
Stream-based Active Learning for
Efficient and Adaptive Classification of 3D Objects

Alexander Narr1 Rudolph Triebel1,2 Daniel Cremers1

Abstract— We present a new Active Learning approach for

classifying objects from streams of 3D point cloud data. The

major problems here are the non-uniform occurence of class

instances and the unbalanced numbers of samples per class.

We show that standard online learning methods based on

decision trees perform comparably bad for such data streams,

which are however particularly relevant for mobile robots that

need to learn semantics persistently. To address this, we use

Mondrian forests (MF), a recent online learning algorithm that

is independent on the data order. We present an extension

of that algorithm and show that MF are less overconfident

than standard Random Forests. In experiments on the KITTI

benchmark, we show that this leads to a substantially improved

classification performance for data streams, rendering our ap-

proach very attractive for lifelong robot learning applications.

I. INTRODUCTION

One major requirement for most modern robotic systems
is their ability to extract semantic information from their
observed input data. In general, semantic information can
be represented in many different ways, including drivable
and non-drivable areas for outdoor robots [1], annotated
road maps with lanes, intersections and road signs for self-
driving cars [2], or the position and orientation of door knobs,
hinges of doors for robots with manipulators [3]. In this
work, we focus on class labels of road participants such
as cars, pedestrians, or cyclists, although our approach can
also be used for other applications. The main idea is that
of persistent learning, i.e. the robot learns semantics with
new observations during operation and not from a previously
manually annotated data set. The benefits of this are two-
fold: first, the robot is able to adapt to new situations as new
observations directly modify its internal representations. And
second, learning is done mainly on those observations that
actually occur in the robot’s environment and not on the
much larger set of potential observations, i.e. it can be done
more efficiently.

However, as we will show in this paper, these benefits
come with a major difficulty: in contrast to an offline
recorded training data set, data that is perceived online is
highly correlated to previous observations. For example, an
autonomous car driving on a highway may observe many
other cars or motor cycles from many different view points,
which can all be added to a large, growing training data
set. This leads to a large, but very unbalanced data set,
because other road participants such as cyclists or pedestrians

1Computer Vision Group, Dep. of Computer Science, TU Munich, 85748
Garching, Germany [narr,triebel,cremers]@in.tum.de

2Institute of Robotics and Mechatronics, Dep. of Perception and Cog-
nition, German Aerospace Center (DLR), 82234 Weßling, Germany
rudolph.triebel@dlr.de

Fig. 1. Example situation from the KITTI benchmark data set with a
car, a cyclist and some pedestrians. The 3D point cloud data of this frame
was classified after actively learning semantics from a stream of 10 000
previous samples. The bottom left image shows the result from actively
learning an online Random Forest classifier, the right one shows the result
using a modified Mondrian forest instead. A green bounding box refers to
a correct classification, while red boxes are wrong predictions. As we show
in this paper, the better performance of Mondrian forests comes from their
higher capability to learn from streams of data.

are under-represented. As a consequence, identifying new
observations as instances of an unknown object class on
appearance is very hard, because standard online learning
methods are only able to specialize, but not generalize their
models with new data samples and therefore require many
samples from the new class. In the literature on Active
Learning, this is known as the distinction between pool-
based and stream-based learning. To address these problems,
we propose an Active Learning framework that uses a more
informed and more flexible classification algorithm based on
a recent machine learning method. The so-called Mondrian
forest has the major benefit that it is independent on the order
in which the data appears, and that it can handle unbalanced
data sets much better because its representation does not
actually depend on the ground truth class labels. As we show
experimentally, this leads to much steeper learning curves
even for the stream-based learning scenario.

Our work consists of three major contributions: First,
we provide modifications to the original Mondrian forest
algorithm, which lead to a better classification performance.
Second, we analyze Mondrian forests regarding their ten-
dency to make wrong predictions with low uncertainty, i.e.
their overconfidence, and we show that Mondrian forests
tend to be less overconfident than standard online random
forests. And third, we exploit this by setting up an active
learning framework using Mondrian forests as underlying

classifier. We show experimentally that this new Active
Learning method produces less label queries at a higher
prediction accuracy compared to online Random Forests, and
that it is particularly well suited for stream-based learning
problems such as those often encountered in robotics.

