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Abstract

Indoor environments can typically be divided into places with different functionali-
ties like corridors, rooms or doorways. The ability to learn such semantic categories
from sensor data enables a mobile robot to extend the representation of the envi-
ronment facilitating the interaction with humans. As an example, natural language
terms like “corridor” or “room” can be used to communicate the position of the
robot in a map in a more intuitive way. In this work, we first propose an approach
based on supervised learning to classify the pose of a mobile robot into semantic
classes. Our method uses AdaBoost to boost simple features extracted from sensor
range data into a strong classifier. We present two main applications of this ap-
proach. Firstly, we show how our approach can be utilized by a moving robot for
an online classification of the poses traversed along its path using a hidden Markov
model. In this case we additionally use as features objects extracted from images.
Secondly, we introduce an approach to learn topological maps from geometric maps
by applying our semantic classification procedure in combination with a probabilistic
relaxation method. Alternatively, we apply associative Markov networks to classify
geometric maps and compare the results with the relaxation approach. Experimen-
tal results obtained in simulation and with real robots demonstrate the effectiveness
of our approach in various indoor environments.
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DoorwayRoomCorridor

Fig. 1. The left image shows a map of the ground floor of building 52 at the Univer-
sity of Freiburg with part of it classified by hand. The semantic labels are depicted as
color/grey scale. The right image depicts some example scans recorded in a corridor
(top) and a room (bottom).

1 Introduction

In the past, many researchers have considered the problem of building accu-
rate maps of the environment from the data gathered with a mobile robot.
The question of how to augment such maps by semantic information, how-
ever, is virtually unexplored. Whenever robots are designed to interact with
their users, semantic information about places can improve the human-robot
communication. From the point of view of humans, terms like “corridor” or
“room” give a more intuitive idea of the position of the robot than using, for
example, the 2D coordinates in a map.

Indoor environments, like the one depicted in the left image of Fig. 1, can
typically be divided into areas with different functionalities such as corridor,
rooms or doorways. These different places usually contain specific geometrical
structures and can therefore be distinguished using sensors able to capture
this structure, such as laser range finders. As an example, Fig. 1 (left) shows a
typical hand-labeled division of the environment into three categories of places
with its corresponding labels.

In this work, we address the problem of classifying places of the environment
of a mobile robot using mainly range finder data. The key idea is to classify
the position of the robot in the environment based on the current laser ob-
servation, either obtained by the robot or simulated given the map. Examples
for typical observations obtained in an office environment are shown in the
right images of Fig. 1. Each observation is classified by applying a sequence
of binary classifiers learned with the AdaBoost algorithm [1]. These classifiers
are built in a supervised fashion from simple geometric features that are ex-
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tracted from the different laser scans. The selection of the AdaBoost algorithm
is motivated by the fact that we extract a large set of geometrical features for
each laser scan, and we want to select the best ones for the final classification.

We furthermore present two main applications of this approach. Firstly, we
show how to classify the different poses of the robot during a trajectory im-
proving the final classification using a hidden Markov model. In this case
we additionally use as features objects extracted from images. Secondly, we
introduce an approach to learn topological maps from geometric maps by
applying our semantic classification to simulated range data in combination
with a probabilistic relaxation procedure. Alternatively, we apply associative
Markov networks to classify geometric maps and compare the results with the
relaxation approach.

The rest of this work is organized as follows. After discussing related work in
Section 2, Section 3 presents the sequential AdaBoost classifier. In Section 4
the simple features are described. Section 5 presents the application of a hidden
Markov model to the online place classification with a moving robot. Section 6
contains our approach for topological map building. In Section 7 we show
experimental results obtained using our methods. Finally, in Section 8 we
present some conclusions.

2 Related work

In the past, several authors considered the problem of adding semantic infor-
mation to places. Buschka and Saffiotti [2] describe a virtual sensor to iden-
tify rooms from range data. Koenig and Simmons [3] apply a pre-programmed
routine to detect doorways. Finally, Althaus and Christensen [4] use sonar
data to detect corridors and doorways. Learning algorithms have additionally
been used to identify objects and places in the environment. For example,
Anguelov et al. [5,6] apply the EM algorithm to cluster different types of ob-
jects from sequences of range data and to learn the state of doors. Limketkai et

al. [7] use relational Markov networks to detect objects like doorways based
on laser range data. Finally, Torralba and colleagues [8] apply hidden Markov
models for learning places from image data. Compared to these approaches,
our algorithm is able to combine arbitrary features extracted from range data
to form a sequence of binary strong classifiers to label places. Our approach is
also supervised, which has the advantage that the resulting labels correspond
to user-defined classes.

