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Abstract— Traditional approaches to prediction of future
trajectory of road agents rely on knowing information about
their past trajectory. This work rather relies only on having
knowledge of the current state and intended direction to make
predictions for multiple vehicles at intersections. Furthermore,
message passing of this information between the vehicles
provides each one of them a more holistic overview of the
environment allowing for a more informed prediction. This is
done by training a neural network which takes the state and
intent of the multiple vehicles to predict their future trajectory.
Using the intention as an input allows our approach to be
extended to additionally control the multiple vehicles to drive
towards desired paths. Experimental results demonstrate the
robustness of our approach both in terms of trajectory predic-
tion and vehicle control at intersections. The complete training
and evaluation code for this work is available here: https://
github.com/Dekai21/Multi_Agent_Intersection.

Index Terms— Trajectory prediction, Multiple vehicles, Neu-
ral network, Deep learning

I. INTRODUCTION

Over the past decade, deep learning has made tremendous
strides towards the ultimate goal of achieving full driving au-
tonomy [1]. Self-driving vehicles deploy a suite of different
sensors such as RADAR, GPS, IMU, LIDAR, cameras or
their combination for various tasks such as object detection,
classification, localization and navigation [2], [3], [4], [5],
[6]. Among them, vision based sensors (Cameras, Lidar etc.)
have been demonstrated to be most promising in achieving
at par human driving performance. This is because these
sensors are closest to emulating the traits of human vision
in perceiving the driving environment. Coupled with other
sensors, they have been successful in various tasks such as
emergency braking [7], [8], lane keeping [9], [10], pedestrian
detection, object tracking [11], [12] etc. However, such
line-of-sight sensors mounted on ego-vehicles are primarily
concerned with tasks involving single vehicles and therefore
have several limitations of their own:
• They can only partially observe an environment due to

limited field of view, occlusions etc. Hence, they may
not be feasible for executing maneuvers at hustling areas
such as traffic intersections. This is important since a
sizable fraction of vehicle collisions occur at traffic
intersections [13] which also tend to be more severe
[14].

• Each vehicle has an independent sensor and a separate
processing setup. Therefore, the combined computa-
tional power needed for all the vehicles would be high.
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Moreover, these resources occupy space within the ego-
vehicle and may even require cooling.

• Simulated engines have played a crucial role in testing
and evaluating autonomous driving algorithms. How-
ever, sensor data such as images rendered in simulation
may not be a true reflection of reality. Hence, this
domain shift would preclude deployment in the real
world.

To overcome the issue associated with partial observ-
ability at critical areas such as intersections, a camera can
be deployed in a Birds-Eye-View (BEV) manner simul-
taneously observing all agents in the scene as depicted
in Figure 1. Such top-down images are commonplace for
trajectory prediction [15], [16]. The state of the agents can
be captured with a camera permanently mounted on a high
infrastructure [17], [18] or using drone imagery with up
to centimeter accuracy precision [19] using vision based
object detection algorithms. This state information for each
vehicle can then be used to predict the future trajectory or
sequence of control actions. Note that each vehicle can also
aggregate information about other agents before taking the
appropriate action. Using accurate state information rather
than ego-vehicle mounted sensors such as RGB cameras
has 2 additional advantages: 1) The computational burden
on the resources can be relieved since images with many
pixels being processed independently on each vehicle is no
longer necessary. 2) The domain shift problem caused by
the rendering of images in simulation not matching reality
should no longer be a concern. This is because we are using
the state (location, orientation etc.) of the vehicles as an
abstraction to represent information about them. Hence, with
this abstraction it would be possible to train a model on
one domain and test on another as we demonstrate in the
Experiments.

