the interpretation stack during
the execution. The robot pursued the goal Achieve(s) in the
interval between the start and the end of the corresponding
task. The purpose of achieving s can be computed by
contemplating the supertasks of Achieve(s). Thus, if we want
to answer if there has been a task that navigated the robot
in order to grasp an object, we state:

Task(tsk) ∧ TaskGoal(tsk, Achieve(Loc(Robot, loc)))
∧ Task(super) ∧ Subtask+(super, task)
∧ TaskGoal(super, Achieve(ObjectInHand(obj)))

VI. EVALUATION

In this paper we have explained a reasoning mechanism
that equips a robot control program with additional function-
ality and information that can be used to explain past action
scenarios but that is also available at runtime. The power
of our approach lies in the number of different questions
that can be answered, i.e. the number of Prolog clauses
that can be defined over the predicates introduced above.
In the following, we illustrate the expressiveness by couple
of examples.

As a basic query, we might ask the robot if it grasped any
green object, by this statement:

Task(tsk) ∧ TaskGoal(tsk, Achieve(ObjectInHand(obj)))
∧ TaskEnd(tsk, t)
∧ DesignatorPropertyAt(obj, Color(Green), t)

Please note that this does not imply that it was specified
in the plan that the robot should grasp a green object. The
reason is that before grasping it, the robot searches for the
object and asserts additional properties if the perception rou-
tines provide the corresponding information. That explains
also why we need a time parameter in the predicate Des-
ignatorPropertyAt since the description matching a specific
object may change during the course of action. For instance,
a cup can be filled at the beginning but empty later on.

Other queries we can answer include whether the robot
manipulated the same object twice. For instance, if the robot
is to achieve that one cup is on the table and another cup is
on the counter, we can detect the failure that it first placed a
cup on the table and then put the same cup on the counter.
Obviously, this is unwanted behavior that cannot be detected
by program exceptions in a general way. With our first-order
representation, this can be expressed by asserting an error if
an occasion that has been achieved by a top level task does
not hold at the end:

UnachievedGoalError(o) ⇔
TopLevel(tt) ∧ Task(tsk) ∧ Subtask(tt, tsk)
∧ TaskGoal(tsk, o) ∧ TaskEnd(tt, t)
∧ ¬Holds(o, t)

The predicate TopLevel is defined to unify the task that
is not the subtask of any other task. Please not that we
use SubTask instead of SubTask+ to denote only direct
subtasks of the toplevel. Recording the execution log has
no negative influence on the performance of plan execution.
That means although all information that is necessary to
completely reconstruct plan execution is saved, execution
time is not increased noticeable. Answering complex queries
that involve data structures that change frequently, such as
the location of the robot, take less than 5 seconds. By careful
implementation of the predicates it is even possible to do
light weight inferences within fast control loops. More time
consuming inferences can be made at runtime without loss of
time if they are parallelized, for instance if they are executed
while the robot is navigating to a location.

VII. CONCLUSIONS

In this paper, we presented an extension to CRAM that
implements high performance and accurate reasoning mech-
anisms. These allow to answer complex questions about plan
execution, the intention of the robot, the reason for failures
and the belief state of the robot. This is achieved by creating
an extensive execution trace and mechanisms to query it
through a first-order representation. Since this system can not
only be used offline but also during plan execution, i.e. within
control routines, it enables deep and complex failure handling
mechanisms that are based on descriptions of failures in the
first-order representation.

Acknowledgements: The research reported in this paper is
supported by the cluster of excellence COTESYS (Cognition for Technical
Systems, www.cotesys.org).

REFERENCES

[1] M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM – A Cognitive
Robot Abstract Machine for Everyday Manipulation in Human Envi-
ronments,” in IEEE/RSJ International Conference on Intelligent RObots
and Systems., 2010, accepted for publication.

[2] R. Simmons, D. Goldberg, A. Goode, M. Montemerlo, N. Roy,
B. Sellner, C. Urmson, M. Bugajska, M. Coblenz, M. Macmahon,
D. Perzanowski, I. Horswill, R. Zubek, D. Kortenkamp, B. Wolfe,
T. Milam, and B. Maxwell, “Grace: An autonomous robot for the aaai
robot challenge,” 2002.

[3] L. Sterling and E. Shapiro, The Art of Prolog: Advanced Programming
Techniques. MIT Press, 1994.

[4] M. Beetz, “Structured Reactive Controllers,” Journal of Autonomous
Agents and Multi-Agent Systems. Special Issue: Best Papers of the
International Conference on Autonomous Agents ’99, vol. 4, pp. 25–55,
March/June 2001.

[5] M. Beetz and D. McDermott, “Declarative goals in reactive plans,” in
First International Conference on AI Planning Systems, J. Hendler, Ed.,
Morgan Kaufmann, 1992, pp. 3–12.

[6] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrom, “Temporal
action logics (tal): Language specification and tutorial,” 1998.

[7] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for
Autonomous Personal Robots,” in IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2009.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in In IEEE International Conference on Robotics and Automation (ICRA
2009), 2009.

2236