On the other hand, different algorithms for creating topological maps have
been proposed. Kuipers and Byun [9] extract distinctive points in the map
defined as local maxima of a distinctiveness measure. Kortenkamp and Wey-
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mouth [10] fuse vision and ultrasound information to determine topologically
relevant places. Shatkey and Kaelbling [11] apply a HMM learning approach
to learn topological maps. Thrun [12] find critical points in the Voronoi dia-
gram, which minimize the clearance locally. Choset [13] encodes metric and
topological information in a generalized Voronoi graph to solve the SLAM
problem. Additionally, Beeson et al. [14] detect topological places with an ex-
tension of the Voronoi graph. Zivkovic et al. [15] create a higher level concep-
tual map with visual landmarks and geometric constraints. Finally, Tapus and
Siegwart [16] use fingerprints to create topological maps. In contrast to these
previous approaches, the technique described in this paper applies a super-
vised learning method to identify complete regions in the map like corridors,
rooms or doorways that have a direct relation with a human understanding of
the environment. This knowledge about semantic labels of places is then used
to build topological maps with a mobile robot.

3 The AdaBoost algorithm

Our classification approach for semantic labeling of places relies on a large set
of single-valued geometrical features that are calculated for each laser scan. If
we represent each laser scan with a vector containing all these features, then
the resulting classification problem has a high dimension. Furthermore, it is
difficult to know a priory which features are more discriminative or even if
some of them are discriminative at all. One approach to solve this problem is
to use algorithms able to select the best features for the final classification task.
In our work, we use the AdaBoost algorithm to learn a strong classifier from a
large set of simple features, each represented by a single value. This algorithm
can be seen as a heuristic method for selecting the most discriminative features
for the final classifier. In this section we explain the key ideas of AdaBoost,
and how it is combined with single-valued features.

Boosting is a general method for creating an accurate strong classifier by
combining a set of weak classifiers. The requirement to each weak classifier
is that its accuracy is better than a random guessing. In this work we will
use the Boosting algorithm AdaBoost originally introduced by Freund and
Schapire [17]. The input to the algorithm is a set of labeled training examples
(en, ln), n = 1, . . . , N , where each en is an example and ln ∈ {+1,−1} is a
label indicating whether en is positive or negative respectively. In a series of
rounds t = 1, . . . , T , the algorithm selects repeatedly a weak classifier ht(e)
using a distribution Dt over the training examples. The selected weak classi-
fier is expected to have a small classification error on the weighted training
examples. The idea of the algorithm is to modify the distribution Dt at each
round, increasing the weights of the examples which were incorrectly classi-
fied by the previous weak classifier. The final strong classifier H is a weighted
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majority vote of the best T weak classifiers. Large weights are assigned to
good weak classifiers whereas poor ones receive small weights. Whereas the
weak classifiers only need to be slightly better than a random guessing, the
combined strong classifier H typically produces good results.

Throughout this work we will use the approach presented by Viola-Jones [18]
in which the weak classifiers depend on single-valued features fj and have the
form

hj(e) =











+1 if pjfj(e) < pjθj

−1 otherwise
, (1)

where θj is a threshold and pj is either +1 or −1 and thus represents the
direction of the inequality. On each round t of the algorithm, the values for
θj and pj are chosen so that the misclassification on the weighted training
examples is minimized (step 3b in Fig. 2). In our case this is achieved by
searching for θj and pj such as

(θj , pj) = argmin
(θi,pi)

N
∑

n=1

Dt(n)I(hi(en) = ln), (2)

where I is the indicator function, which is 1 if the argument is true, and 0
otherwise, and Dt(n) is the weight assigned to example en in the iteration t.
The final Adaboost algorithm is shown in Fig. 2 in the generalized form given
by Schapire and Singer [1] and modified for the concrete task of this work.