Figure 1 further shows that the state information of all
vehicles along with their desired intention to go straight, turn
left or right is passed to a Multi-vehicle Trajectory Prediction
(MTP) module. The MTP module predicts the future trajec-
tory for each vehicle based on this provided information.
Within the MTP, the future trajectory prediction is in turn
done by the aggregation module which has shared weights
across all the vehicles. This allows the model to handle an
arbitrary number of vehicles in the scene. Note that to make
a prediction for a particular vehicle, the aggregation module
not only takes information about that specific vehicle but
also considers information of other vehicles through message
passing [20]. This provides each vehicle a holistic overview
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Fig. 1: Multi-vehicle Trajectory Prediction Framework: Step 1: Object detection is done on a top-down image of an
intersection to extract out the state information of each vehicle in the scene. This information is sent to the Multi-vehicle
Trajectory Prediction (MTP) module. Step 2: Meanwhile, each vehicle in the scene also sends its intention to the MTP.
The intention information informs the MTP whether a certain vehicle intends to turn left, right or keep going straight at
the upcoming intersection. Step 3: The MTP then passes this combined state and intention information to the aggregation
sub-module to predict the future trajectory for each vehicle. Note that the trajectory prediction for each vehicle is not only
dependent on its own state and intention information but also considers that of other vehicles too. The focus of this work is
on the MTP module, where we show how the future trajectory of multiple vehicles can be predicted simultaneously using
their state and intent information.

of the environment, thereby making an informed trajectory
prediction. In contrast, Figure 2 shows the implications of not
aggregating information from other vehicles when making
trajectory predictions. To this end, the contributions of this
work are summarized below:

1) We demonstrate that our approach of using only the
state and intention information outperforms the ap-
proach of using past trajectory information.

2) Our model has the ability to predict the future trajec-
tory of an arbitrary number of vehicles. It aggregates
information from other vehicles; thereby giving better
predictions.

3) We show that the model can be trained on one platform
and tested on another.

4) Our approach of predicting the future trajectory can
easily be extended to also control multiple vehicles
simultaneously at intersections.

5) We have also released the entire codebase for train-
ing and testing our method. The code can be found
here: https://github.com/Dekai21/Multi_
Agent_Intersection.

Note that the primary emphasis of this work is the MTP
module in Step 3 of Figure 1, where we show how the
future trajectory of multiple vehicles can be predicted si-
multaneously using their state and intent information. Step
1, regarding retrieving the BEV information of the vehicles

and Step 2 regarding transmission of intention information
to the MTP is touched upon in the related work Section II.
Based on this, the following assumptions are made:

1) Access to the state information and intention of the
vehicles is available.

2) In case of control, the vehicles are capable of receiving
the control commands to execute the correct maneuvers
at intersections.

II. RELATED WORK

Wireless Vehicle Communication:
Vehicle to Everything/Infrastructure (V2X/V2I) allows for
wireless communication with the vehicles [21]. V2X/V2I
offers various advantages over the usual line of sight sensors
placed on ego-vehicles [22]. It facilitates reliable data
transmission [23] even among non-line-of-sight vehicles in
the immediate vicinity to give prior warnings of impending
traffic jams [24], emergency braking [25], risky overtaking
[26]. In our framework, it would be needed to transmit
state information from and control commands to the
vehicles. However, the emphasis of our work is multi-
vehicle trajectory prediction and not vehicle communication.
Therefore, we assume that the intention information is
known by utilizing different trajectory datasets/platforms in
our experiments.
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Fig. 2: Figure depicts the importance of aggregating information. Left: describes an initial scene comprising of 4 vehicles.
The white vehicle is the first one arriving the intersection from the top and intends to turn to its left. Meanwhile, the
brown and red vehicles arriving from the bottom intend to turn left and go straight respectively. Middle: With information
aggregation, the brown and red vehicles wait until the white vehicle has left the intersection. Right: With no information
aggregation, the brown and red vehicles start moving earlier and crash into the white vehicle.

Trajectory Datasets:
There are multiple real world datasets which provide
trajectory information of various road participants from a
BEV perspective. For e.g. [17], [18] collect data from top
of buildings, while [15], [16] collect from drone imagery.
However, these datasets contain limited proportion of
trajectories comprising of vehicles in the scene. This would
not be enough in terms of quantity and accuracy to train
data driven learning based algorithms. We therefore train
and test on the real world inD dataset [19], which addresses
these limitations. Note that our approach of trajectory
prediction can also be extended to control multiple vehicles.
This falls under the purview of embodied agent evaluation
[27] and is an emerging topic in the area of deep learning.
However, none of the datasets described above provide the
facility to conduct an online evaluation [28]. We therefore
use the Simulation of Urban Mobility (SUMO) platform
[29]. In the context of this work, SUMO allows creation
and control of various scenarios at intersection for e.g.
the number/intention of vehicles, the priority of the roads,
structure of the intersection etc. After training on SUMO,
we then evaluate the online control of the vehicles on
a completely different platform i.e. Car Learning to Act
(CARLA) [30]. CARLA provides the option to pass the
steering and acceleration/throttle commands to maneuver
multiple vehicles in the scene.