II. RELATED WORK

Our work has links to three different learning concepts:
incremental learning, online learning and Active Learning.
Incremental learning refers to “any online learning process
that learns the same model as [it] would be learnt by a batch
learning algorithm” [4]. Essentially, this means that it can
incorporate additional information from newly observed data,
e.g. new object classes. Thus, the benefit over offline learning
is that incremental learning requires less computation steps
when new data is available. An example of an incremental
learning method is Learn++ [5], an extension of AdaBoost.
The idea is to generate new hypotheses from additional
batches of training data and to update the ensemble of
weak classifiers accordingly. Another incremental method
are nearest class mean forests (NCMF) [6]. They consist
of random forests where the decision nodes are based on
nearest class mean classifiers [7]. In contrast to other random
forests, NCMFs are able to add new classes, because they
store parts of the underlying distribution of the feature
space in each node. Another popular incremental learning
approach is based on one-class Support Vector Machines
(SVMs) [8], [9]. The key idea is that the current SVM
model is updated on the new data and the support vectors
from the previous learning step. The main drawback with all
incremental learning methods is however, that they do not
provide a functionality to update the learned model from a
single new data observation, and they often require to store
at least a large fraction of the training data.

In contrast, online learning methods only use the infor-
mation from the next data sample, and they do not need
to re-use any of the previously observed samples. Recent
examples of online learning methods are given by the work
of Saffari et al. [10], who introduced online multi-class
Gradient Boost and online multi-class LP Boost. In contrast
to offline boosting, an online boosting method has a fixed
number of weak classifiers and the weak learners themselves
are online algorithms, for example online Random Forests
(ORF) [11]. The performance of these methods is very good,
but as we will show in the experiments, they have problems
when the training data is un-balanced.

Finally, our work makes use of an Active Learning frame-
work. A good overview of this topic is given by Settles [12].
Some applications of Active Learning include the work of
Kapoor et al. [13], who perform object categorization using
a Gaussian Process classifier (GPC), the work of Vezhnevets
et al. [14], as well as that of Wang et al. [15] who use active
learning for interactive image segmentation. In contrast to all
these approaches, we address the problem of stream-based
Active Learning as opposed to pool-based learning. More
details are given below.

Fig. 2. Generic Active Learning. Starting with an initial training round,
new test data are classified, resulting in label predictions and corresponding
uncertainties. Based on these, a human supervisor is asked for ground truth
labels, and these are joind with the current training data. Then, training is
repeated with the extended training data until a stopping criterion is met.

III. PERSISTENT LEARNING FOR MOBILE ROBOTS

Our goal is to develop an algorithm that learns semantic
information (e.g. object class labels) from a large input data
set in such a way that it a) adapts its internal representation to
new, unseen environments, b) only requires few interactions
with a human supervisor (“teacher”) and c) only costs little
computational effort when considering a new data sample.
The motivation for these aims arises from the intended
application in mobile robotics: robots that persistently learn
semantics must be able to cope with new situations, should
only ask a human when necessary (thereby increasing their
level of autonomy), and perform the required computations
fast enough to not block the functionality of the whole
system. To address the first two goals, researchers have
investigated active learning methods, and we will briefly
explain this in the following. The third goal refers to the
capability for online computation, i.e. to update the repre-
sentation without having to re-consider previously observed
data samples. In the following, we give some examples for
existing online learning methods. Finally, we highlight the
major difference of active learning for mobile robots as
opposed to other applications such as computer vision and
explain the typical drawbacks of standard online learning
methods for our purpose. This will motivate our proposed
approach presented in Sec. IV.

A. Active Learning

Fig. 2 shows a schematic flow of a generic active learning
framework. It starts with an initial training set (X0,Y0),
where X0 = {x1, . . . ,xN} are N observations represented
as d-dimensional vectors and Y0 = {y1, . . . , yN} are ground
truth class labels, i.e. yi 2 {1, . . . , C} with C � 2. Then, in
each learning round or epoch j = 0, 1, . . . , a classifier fj is
trained using (Xj ,Yj). This gives a mapping fj : Rd ! RC

that assigns a prediction p 2 RC to each input sample. Next,
a set of new observations X ⇤

j = {x⇤
1, . . . ,x

⇤
K} is considered

and classified using fj . The result are prediction vectors
{p⇤

1, . . . ,p
⇤
K}. The key step is then to select a sub set of X ⇤

j

for a query of corresponding ground truth labels. A common
selection method uses the prediction uncertainties to decide
whether a query is triggered. From this query, new ground
truth labels Y⇤

j are obtained and, together with the selected
observations, they are added to the current training data set
(Xj ,Yj). The resulting set (Xj+1,Yj+1) is then used to train
the classifier fj+1 in the next epoch.