The so far described method is able to distinguish between two classes of ex-
amples, namely positives and negatives. In practical applications, however, we
want to distinguish between more than two classes. To create a multi-class
classifier we follow the approach proposed by Mart́ınez Mozos [19] and create
a sequential multi-class classifier using K − 1 binary classifiers, where K is
the number of classes we want to recognize. Each element in the sequence
determines if an example pertains to one specific class. If the classification
is positive, then the example is assigned the corresponding class. Otherwise,
the example is passed to the next element in the sequence. In our current
system, we typically consider a small number of classes which makes it fea-
sible to evaluate all potential sequences and choose the best order of binary
classifiers. However, we found out that the heuristic which sorts the classi-
fiers in decreasing order according to their classification rate also yields good
results and at the same time can be computed efficiently. Compared to the
optimal order, the classifier generated by this heuristic for an application with
six different classes performed on average only 1.3% worse as demonstrated
by Rottmann [20].
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(1) Input: Set of examples (e1, l1), . . . , (eN , lN), where ln = +1 for positive
and ln = −1 for negative examples.

(2) Initialize weights D1(n) = 1
2a

for ln = +1 and D1(n) = 1
2b

for ln =
−1, where a and b are the number of positive and negative examples
respectively.

(3) For t = 1, . . . , T :

(a) Normalize the weights Dt(n) = Dt(n)
∑N

i=1
Dt(i)

.

(b) For each feature fj train a weak classifier hj using the distribution
Dt.

(c) For each classifier hj calculate rj =
∑N

n=1 Dt(n)lnhj(en),
where hj(en) ∈ {+1,−1}.

(d) Choose the classifier hj that maximizes |rj| and set (ht, rt) = (hj , rj).
(e) Update the weights Dt+1(n) = Dt(n) exp(−αtlnht(en)),

where αt = 1
2
log(1+rt

1−rt
).

(4) The final strong classifier is given by H(e) = sign(F (e)),
where F (e) =

∑T
t=1 αtht(e).

Fig. 2. The generalized AdaBoost algorithm.

4 Simple features from sensor range data

In this section we describe the features used to create the weak classifiers in
the AdaBoost algorithm. We assume that the robot is equipped with a 360o

field of view range sensor. Each laser observation e = {b0, ..., bM−1} contains
a set of M beams. Each beam bi consists of a tuple (φi, ρi) where φi is the
angle of the beam relative to the robot and ρi is the length of the beam.
Each training example for the AdaBoost algorithm consists of one observa-
tion e and its classification l. Thus, the set of training examples is given as
X = {(en, ln) | ln ∈ Y }, where Y = {Room, Corridor, Doorway} is the set of
classes. Throughout this paper we assume that the classification of the train-
ing examples is given in advance. In practice this can be achieved by manually
labeling places in the map or by instructing the robot while it is exploring its
environment.

Our method for place classification is based on simple geometrical features
extracted from the range scans. We call them simple because they are single-
valued features. We then define a feature f as a function that takes as argu-
ment one laser observation e and returns a real value: f : E → R, where E

is the set of all possible observations. All our features are standard geometri-
cal features often used in shape analysis [21–25]. Some features are extracted
directly from the raw beams in e and others are calculated from a polygonal
approximation of the area covered by e. All features are rotationally invariant
to make the classification of a pose dependent only on the (x, y)-position of
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Fig. 3. The two leftmost images show examples for features generated from laser
data, namely the average distance between two consecutive beams, and the mayor
axis of the ellipse that approximates the polygon described by the scan. The right
image shows a vision observation with some objects detected in it.

Fig. 4. The left image shows a laser observation covering 360o field of view. In
the middle image the range observation covers only 180o in front of the robot. In
the right image, the rear beams are simulated using the occupancy information
contained inside the shaded area (local map).

the robot and not of its orientation. Typical examples of laser features consid-
ered by our system are illustrated in Fig. 3. A detailed list of laser features is
contained in [19,26]. All in all we have 321 geometrical features which are fed
into the learning algorithm. This large number of features is one of the main
reasons to use AdaBoost. As explained in the previous section, this boosting
method will allow us to select the most discriminative features for the final
classifier.

As already mentioned, our simple features are based on laser observations
covering 360o field of view (left image in Fig. 4). However, common configu-
rations on real mobile robots have only a laser covering 180o in front of the
robot (middle image in Fig. 4). In these last cases we propose to maintain a
local map around the robot when classifying a trajectory. This local map can
be updated during the movements of the robot and then used to simulate the
rear laser beams (right image in Fig. 4). The classification of trajectories will
be explained in Section 5.

4.1 Adding features from vision sensors

As explained before, the features used for the AdaBoost algorithm are single-
valued representations of range sensor observations. This set can be extended
considering observations from other sensors, like for example cameras. Here,
we explain how we calculate a new set of features based on objects extracted
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from vision observations. The new features will be used in addition to the
geometrical ones when classifying a trajectory as will be shown in Section 5.