Multi-agent trajectory prediction:
Future trajectory prediction of agents using information
about the social interaction between them is being used for
both pedestrians [31], [32], [33], [34] and vehicles [35], [36],
[37], [38]. Many such methods utilize information about
the past trajectory of vehicles to make inferences about the
future [39], [40]. In [41], [42] the output is probabilistic,
while being multimodal in [43], [44] particularly at points
where a road splits into multiple directions. However,

only one of the multiple alternatives would be valid if the
vehicle intends to traverse a certain direction. Our method
in contrast does not require information about the past
trajectory but rather only the current state of the vehicle.
Also, the predictions of the future trajectory is unique as
our model is conditioned on the intention of the vehicle.
[45] showed that being aware of the intention of other
vehicles improves merging at T-intersections. Knowledge
of intention allows our task of trajectory prediction to be
extended to additionally control the vehicles to reach desired
targets. This is done by applying model predictive control
to determine the appropriate throttle and steering angle such
that the vehicle follows the predicted trajectory. We are
not aware of any previous approaches that take only the
current state and intention for future trajectory prediction
and control of multiple vehicles. A recent work by [46],
does use state and intent information but only for the task
of maintaining a longitudinal safety distance between the
front and rear vehicles. Moreover, their approach uses a
rule based approach, whereas our approach is data-driven
by training a neural network.

Multi-agent Control:
Controlling a single vehicle at an intersections is a
complicated task [47]. This is further aggravated when
interaction with other agents also needs to be handled
[48]. The work of [49], [50], [51], [52] control the flow of
multiple vehicles to minimize traffic congestion and collision
at intersections. However, this is done by controlling the
traffic lights. Our network on the other hand deals with
controlling the individual vehicles at intersections that are
void of traffic lights. [53], [54] handle multiple agents using
a leader guided formation control. In our work, all vehicles
are independently controlled. Other approaches to control
the individual vehicles involve solving an optimization
problem [55], [56]. Our approach in contrast is learning



based. [57], [58], [59], [60] uses reinforcement learning (RL)
for multi agent prediction/control. However, RL methods
tend to be heavily data-inefficient [61]. Our framework, on
the other hand uses imitation learning complemented with
an additional collision cost to prevent vehicle-to-vehicle
collision when controlling multiple vehicles simultaneously.

III. FRAMEWORK

In this section we describe the details of the Multi-Vehicle
Trajectory (MTP) module depicted in Fig.1. It takes the
state and intention information of each of the N vehicles in
the scene as input and predicts their future trajectory for
T timesteps ahead. We summarize the components of our
framework as follows:

Input:
The information input to the MTP about each vehicle is
represented by the vector Xk ∈ R6, k = 1,2, ...N. Xk in turn
comprises of 2 components: 1) State and 2) the intention
of the vehicle. State: The state of vehicle k is in turn
represented by a vector ∈ R3, described by its orientation
(θk ∈ R) and location Sk ∈ R2 on the x−y plane. Intention:
of vehicle k represented by Ik ∈ R3 is a one hot encoded
vector describing whether the vehicle intends to go either
left, right or keep going straight at the upcoming intersection.

Input Transformation:
This input vector Xk for each vehicle is then passed through
a series of L Multi-Layer Perceptron (MLP) layers with
trainable parameters. The output of MLP layer l for each
vehicle k is a latent representation given by X l

k ∈ Rl and is
specified by the following equation:

X l
k =

{
Xk l = 0

σ(WlX l−1
k +bl) 0 < l ≤ L

(1)

where Wl ∈ Rl×(l−1) and bl ∈ Rl are the trainable
parameters of the MLP layer l, while σ is the ReLU
non-linear activation function.