B. Online Learning

In principle, active learning can be performed with any
classification algorithm that is capable of providing uncer-
tainty estimates with class predictions for new samples.
However, in terms of efficiency standard offline learning
is not good for Active Learning, because it requires re-
training on all the data observed so far in every epoch. As a
consequence, the time needed for learning steadily increases
and all observed data samples must be kept in memory.
Therefore, online algorithms for learning are much more
useful. In the literature, many standard offline classification
methods have been converted into online methods, but one
remarkable contribution is the work of Saffari et al. [10],
which provides very efficient online multi-class learning
methods based on boosting. The key element in that work is
an online Random Forest, which is used as a weak classifier
in boosting. An online Random Forest combines online
bagging, random feature selection and the growing strategy
of extremely randomized trees [16], where the test functions
and thresholds are generated randomly. In contrast to an
offline node, an online decision node has to see a minimum
number ↵ of samples before splitting and a split has to
achieve a minimum gain �. For data sets that are roughly
uniformly sampled across the classes, this gives comparably
good classification results, but for non-uniform data and for
data streams this causes problems, as explained below.

C. Pool-based vs. Stream-based Learning

When we described the Active Learning framework, we
deliberately did not specify the way in which the test data
set X ⇤ is given. In principle, there are two ways to do this:
either X ⇤ is a fixed-size set of observations that are collected
beforehand, or it consists of a growing number of samples
that are continously observed and added to X ⇤. Thus, in the
first case we have a fixed pool of data, and the algorithm can
pick good samples to query from this pool, which is usually
very large. This is the most common application for Active
Learning. However, in mobile robotics, and in particular for
robots that are to learn semantics persistently, the second
scenario known as stream-based Active Learning is much
more relevant, because robots perceive streams of data, and
they should be able to learn from it continously. Therefore,
in this paper we consider stream-based Active Learning.

To highlight this distinction further, we performed the fol-
lowing experiment. We considered a large, standard bench-
mark data set and applied two online classification methods:
online Random Forests (ORF) and online multi-class Gra-
dient Boost (OMCGB) with ORF as weak classifiers (for
both methods see [10]). Then, we resampled the data in
such a way that the occurence of samples in each class
was distributed uniformly over the time line (see Fig. 3,
left and center) and applied again the online classification
methods. Evaluation was done on a hold-out set not used
for training, and we choose the KITTI data [17] for this
experiment (for more details on the used data set we refer to
the description in Sec. V-A). The resulting learning curves
are shown in the right plot of Fig. 3. As we can see, both

Fig. 4. Comparison between a decision tree and a Mondrian tree for a toy
example with three different classes (Figure inspired by [18]). The feature
space is defined in [0, 1]2 where x1 and x2 denote horizontal and vertical
axes. Top: The partition of the space of a decision tree with two axis aligned
splits at x1 = 0.55 and x2 = 0.65. Bottom: Embedded partition of the
space of a Mondrian tree where each node has an associated split time, and
the splits are committed only within the range of each sub tree.

online learning methods perform resonably well for the case
of uniform distributions of class occurences. However, on
the original data, where many objects of the same class can
appear for some time period but for others there are almost
no occurences, we have a significantly worse performance
of the online learners. The reason for this behavior is that
online Random Forests can not handle well data sets with
unbalanced classes and with a non-uniform distribution of
class occurences. Therefore, in this paper we propose a
different approach, which we describe next.

IV. PROPOSED APPROACH

The main drawback of online Random Forests is that their
structure strongly depends on the order in which the data
samples are observed. As soon as a split is made at a given
leaf node – thereby creating two new leaf nodes, this split
decision can not be revised. Also, ORFs can only grow
at the leaves, i.e. new samples can only refine the model,
but it can not be made more general by a new sample. A
novel algorithm that explicitly addresses these problems is
the Mondrian Forest by Lakshminarayanan et al. [18]. In
this section, we briefly review this algorithm and present
some modifications for an improved performance. Then, we
analyse it with respect to its tendency to associate wrong
classifications with a high uncertainty [19], a key feature for
application in Active Learning.

