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Synopsis
To accelerate the acquisition of HARDI data, compressed sensing can be used to subsample the data both in k-space and in q-space, using a holistic
algorithm for the combined reconstruction. Fast spin echo (FSE) data has fewer deformation artefacts as EPI data, but often requires a multishot
acquisition, making subsampling k-space more attractive. In this work FSE data was subsampled retrospectively to investigate di�erent types of
subsampling: subsampling q-space only, also using 1D k-space subsampling, or using q-space and alternated 1D k-space subsampling. The results
show that for a given subsampling factor the alternated 1D k-space subsampling strategy performs best.

Introduction
Di�usion models beyond DTI require more volumes to be acquired, and their long acquisition time makes them di�cult to apply in clinical and
research contexts. Compressed sensing (CS) can alleviate this problem by enabling us to reconstruct a full signal from partial k-space or q-space
acquisitions. A combined k-q-space reconstruction might prove bene�cial over subsampling in only q-space or over k-space and subsequent q-
space reconstruction, but this has not yet been proposed for HARDI. While the above is generally true, CS can be of particular value in a preclinical
small-animal imaging context, where the scale of the hardware limits the use of parallel MRI and multislice imaging. In this research, several
subsampling strategies are tested in a simulation experiment on preclinical FSE-HARDI data of a mouse brain. FSE is particularly suitable for
combined k-q-space subsampling due to the necessity for multi-shot acquisitions and the reduced deformation artefacts.

Methods
In vivo mouse brain data acquired using a FSE di�usion sequence on a 7T Pharmascan scanner (Bruker, Ettlingen, Germany) was used. Details of
the acquisition can be found in . The fully sampled di�usion data, consisting of 60 directions (b = 2500 s/mm2) and b0 images, was denoised 
and preprocessed using FSL . Starting from this data, subsampled multicoil acquisitions were simulated and simultaneous k-q-space
reconstruction was performed using the holistic image reconstruction technique proposed by Golkov et al . 
This technique reconstructs the entire 6D image jointly while using regularization terms along 3D image space for each q-space coordinate, on each
q-space shell of each voxel, and on the corresponding ODF of each voxel. This allows di�erent 6D image coordinates to share information (thus
�lling the subsampled “knowledge gaps” and reducing noise) and to be optimized jointly for improved image quality. The resulting nonconvex
optimization problem is solved by adapting the primal-dual hybrid gradient method  to nonlinear operators .  
Three di�erent strategies were used for the subsampling: 1) ‘full k-space’: subsampling only in q-space; 2) ‘1D random subsampling’: acquiring half
of k-space using random subsampling in the phase-encoding direction (rostral-caudal), with a power law as sampling probability function 1; 3) ’1D
alternated subsampling’: acquiring only half of k-space by regular subsampling, with the subsampling direction being rostral-caudal for half of the
volumes and left-right for the other half. Six di�erent subsampling factors R∈{3,4,6,8,10,12} were tested. Subsampling factors and number of
di�usion volumes used are listed in Table 1. The di�erence between reconstructed and original data was evaluated by calculating the root-mean-
squared deviation (RMSD) of image intensity over all volumes.

Results
Figure 1 shows the RMSD values for all experiments. As expected, higher subsampling factors have larger errors. Using only subsampling in q-space
results in greater errors than combined k- and q-space subsampling, while subsampling k-space in two directions gives the best results. Figures 2-3
show the error maps for the best case (R=3, using 1D alternated subsampling) and worst case (R=12, using full k-space) scenarios, respectively. It
can be seen that the largest errors occur outside of the brain near the ears. In the brain, the error is smaller than 5%.