Information Aggregation:
Note that the output of the last MLP layer L for vehicle
k is XL

k and is only dependent on the latent representation
of the same vehicle in the previous layer. In order to make
an informed prediction of the future trajectory of a vehicle,
it would be prudent to not only consider latent information
about itself but also the other vehicles too. Therefore, infor-
mation aggregation is done through message passing in the
successive layers l = L+1,L+2, ...LF . This produces a new
latent representation of each vehicle given by the following
equation [62]:

X l
k =



XL
k l = L

σ(Wl
sX

l−1
k +Wl

o

N

∑
p=1,p6=k

X l−1
p ) L < l < LF

Wl
sX

l−1
k +Wl

o

N

∑
p=1,p6=k

X l−1
p l = LF

(2)

where Wl
s, Wl

o ∈ Rl×(l−1) are the trainable parameters
of the aggregation layer. The output of each vehicle k in
the last layer is XLF

k ∈ R2T . It is a prediction of the future
trajectory information Sk of the vehicle k for T timesteps
ahead. Note that in the experiments, we demonstrate the
significance of aggregating information from neighbouring
vehicles. Therein, we show that the performance of the
trained model significantly deteriorates when the second term
in Eq. 2 corresponding to aggregation of information from
the neighbouring nodes is removed.

Note that despite having shared weights, each vehicle
predicts a unique trajectory, since the input vector given
by the state and intention information for each vehicle is
different.

Loss Function:
The loss function used to train our model can be decomposed
into the imitation loss (Limitation) and the collision loss
(Lcollision). The imitation loss is the mean of the L2 distance
between the the future trajectory predicted by the model and
the ground truth.

Limitation =
1
N

N

∑
k=1

T

∑
t=1
|St

k− Ŝt
k|2 (3)

where St
k and Ŝt

k are respectively the predicted and ground
truth state information of vehicle k at timestep t. Meanwhile,
if the future trajectory of any 2 vehicles (e.g. vehicle i
and vehicle j) coincide within a certain safety distance
threshold λ at the same time instance t, then a collision cost
proportional to the excess is added as part of the collision
loss:

Lcollision = ∑
i, j

Lcollisioni, j (4)

Lcollisioni, j =

 0 i f min
t
|St

i−St
j|2 > λ

λ −min
t
|St

i−St
j|2 otherwise

(5)

where 1 ≤ i < j ≤ N and 1 ≤ t ≤ T . The purpose of
the collision loss is to mitigate the propensity of vehicle-
to-vehicle collision at intersections. We demonstrate the
importance of this component of the loss function in the
experiments.

Vehicle Control:
Note that our Multi-Vehicle Trajectory module can be
extended to also control the individual vehicles. For this, we
model the car with the bicycle model [63] and apply model
predictive control (MPC) to optimize for the acceleration (a)
and steering angle (δ ) such as to follow a selected J number



of points on the predicted trajectory of the vehicle. MPC has
demonstrated to be of better performance compared to other
controllers [64], [65]. The equation of motion considering
the bicycle model are given by:

ẋ = v · cosθ ; ẏ = v · sinθ ; v̇ = a; θ̇ = v
tanδ

L
(6)

where L is the wheelbase and v is the velocity of the
vehicle. Meanwhile, the cost function minimized during
optimization is given by:

min
a,δ

J

∑
i=1

[(xi− x̂i)
2 +(yi− ŷi)

2 +(θ i− θ̂i)
2] (7)

Data Augmentation:
Note that when it comes to online vehicle control, training
merely on the recorded data may not be enough. This is
because the parameters controlling the car may cause the
ego-vehicle to diverge from the expected trajectory. This
deviation from the norm would cause the ego-vehicle to
reach scenarios not seen by the model during training, such
as the lane of the oncoming traffic or the road boundaries.
Since, such scenarios are not present in the training set,
the prediction of future trajectory by the model would be
incorrect causing the control parameters to further deviate
the car from the normal trajectory such that it eventually
crashes into the side barrier. Therefore, to prevent these
collisions with the barrier, we additionally augment the
original recorded data by adding some noise to the position
of the car. The output future trajectory is then determined
using model predictive control described by Eq. 6 and 7.
However, the only difference is that, the optimization is to
be done only for the final point on the trajectory, rather than
on the J points on the known trajectory. Experiments show
that inclusion of this augmentation reduces collisions with
the barrier during vehicle control.