A. Mondrian Forests

The major difference between a Mondrian tree and a
standard decision tree is that Mondrian trees also store the
extent of the data that corresponds to each node. A simple
example with three classes is shown in Fig. 4. While the
decision tree uses splits that range over the entire potential
range of the data, the splits of a Mondrian tree only cover

Fig. 3. Left and center: Visualization of class occurences in the KITTI data set [17]. The x-axis shows the time axis represented as number of observed
samples, i.e. every new observation corresponds to a time step. On the y-axis we plot the ground truth class indices of the observed samples. Class 0
corresponds to ’car’, 3 to ’pedestrian’ and 5 to ’cyclist’. The left plot shows the situation of the original data, the center plot was created after uniformly
re-sampling the data. Right: Learning curves of two standard online learning methods: online Random Forests (ORF) and online multi-class Gradient
Boost (OMCGB), both evaluated on the original and the re-sampled data (“stream” vs. “random”). As we see, the performance of both methods for the
original data stream is significantly worse than for the resampled set.

the actual data range. This is achieved by keeping bounding
box information for each sub tree, i.e. each node vj stores
the lower and upper boundaries lj and uj of all data samples
Xj = {xj,1, . . . ,xj,nj} associated with the sub tree at vj ,
where nj is the number of these samples. Note that the data
itself is not stored in the tree, only the bounding boxes. As
in random decision trees, splits are generated randomly, but
samples are drawn from an exponential distribution whose
rate parameter is proportional to the data extent of the sub
tree. Concretely, each node vj has an associated time step
⌧j , and the entire tree has a time horizon or budget �. Time
steps ⌧j increase with the depth of the tree and splits are only
created as long as ⌧j < �. Thus, � implicitly regulates the
depth of the tree. For clarity, Algorithm 1 shows in detail the
recursive computation of a Mondrian tree from a given data
set Dj = (Xj ,Yj), a node index j and a budget �. Initially, j
is set to the root node index and Dj contains the entire data
set1. Then, in each call of SampleMondrianBlock a new
node is created and the bounding box (lj ,uj) computed (in
lines 3 and 4, upper indices i denote feature dimensions).
If all labels of the sub tree are equal, no split is inserted,
otherwise a new time parameter E is sampled and added
to the time step ⌧par(j) of the current parent node. Note that
large values of ej lead to a higher probability of small values
for E, i.e. large bounding boxes are more likely to be split
than smaller ones. If a split is inserted, the split dimension �j

is sampled proportional to the extents of the dimensions, and
the split location ⇠j is sampeled uniformly along this extent.
Then, data is split into a left part Djl and a right part Djr ,
and the corresponding sub trees are generated recursively.

B. Un-pausing Mondrian Blocks

In the original algorithm, splits are not inserted for nodes
where all samples have the same label (see line 5 of Alg.
1). The authors call this “pausing” a Mondrian block, and
they do this to make Mondrian forests “comparable” to
standard Random Forests. However, from our experiments

1Note that Alg. 1 describes the offline method to build a Mondrian forest
from a given data set. For brevity, we omit the description of the actual
online method that updates the tree with a single new data sample [18].

Algorithm 1: SampleMondrianBlock(j,Dj ,�) [18]

1 vj CreateNewNode(T, j)

2 for i = 1, . . . , d do

3 `

i
j min{xi

j,1, . . . , x
i
j,nj

}
4 u

i
j max{xi

j,1, . . . , x
i
j,nj

}
5 if AllIdentical(Yj) then

6 ⌧j �

7 else

8 ej
P

i(u
i
j � `

i
j)

9 E SampleExp(ej)

10 ⌧j ⌧par(j) + E

11 if ⌧j < � then

12 �j SampleProp(u

1
j � l

1
j , . . . , u

d
j � l

d
j)

13 ⇠j SampleUniform(`

�j
j , u

�j
j)

14 (jl, jr) MakeChildrenIndices(j)

15 Djl = {(xji, yji) : x
�j
ji ⇠j}

16 Djr = {(xji, yji) : x
�j
ji > ⇠j}

17 SampleMondrianBlock(jl, Djl ,�)

18 SampleMondrianBlock(jr, Djr ,�)

19 else

20 ⌧j �

21 AddToLeaves(vj , T)

we found that this can cause a bad classification performance
of the algorithm, especially if many samples from the same
class are observed in a row. In that case, a large amount
of these samples will be lost, because the trees only store
the bounding boxes of the data. Therefore, if then samples
from a new class arrive, the inserted split can not take these
“lost” samples into account, which often leads to inadequate
splits. To mitigate this problem we define a split threshold
parameters ✓s, which determines the maximum number of
samples with the same label that can be contained in a leaf
node. Thus, we modify the conditon in line 5 into

AllIdentical(Yj) ^ nj < ✓s. (1)