Each of our vision observations v = {i1, . . . , i8} consists of 8 images which form
a panoramic view. A vision feature is then defined as a function that takes as
argument one vision observation v and returns the sum of located objects in all
the images: fo∈O : V → N, where V is the set of all possible vision observations
and O is the set of all objects that we try to locate, in our case formed by
the objects: “monitor on”, “monitor off”, “coffee machine”, “office cupboard”,
“frontal face”, “face profile”, “full human body”, and “upper human body”.
These new features permit us to distinguish between places that have similar
geometrical structure and can only be identified according to the objects found
there, like for example, coffee machines in kitchens. The right image of Fig. 3
depicts one example image taken in a laboratory with some objects detected
in it. The different objects were detected in the images using Haar-like features
based classifiers [27]. To combine the geometrical and the object-based set of
features in the AdaBoost algorithm we extend each training example with the
vision observations such as X = {(en, vn, ln) | ln ∈ Y }, where the set of labels
Y was extended to six different places, namely rooms, corridor , doorways,
kitchen, offices, seminar room and laboratory. The vision features are used
in the learning process together with the geometrical ones applying the same
AdaBoost algorithm of Section 3 (Rottmann et. al. [28]).

5 Probabilistic place recognition

The approach described so far is able to classify single observations only and
does not take into account past classifications when determining the class
of the current observation. In the particular domain, however, observations
obtained at nearby places are typically identical. Furthermore, certain transi-
tions between classes are rather unlikely. For example, if the classification of
the current pose is “kitchen” then it is rather unlikely that the classification
of the next pose is “office” given the robot moved a short distance only. To get
from the kitchen to the office, the robot first has to move through a doorway.

To utilize these dependencies between the individual classes, we use a hidden
Markov model (HMM) and maintain a posterior Bel(lt) about the type of the
room lt ∈ Y the robot is currently in:

Bel(lt) = αP (zt|lt)
∑

lt−1

P (lt|lt−1, ut−1)Bel(lt−1). (3)

In this equation, α is a normalizing constant ensuring that the left-hand side
sums up to one over all lt. To implement such an HMM, three components
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Fig. 5. The left image depicts probabilities of possible transitions between places
in the environment. To increase the visibility, we used a logarithmic scale. Dark
values indicate low probability. The right image illustrates an example classification
output z use for topological map building.

need to be known. First, we need to specify the observation model P (zt|lt)
which is the likelihood that the classification output is zt ∈ Y given the actual
class is lt. Second, we need to specify the transition model P (lt|lt−1, ut−1)
which specifies the probability that the robot moves from class lt−1 to class lt
by executing action ut−1. Finally, we need to specify, how the belief Bel(l0) is
initialized.

In our current system we choose a uniform distribution to initialize Bel(l0).
To determine the quantity P (zt|lt) we generated a statistics about the classifi-
cation output of the AdaBoost algorithm given that the robot was at a place
corresponding to lt. To realize the transition model P (lt|lt−1, ut−1) we only
consider the two actions ut−1 ∈ {MOVE , STAY }. The transition probabilities
were estimated by running 1000 simulation experiments, in which we started
the robot at a randomly chosen point and orientation in the environment and
commanded it to move 20-50cm forward. This value corresponds to the dis-
tance typically traveled by the robot between two consecutive updates of the
HMM. The finally obtained transition probability matrix P (lt|lt−1, ut−1) for
the action MOVE is depicted in the left image of Fig. 5. As can be seen, the
probability of staying in a place with the same classification is higher than the
probability of changing the place. Moreover, the probability of moving from
one room to a doorway is higher than the probability of moving from a room
to a corridor. This indicates that the robot must first cross a doorway in order
to reach a different room. Furthermore, the matrix shows a lower probability
of staying in a doorway than moving into a room. This is due to the fact that
a doorway is usually a small area in which the robot never rests for a longer
period of time.
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6 Topological map building

A second application of our semantic place classification is the extraction of
topological maps from geometric maps. Throughout this section we assume
that the robot is given a map of the environment in the form of an occupancy
grid [29]. This geometric map can be obtained using SLAM techniques [30].
The approach for topological map building presented here is an off-line method
and it uses simulated laser scan observations for the semantic classification.
Vision observations are not taken into account due to the difficulty on simu-
lating objects in images having only a 2D geometric map of the environment.