IV. EXPERIMENTS

To measure the performance of our framework, we con-
duct both an offline and online evaluation. Offline evaluation
is an assessment of future trajectory prediction of a trained
model. For this we use the real world inD dataset [19].

Note that our approach of trajectory prediction is also
capable of being extended to control the driving of individual
vehicles at intersections. However, offline evaluation may
not necessarily reflect the true driving quality. In fact, [28]
showed that 2 models with similar offline metrics can have
drastically different performance when deployed in a live
setting. For this, online evaluation wherein the agents can ac-
tively interact with the environment is necessary. Therefore,
we use the CARLA [30] platform for online evaluation with
the model trained on a different platform i.e. SUMO [66].
The SUMO-CARLA co-simulation facilitates this evaluation.

A. Offline Evaluation:

The Bendplatz and Frankenburg intersections from the
inD dataset shown in Figure 3 have been used for offline
evaluation. For each intersection, 3 track files for training

Fig. 3: A snaphot of the Bendplatz and Frankenburg inter-
sections in Germany available in the inD dataset [19]

and 1 for validation are randomly selected. Each track file
contains 20 minutes of track records collected during differ-
ent times. 4 commonly used offline evaluation metrics are
used for comparison, namely: Average Displacement Error
(ADE) , Final Displacement Error (FDE), Miss Rate (MR)
and Collision Rate (CR) [39], [67]. For the interested reader,
mathematical formulation and interpretation of these metrics,
along with further information regarding the inD dataset used
in the experiments is provided in the supplementary file1.

Apart from our model, 3 additional models were trained
for purpose of comparison. Description of which are
described below:

Past Trajectory (VectorNet):
This model is adapted from the approach of [39]. Like our
approach, it retrieves information about the surrounding
vehicles. It uses an attention based mechanism for
this purpose. However, this approach additionally uses
information of not just the current state of the vehicle
but also the past trajectory in order to better ascertain the
future trajectory. Our model in contrast uses the intention of
where the vehicle desires to go rather than the past trajectory.

No information aggregation:
The architecture of this model is similar to our model,
except that a vehicle does not aggregate information
from other vehicles in the environment. This is done
by preventing message passing among the vehicles for
trajectory prediction. Moreover, only the imitation learning
loss is used for training.

No collision cost:
This is also similar to our approach, except that this model
is trained without the additional collision cost we introduced
into our imitation learning paradigm.
Ours:
This model is trained using the framework described in
Section III. The model takes information about the state and
intention of each vehicle in the scene and predicts the future
trajectory for each based on this available information. Note
that the model is capable of making each vehicle aggregate
information of other vehicles via message passing. This
holistic representation of the environment ought to facilitate
an informed trajectory prediction that minimizes collisions
between the multiple agents. The model is trained with both

1https://github.com/Dekai21/Multi_Agent_
Intersection/tree/master/supplementary
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the imitation and collision loss functions. However, note that
data augmentation meant for online vehicle control is not
done here.

The result of offline evaluation for all the 4 models are
given in Table.I and Table.II.

B. Online Evaluation/Control

Online evaluation of the driving quality is done on
the CARLA platform. However, the model is trained on
data from SUMO. The intersection is created such that
the vertical road (top-bottom) has higher priority over the
horizontal road (left-right). The metric used for evaluation
of online driving quality is the Distance Collision Ratio
(DCR). It is an online metric describing the distance
covered by the agents before either a vehicle-to-vehicle
(V2V) or vehicle-to-barrier (V2B) collision occurs. It is
mathematically described as the total distance driven by all
the vehicles at an intersection over the total number of V2V
or V2B collisions that occur. A higher value of this metric
is better.