Discussion
The results clearly indicate that subsampling both k- and q-space can result in improved reconstructions. This e�ect is enhanced when subsampling
is applied in two dimensions in k-space. The FSE acquisition used in these experiments is well suited for such a subsampling approach, as switching
the phase-encoding direction will not result in vastly di�erent deformation artefacts as it does when using an EPI acquisition, which might hinder
the reconstruction. These simulation experiments provide a proof of principle, which should be expanded by data actually acquired using such a
scheme. The holistic algorithm which is used here can be expanded to include motion and eddy current correction (estimated via preliminary
standard reconstruction) in the operator, resulting in an almost single step reconstruction. Nonetheless, correcting strong distortions is in general
worse than not having them in the �rst place, by using FSE.

Conclusion
Simultaneous subsampling of k- and q-space of HARDI data can improve the reconstruction quality over only q-space subsampling for a given
subsampling factor, when the reconstruction is done in a single step. Alternating the phase-encoding direction for each volume improves the
results even further. Successful reconstructions can be acquired with as little as 10 q-space coordinates and half of the k-space, which also
translates in half the acquisition time for a multi-shot FSE or EPI acquisition.

Acknowledgements
This work was supported by the interdisciplinary PhD grant (ID) UA BOF-DOCPRO 2012, the EU’s Seventh Framework Programme (grant FP7/2007-
2013; INMiND) [grant agreement 278850], the molecular Imaging of Brain Pathophysiology (BRAINPATH) [grant FP7-PEOPLE-2013-IAPP-612360], by
the Hercules stichting [grant agreement no. AUHA/012], HFSP RGP0006/201.

References
1. Naeyaert, M. et al. Accelerating in vivo fast spin echo high angular resolution di�usion imaging with an isotropic resolution in mice through
compressed sensing. Magn. Reson. Med. 85, 1397–1413 (2021).

2. Veraart, J. et al. Denoising of di�usion MRI using random matrix theory. Neuroimage 142, 394–406 (2016).

1 2 2 3 4

1 2 3 4

1 2,3

4

5

6 7,5



16/12/2020 https://submissions2.mirasmart.com/ISMRM2021/ViewSubmissionPublic.aspx?sei=aRJ5hzQQc

https://submissions2.mirasmart.com/ISMRM2021/ViewSubmissionPublic.aspx?sei=aRJ5hzQQc 2/3

3. Veraart, J., Fieremans, E. & Novikov, D. S. Di�usion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76, 1582–1593 (2016).

4. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

5. Golkov, V., Portegies, J. M., Golkov, A., Duits, R. & Cremers, D. Holistic Image Reconstruction for Di�usion MRI. in Computational Di�usion MRI.
Mathematics and Visualization. (eds. Fuster, A., Ghosh, A., Kaden, E., Rathi, Y. & Reisert, M.) 27–39 (Springer, Cham., 2016). doi:10.1007/978-3-319-
28588-7_3

6. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 2009 IEEE 12th International
Conference on Computer Vision (ICCV). Number 813396, IEEE, pp. 1133–1140 (2009).

7. Valkonen, T.: A primal-dual hybrid gradient method for non-linear operators with applications to MRI. Inverse Prob. 30(5), 055012 (2014).

Figures

Table 1: Number of di�usion-weighted volumes used for each subsampling factor, compared to a complete dataset consisting of 60 volumes. The
strategies “1D random subsampling” and “1D alternated subsampling” use half of the k-space data.

 

Figure 1: RMSD values for all subsampling factors and subsampling strategies. Blue: full k-space, orange: 1D alternated subsampling, grey: 1D
random subsampling. Higher subsampling factors lead to a larger error, but for all factors 1D alternated subsampling performs best, indicating the
enhanced performance of subsampling in q-space and 2 k-space dimensions.

 

Figure 2: Normalized reconstruction error of a single slice for b0 (top, left) and all 60 di�usion direction, for the best case results, using 1/3 of the
original data by using 40 q-space coordinates and 1d alternated subsampling. Most errors are near the ears, whereas in the brain errors are very
small.
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Figure 3: Normalized reconstruction error of a single slice for b0 and all 60 di�usion direction, for the worst case results, using only 1/12 of the
original data and the full k-space subsampling strategy. The b0 image and �rst 5 q-space coordinates are used as input data by the algorithm, and
hence have a smaller error.
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