6.1 Probabilistic relaxation labeling

After obtaining an occupancy grid of the environment, our approach deter-
mines for each unoccupied cell of such a grid its semantic class. This is achieved
by simulating a range scan of the robot given it is located in that particular
cell, and then labeling this scan into one of the semantic classes using the
sequential classifier presented in Section 3. This results in an occupancy map
with a semantic label in each free cell. As we will see in the experimental
Section 7, the final maps usually contain some errors in the classification. To
smooth the final classification of each cell we apply a probabilistic relaxation
labeling method introduced by Rosenfeld et al. [31]. This method changes (or
maintains) the label of a cell according to the labels of its neighborhood.

The probabilistic relaxation labeling problem is defined as follows. Let G =
(V, E) be a graph consisting of nodes V = {v1, . . . , vN} and edges E ⊆ V × V.
Let furthermore L = {l1, . . . , lL} be a set of labels. We assume that every
node vi stores a probability distribution about its label which is represented
by a histogram Pi. Each bin pi(l) of that histogram stores the probability
that the node vi has the label l. Thus,

∑L
l=1 pi(l) = 1. For each node vi,

N (vi) ⊂ V denotes its neighborhood which consists of the nodes vj 6= vi

that are connected to vi. Each neighborhood relation is represented by two
values. Whereas the first one describes the compatibility between the labels
of two nodes, the second one represents the influence between the two nodes.
The terms R = {rij(l, l

′) | vj ∈ N (vi)} defines the compatibility coefficients
between the label l of node vi and the label l′ of vj . And C = {cij | vj ∈ N (vi)}
is the set of weights indicating the influence of node vj on node vi.

Given an initial estimation for the probability distribution over labels p
(0)
i (l) for

the node vi, the probabilistic relaxation method iteratively computes estimates
p

(r)
i (l), r = 1, 2, . . . , based on the initial probabilities p

(0)
i (l), the compatibility

coefficients R, and the weights C in the form
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p
(r+1)
i (l) =

p
(r)
i (l)

[

1 + q
(r)
i (l)

]

∑L
l′=1 p

(r)
i (l′)

[

1 + q
(r)
i (l′)

] , (4)

where

q
(r)
i (l) =

M
∑

j=1

cij

[

L
∑

l′=1

rij(l, l
′)p

(r)
j (l′)

]

. (5)

Note that the compatibility coefficients rij(l, l
′) ∈ [−1, 1] do not need to be

symmetric. A value rij(l, l
′) close to −1 indicates that label l′ is unlikely at

node vj when label l occurs at node vi, whereas values close to 1 indicate the
opposite. A value of exactly −1 indicates that the relation is not possible and
a value of exactly 1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing but does not spec-
ify how the compatibility coefficients are computed. In this work, we apply
the coefficients as defined by Yamamoto [32]

rij(l, l
′) =











1
1−pi(l)

(

1 − pi(l)
pij(l|l′)

)

if pi(l) < pij(l | l′)

pij(l|l
′)

pi(l)
− 1 otherwise

, (6)

where pij(l | l′) is the conditional probability that node vi has label l given
that node vj ∈ N (vi) has label l′. Each of the values pi(l) and pij(l | l′) are
pre-calculated only once and remain the same during the iterations of the
relaxation process. Thus, the coefficients R remain the same as well.

So far we described the general method for relaxation labeling. It remains to
describe how we apply this method for spatial smoothing of the classifications
obtained by our AdaBoost classifier. To learn a topological map, we assume a
given two-dimensional occupancy grid map in which each cell m(x,y) stores the
probability that it is occupied. We furthermore consider the eight-connected
graph induced by such a grid. Let vi = v(x,y) be a node corresponding to a
cell m(x,y) from the map. Then we define a neighborhood N8(v(x,y)) using the
8-connected cells to v(x,y) as described in [21].