DCR =
1
C

N

∑
k=1

Tk−1

∑
t=1

√
(xt+1,k− xt,k)2 +(yt+1,k− yt,k)2 (8)

where C is either the number of V2V or V2B collisions.
Meanwhile, Tk is the number of timesteps it takes for a
vehicle k to cross an intersection. Generally, it is larger for
vehicles taking a left turn as opposed to those taking a right
turn due to the difference in the length of the circumference
of the respective curvatures.
Models used for comparison in this online evaluation are the
same as described in Subsection IV-A for offline evaluation.
The only difference is that 2 additional models are trained
with data augmentation to enhance robustness to deviations
caused by imprecise predictions. The first model is trained
with data augmentation but no collision loss and the other
model is trained with both augmentation and collision loss.
DCR metric for V2V and V2B collision for all these
models are described in Table III. For purpose of
reproduciblity, the inference code for online control
and the details of the SUMO-CARLA co-simulation
setup are provided in the following repository:
https://github.com/Dekai21/Multi_Agent_
Intersection#run-the-inference-code.

C. Discussion:

In this subsection we elaborate some findings from the
results.

Significance of aggregation:
As can be seen, the model with no aggregation of information
from other vehicles under-performs our model. This is be-
cause, intersections are locations where plenty of interaction
among multiple vehicles is expected to happen. Therefore,
with no aggregation, an agent only receives information
about itself and is oblivious to the state, intention and
behaviour of the other vehicles. Hence, it cannot holistically

Fig. 4: Shows an example of the implications of not using ag-
gregation in comparison to our model which uses aggregation
at an intersection on the CARLA simulator. The horizontal
lane (left-right) is the non-priority road, while the vertical
lane (top-bottom) is the priority road.

look at the entire scene before taking an informed decision
about its own trajectory prediction. In case of online evalu-
ation on CARLA, we observed something interesting. Most
crashes occurred not within the intersection but rather just
before the vehicle enters the intersection on the non-priority
road. This is because in the training set, these vehicles
yield the right of way to those on the priority road by
slowing down or even stopping completely before entering
intersection. This is to allow the vehicles on the priority
road to pass without hindrance. Only when there is no
hindrance to other vehicles, the vehicle on the non-priority
road moves in to the intersection. However, such situations
are very rare compared to the number of samples where
the vehicle on the non-priority road sits stationary. Hence,
without receiving knowledge about other agents, the model
memorizes to always remain stationary before entering the
intersection from the non-priority road. This blocks the non-
priority road and prevents other vehicles from passing. In an
ideal world, if a vehicle is blocking a road, the other vehicles
approaching this choke point will be expected to slow down
to prevent a crash. However, these vehicles are also oblivious
to the presence of the blocking vehicle and attempt to drive
through it causing a crash. This particularly lowers the DCR
metric especially for V2V collisions.

Figure 4 demonstrates the consequences of not aggregating
information. As described earlier, this leads to collisions
among the vehicles before they enter the intersection due
to the first stationary vehicle. On the right side of the
same figure, an example scenario of our model which uses
aggregation is presented. The pink vehicle desiring to go
straight moves into the intersection as it is aware that there
is no other vehicle at the intersection.

Contribution of Collision Cost:
It can be observed that our model which uses the collision
cost penalty during training performs better than the model
trained without it. The effect is even more pronounced on
the online metric particularly when it comes to preventing
V2V collisions. Note that the DCR metric for V2V drops
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TABLE I: Results of trajectory prediction at the Bendplatz Intersection in the InD Dataset. (Lower metric values are better)

Model Past
Traj. Intention Message

Passing
Collision

Cost ADE FDE MR CR MR+CR

Past
trajectory X X 3.800 7.515 0.816 0.043 0.859

No info.
aggregation X 1.341 2.619 0.230 0.127 0.357

No
collision cost X X 1.110 2.193 0.172 0.101 0.273

Our
model X X X 1.099 2.126 0.157 0.075 0.232

TABLE II: Results of trajectory prediction at the Frankenburg Intersection in the InD Dataset. (Lower metric values are
better)

Model Past
Traj. Intention Message

Passing
Collision

Cost ADE FDE MR CR MR+CR

Past
trajectory X X 2.192 4.437 0.513 0.092 0.605

No info.
aggregation X 1.958 3.924 0.411 0.147 0.558

No
collision cost X X 1.752 3.518 0.341 0.112 0.453

Our
model X X X 1.850 3.623 0.359 0.072 0.431

TABLE III: Results of Online Evaluation on CARLA. (Higher metric values are better)

Model Past
Traj. Intention Message

Passing
Collision

Cost
MPC
Aug. DCR (V2V) DCR (V2B)

Past
trajectory X X 99.1 158.6

No info.
aggregation X 168.7 607.4

No collision cost &
augmentation X X 722.2 515.9

No
augmentation X X X 925.2 341.3

No
collision cost X X X 753.6 1256.0

Our
model X X X X 3915.0 1957.5

significantly when this loss component is removed from the
training. The utility of the collision cost is that it has the
ability to make slight modifications to correct the trajectory
of the vehicles if it senses a potential collision thereby
providing it with the ability to evade other vehicles. The
supplementary material contains a video demonstrating the
implications when collision cost is not used as opposed to
our approach.

Importance of Data Augmentation:
Note that we introduced data augmentation to prevent the
vehicle from deviating and crashing into road barriers during
online evaluation. Comparing the performance of the model
trained without data augmentation shows that the DCR met-
ric is significantly reduced particularly for V2B collisions.
Our model in contrast was trained with data samples at

deviated positions from the normal trajectory. Hence, even
if the model were to end up at divergent positions during
online inference, it would know the corrective action to take
to bring the vehicle back on track. This prevents crashes with
the barrier or other vehicles if they are in the way.

Past Trajectory information:
Recall that the model in [39] uses past trajectory information
of a vehicle in order to predict the future trajectory. Hence,
such models have a probabilistic interpretation, wherein
the precise future trajectory tends to be fuzzy and begins
to become more precise by the time the vehicle reaches
well into the intersection. In contrast, since our model is
provided with information about the intention of the vehicle,
the predictions are unique and much more accurate as can
be seen from the results. This intention allows our approach



Fig. 5: Demonstrates how intention can be used to control the behaviour and interaction among the vehicles. In the first row
of images, the white circled vehicle coming from the bottom desires to go straight. It keeps moving without yielding to any
other vehicle. In the second row, the intention of the same vehicle is modified to turn left. In this case, the white vehicle
slows down to yield to the red circled vehicles which are moving straight. The white vehicle only starts executing the left
turn once the red vehicles have passed. The arrow on the white circle represents the direction of motion. There is no arrow
in case the white circled vehicle is stationary. Note that the vehicle coming from the right intends to turn right, so it is not
a hindrance when the white circled vehicle intends to turn left.

to be extended to vehicle control. Figure 5 shows that
by manipulating the intention, the interaction among the
vehicles is adjusted accordingly. This flexibility in changing
the behaviour is only possible due to the capability derived
from using intention of the vehicle at the input. Not only are
the offline trajectory predictions more accurate (see Table
I and II ) but the online control is also more robust (see
Table III) in comparison to using past trajectory information.

Domain Adaptation:
Note that our model trained only on data from the SUMO
platform to predict the future trajectory can also be used to
control the vehicle on a completely different platform. In
this case, it is the CARLA platform. Note that data from
CARLA was not available to the model during training. The
reason for this successful adaptation of the model to different
domains is because we are using the state information of the
vehicle as the representation. This representation remains
consistent across different platforms/domains. Hence, the
model is immune to the source of origin of this representation
i.e. CARLA or SUMO. Other representations such as im-
ages have difficulty in switching between different domains,
weather/lighting conditions etc. For e.g. a control model
trained on images from a sunny weather condition would
have difficulty controlling the vehicle in a rainy weather
condition even though the domains may be the same [68].

Note that the entire code for training and conducting both
offline along with online evaluation is contained in the fol-

lowing repository: https://github.com/Dekai21/
Multi_Agent_Intersection.

V. CONCLUSION

In this paper, we demonstrated how the trajectory
for multiple vehicles can be predicted simultaneously at
intersections. This is done by utilizing their state and
intention information. This allowed extending the approach
to additionally controlling the vehicles to move towards
desired directions. Aggregating information of other vehicles
further facilitated each vehicle to make better informed
decisions. Our framework is also capable of being trained
on one domain while being tested on another domain, data
of which was not seen during training.
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