For the initial probabilities p
(0)
(x,y)(l), we use an alternative representation of the

classification output of the decision list described in Section 3. In this case the
classification output is represented by an histogram z. In this histogram, the
k-th bin stores the probability that the classified location belongs to the k-th
class according to the sequence of classifiers in our decision list. To compute
the individual values for each bin of that histogram, we use the approach by
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Friedman et al. [33] which determines a confidence value C+ ∈ [0, 1] for a
positive output of the binary classifier

C+ = P (l = +1 | e) =
eF (e)

e−F (e) + eF (e)
, (7)

where F (e) is the output of the AdaBoost algorithm according to Fig. 2. Let
C+

k refer to the confidence value of the k-th binary classifier in our decision
list. The probability that the location belongs to the k-th class is given by the
k-th bin of the histogram z computed as

z[k] = C+
k

k−1
∏

j=1

(1 − C+
j ). (8)

Note that the confidence value C+
K which is used to compute the last bin

z[K] of the histogram is C+
K = 1 so that

∑K
k=1 z[k] = 1. The right image of

Fig. 5 illustrates an example of the histogram z corresponding to a typical
classification output.

Continuing with the relaxation method, our set L is composed by the labels
corridor, room, doorway, and wall. For each node v(x,y) in the free space of the
occupancy grid map, we calculate the expected laser scan by ray-casting in the
map. We then classify the observation and obtain a probability distribution z

over all the possible places according to Equation (8). The classification output

z for each pose (x, y) is used to initialize the probability distribution P
(0)
(x,y) of

node v(x,y). For the nodes lying in the free space, the probability p
(0)
(x,y)(wall)

of being a wall is initialized with 0. Accordingly, the nodes corresponding to
occupied cells in the map are initialized with p

(0)
(x,y)(wall) = 1.

Each of the weights cij ∈ C is initialized with the value 1
8
, indicating that

all the eight neighbors vj of node vi are equally important. The compatibility
coefficients are calculated using Equation (6). The values pi(l) and pij(l | l′)
are obtained from statistics in the given occupancy grid map corresponding
to previously labeled training data as shown in Fig. 1.

6.2 Region extraction and topological mapping

After the relaxation process, complete regions are extracted from the classi-
fication map using adjacent cells having the same labels. This is done using
the algorithm by Rosenfeld and Pfaltz [34]. A topological graph is then con-
structed in which each node represents a region and each edge represents a
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connection between regions. We finally apply a heuristic region correction step
to the topological map to increase the classification rate:

(1) We mark each region corresponding to a room or a corridor whose size
does not exceed a given threshold of 1m2 compared to the training set as
classification error and assign the label of one of its connected regions to
it.

(2) We mark each region labeled as doorway whose size does not exceed a
given threshold of 0.1m2 square meters or that is connected to only one
region as false classification and assign the label of one of its connected
regions to it.

6.3 Semantic classification of maps using associative Markov networks

In this section we present an alternative method for classifying and smoothing
the corresponding labeling for creating topological maps. The main idea of
the approach is to treat the classification of the poses in the geometric map
as a collective classification problem [35]. Similarly to the relaxation labeling
approach described in Section 6.1, collective methods also take into account
the neighborhood of a cell when assigning a label to it. However, collective
classification uses this influence in both ways: the label of a cell is influenced
by its neighborhood and, at the same time, the neighboring labels of a cell are
influenced by its label. In contrast, the relaxation labeling process uses only
the neighboring information to change a certain label, but the neighborhood
is not influenced.

One popular method for the task of collective classification are relational
Markov networks (RMNs) [36]. In addition to the labels of neighboring points,
RMNs also consider the relations between different objects. E.g., we can model
the fact that two classes A and B are more strongly related to each other than,
say, classes A and C. This modeling is done on the abstract class level by in-
troducing clique templates [35]. Applying these clique templates to a given
data set yields an ordinary Markov network (MN). In this MN, the result is
a higher weighting of neighboring points with labels A and B than of points
labeled A and C. Additionally, each node in the network is associated a set of
features.

The whole process of labeling is composed of two steps. First, a supervised
learning process is used to learn the parameters of the RMN used as a training
set. Second, a new network is classified using these parameters. This last step
is also called inference. In this work, we will use a special type of RMNs known
as associative Markov networks (AMNs). Efficient algorithms are available for
learning and inference in AMNs (for more detail see [37]).
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Fig. 6. Complete map of the ground floor of building 79 at the University of Freiburg.
The map is divided into two parts for learning and classification purposes.

In our case we create an AMN in which each node represents a cell in the
geometric map. Each node is given a semantic label corresponding to the place
in the map (corridor, doorway or room). We also create a 8-neighborhood for
each cell. Furthermore, a set of features is calculated for each cell. These
features correspond to the geometric ones extracted from a simulated laser
beam as explained in Section 4. To reduce the number of features during the
training and inference steps, we select a subset of them. This selection is done
using the AdaBoost algorithm [19].

7 Experiments

The approaches described above have been implemented and tested on real
robots as well as in simulation. The robots used to carry out the real experi-
ments were an ActivMedia Pioneer 2-DX8 equipped with two SICK lasers, an
iRobot B21r robot equipped with a camera system and a laser, and an Activ-
Media PowerBot equipped with a front laser. To simulate the laser scans in
the different maps we used the software CARMEN [38]. This simulator adds
gaussian noise to the laser measurements. In addition, it generates random
readings and maximum readings with predefined probabilities.

The goal of the experiments is to demonstrate that our simple features can
be boosted to a robust classifier of places. We first present experiments in
which independent poses of the robot are classified into semantic classes. Next
we show the two main applications of this approach. Firstly, we show an
experiment in which the poses of the robot during a trajectory are classified
using HMMs. Secondly, we present experiments where the toplogical map is
created starting from a geometric map. Finally, we present some results in
which we learned a classifier in different indoor environments and then we
apply this classifier to unknown ones.
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Fig. 7. The left image depicts the training data. The right image shows the test
set with a classification rate of 97.3%. The training and test data were obtained by
simulating the laser range scans in the corresponding grid maps.

7.1 Semantic classification of robot poses

The first experiment was performed using simulated data from our office en-
vironment in the building 79 at the University of Freiburg (Fig. 6). To obtain
the laser observations we simulated in each free position in the map the cor-
responding laser scans. The task was to classify the poses of the robot into
three different types of places, namely room, doorway, and corridor based on
laser range data only. In this experiment we classified each pose independently
without any filtering. The left part of the floor (Fig. 6 left) was used for train-
ing purposes, whereas the right part (Fig. 6 right) was used as test set. Fig. 7
shows the labeled training data together with the classification results on the
test set. The optimal decision list for this classification problem, in which the
robot had to distinguish between three classes, was room-doorway. This deci-
sion list correctly classifies 97.3% of all test examples (right image of Fig. 7).

7.2 Classification of trajectories using hidden Markov model filtering

The following experiment was performed using real laser and vision data ob-
tained in the building 79 at the University of Freiburg (Fig. 6). The main
goal of the experiment is to show how HMMs improve the classification on
trajectories. In addition, we show how vision data can be included in a real
experiment. For this purpose we use the set of features composed by the ge-
ometrical features extracted from the laser and the objects extracted from
the images as explained in Section 4. In this experiment six different types of
places were learned from the training examples, namely offices, doorways, a
laboratory, a kitchen, a seminar room, and a corridor. We trained our classifier
in the right part of the building 79 because here all six classes are represented
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Fig. 8. The right image shows the training map hand-labeled with six different
places. Here a big spot indicates the label for the complete area. The left image
shows the classification using HMM of a typical trajectory in the other part of the
floor. In this image each small spot indicates the classification of the robot while
staying in that position.

(right image of Fig. 8). We then classified a typical trajectory along the left
part of the floor applying a HMM as explain in Section 5. In this part of the
floor there is no real kitchen or seminar room. The result of the classification
is shown in the left image of Fig. 8. The classification rate was 91.2% using
the decision list corridor-doorway-kitchen-lab-seminar. The classification rate
decreases to 75.4 % if no HMM is applied.

7.3 Building topological maps

In the next experiment we create a topological map of the right part of the
floor of building 79 at the University of Freiburg (Fig. 6) from its geometric
map. The first step was to classify every free cell into one of the three places
corresponding to door, corridor and room using only features extracted from
simulated laser scans. The resulting classification was previously shown in the
right image of Fig. 7. After applying our probabilistic relaxation method and
heuristics (Section 6) we obtained the final toplogical map shown in Fig. 9.
As can be seen the two left rooms above the corridor are detected as only
one region. This is due to the fact that no correct doorway was detected in
between.
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Fig. 9. Toplogical map from the right part of the floor of building 79.

7.4 Transferring the classifiers to unknown environments

These experiments are designed to analyze whether a classifier learned in a
particular environment can be used to successfully classify the places of a
new environment. To carry out the first experiment, we trained our sequential
classifier simulating the laser scans in the left part of the map of Fig. 1, which
corresponds to the building 52 at the University of Freiburg. The resulting
classifier was then evaluated on scans simulated given the map of the Intel
Research Lab in Seattle (Fig. 10 left). The resulting classification is shown
in the right image of Fig. 10. Although the structure of the Intel Lab is very
different from the one of the building 52, the resulting classification still seems
to be consistent with the one possibly done by a human.

In a second experiment we learned a classifier using laser scans simulated in
the maps of the buildings 79 and 52 at the University of Freiburg (Figs. 1
and 6). We then extract the topological map of the building denoted as ”SDR
site B” in the Radish [39] repository (Fig. 11 left), using the learned classifier
together with the methods explained in Section 6. The result is shown in the
right image of Fig. 11. For a more detailed description of this experiment we
refer the reader to [26].

7.5 Learning semantic maps using associative Markov networks

In this experiment we show some preliminary results when applying AMNs
to geometric maps as explained in Section 6.3. For this purpose we classified
the right map of the building 79 at the University of Freiburg (Fig. 6 right).
For the training process we used the left hand-labeled part of the map (Fig. 7
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Fig. 10. The left map depicts the occupancy grid map of the Intel Research Lab and
the right image depicts the classification results obtained by applying the classifier
learned from the environment depicted in Fig. 1 to this environment.
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Fig. 11. The left image shows the map of the building ”SDR site B”. The right
image depicts the corresponding topological map. The rooms are numbered left to
right and top to bottom with respect the map in the left. For the sake of clarity,
the corridor-node is drawn maintaining part of its region structure

left). In this experiment we reduce the resolution of the maps to 20cm. The
reason for this is that the original resolution of 5cm generates a huge network
which exceeds the memory resources of our computers during the training step
of the corresponding AMN. The left image of Fig. 12 shows the results with
a classification rate of 98.8% using AMNs. We compared this method with
the classification obtained using our sequential AdaBoost together with the
probabilistic relaxation procedure. The right image of Fig. 12 depicts the clas-
sification results. In this case, only 92.1% of the cells were correctly classified.
As we can see, one consequence of changing the resolution to 20cm, is that the
classification rate decreases (compare to right image of Fig. 7). We think that
this is due to the worse quality of the simulated beams in such a granulated
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Fig. 12. The left image depicts a classification of 98.8% of the building 79 at Univer-
sity of Freiburg using AMNs. The right image shows the classification of the same
building using the sequential AdaBoost classifier together with the probabilistic la-
beling method. In this case the classification rate was 92.1%. The training and test
data were obtained by simulating laser range scans in the left map of Fig. 6 with a
resolution of 20cm.

map. However, AMNs seem to be more robust to changes in resolution giving
better classifications results.

7.6 Laser observations with restricted field of view

In this experiment we show the results of applying our classification methods
when the laser range scan has a restricted field of view. No image data was
used. We first steered a PowerBot robot equipped with only a front laser along
the 6th floor of the CAS building at KTH (right to left). The trajectory is
shown in the top image of Fig. 13. The data recorded in this floor was used to
train the AdaBoost classifier. We then classified a trajectory on the 7th floor
in the same building. We started the trajectory in an opposite direction (left
to right). The rear beams were simulated using a local map. The resulting
classification rate of 84.4% is depicted in the bottom image of Fig. 13.

8 Conclusions

In this paper, we presented an approach to classify different places in the
environment of a mobile robot into semantic classes. Our algorithm uses simple
geometric features extracted from a single laser range scan and applies the
AdaBoost algorithm to form a binary strong classifier. To distinguish between
more than two classes, we use a sequence of strong binary classifiers arranged
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Fig. 13. The top image shows the training trajectory on the 6th floor of the CAS
building at KTH. The bottom image depicts the labeling of the trajectory of the
7th floor using only a front laser with a classification rate of 84.4%. The map shown
is for informative purposes only and does not represent exactly the environment in
which the experiments were carried out.

in a decision list. Additionally we showed how to add features extracted from
camera images.

We presented two applications of our approach. Firstly, we performed an on-
line classification of the positions along the trajectories of a mobile robot by
filtering the classification output using a hidden Markov model. Secondly, we
presented a new approach to create topological graphs from occupancy grids
by applying a probabilistic relaxation labeling to take into account dependen-
cies between neighboring places when improving the final classifications. Ad-
ditionally, we presented some preliminary results applying associative Markov
networks to geometric maps to obtain a semantic classification of the poses.

Experiments carried out using real robots as well as in simulation illustrate
that our technique is well-suited to reliably label places in different environ-
ments. It allows us to robustly separate different semantic regions and in this
way it is able to learn topologies of indoor environments. Further experiments
illustrate that a learned classifier can even be applied to so far unknown en-
vironments.
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