C. Under- and Overconfidence

As mentioned above, our aim is to use Mondrian forests in
an Active Learning framework to achieve better classification
results for the important case of stream-based data. To do
this, an important question is whether the classifier is able to
provide useful confidence estimates with its label predictions.
In essence, it should be avoided that the classifier makes
wrong predictions with a high confidence (corresponding to
a low uncertainty), because in that case thresholding on the
prediction uncertainty will not lead to good label queries
(see Sec. III-A). In Mund et al. [19] this was denoted
as overconfidence, and a formal definition of over- and
underconfidence was introduced, which we briefly revise
here. Overconfidence is the average confidence of all incor-
rectly classified samples from a given test set (X ⇤

,Y)

⇤, and
underconfidence is the average uncertainty of all correctly
classified samples. Note that we define confidence as one
minus the uncertainty of a prediction. Active Learning with
a classifier that is overconfident leads to bad classification re-
sults, whereas underconfident classifiers reduce the learning
efficiency by generating too many label queries. Note that
this is independent on the actual classification performance
of the classifier, which is often measured in precision and
recall. Even a classifier that produces only very few wrong
predictions can be overconfident if its uncertainty on these
few incorrect predictions is too low. Such a classifier might
be very useful for offline applications, but not as much for
Active Learning as a non-overconfident but less accurate
classifier might be. Therefore, to test for suitability of Active
Learning, we need to analyse the classifier with respect to
its over- and underconfidence, which we do in Sec. V-D.

V. EXPERIMENTAL RESULTS

In this section, we show experimentally that Mondrian
Forests perform better on stream-based data, that they tend to
be less overconfident compared to standard Random Forests,
and that our modified version of Mondrian Forests outper-
forms state-of-the-art multi-class online learning methods
when used in an Active Learning framework2. Before, we
describe the details about the data and the features we used.

A. Data Sets and Feature Computation

Experiments were carried out on two different data sets:
one standard set that is frequently used in the machine
learning community and one benchmark set from a real
robotics application. The first one is named pendigits

and consists of 5620 samples of handwritten digits where
each sample is represented by 64 attributes and each of
the ten digit classes contains roughly the same number of
samples [20]. This comparably easy data set is very useful
for comparison with other incremental and online learning
methods. The second data set is from the KITTI benchmark
and consists of 18 streams of segmented 3D point clouds
from urban traffic environments [17], which we concatenate

2An implementation of our method is available under
https://github.com/SpeedyN/StreamBasedAL.git

TABLE I
ARTIFICIAL TRAINING SETS WITH TWO NEW CLASSES IN EVERY ROUND

Classes 0 1 2 3 4 5 6 7 8 9
S1 124 129 124 129 0 0 0 0 0 0
S2 124 128 124 128 252 247 0 0 0 0
S3 124 128 124 128 126 124 371 378 0 0
S4 124 128 124 128 126 124 124 126 495 504
T 55 57 57 56 55 55 56 55 55 56

to one long stream. Each of the 25,090 segments corresponds
to a 3D bounding box containing points that represent a given
object candidate. For each such candidate, we compute a 60-
dimensional feature vector as proposed by Himmelsbach et
al. [21]. These features consist of global characteristics such
as box volume and mean intensity, as well as of distributions
of local features such as scatterness or flatness. Not only can
these features be computed in real time, but they are also
comparably low-dimensional (as opposed to HMP features
[22], for example, with 14,000 or more dimensions). This
is important when using Mondrian forests, because their
additional memory requirements are particularly evident for
high-dimensional features. For the test data set we split each
of the 18 sub sets at the ratio 2/3 to 1/3 and obtain a stream
of 16,000 training samples and a set of 9,090 test samples.

B. Adding new classes

In the first experiment, we artificially created a situation of
newly observed classes. First, we divided the pendigits

data set into five sub sets S1, . . . , S4 and T as shown in
Table I (numbers correspond to occurences of samples per
class). The sets S1, . . . , S4 consist of samples from a growing
number of classes, while T was used for testing. Then,
we applied a number of incremental and online learning
methods, where each time we started training on S1 and then
increased the training set by the next sub set S2, S3, S4 be-
fore re-training. This was done for two incremental learning
methods, namely MSVDD [8] and MOCSVM [9], and four
online learning algorithms, namely online Random Forests
(ORF), online multi-class Gradient Boost (OMCGB), online
multi-class LPBoost (OMCLP) [10]), and Mondrian forests
(MF) [18]. The results are given in Table II. As we can

TABLE II
RESULTS FOR THE LEARNING SCENARIO OF TABLE I

Data sets S1 S2 S3 S3

MSVDD 39.2 % 58.68 % 79.21 % 98.23 %
MOCSVM 39.8 % 59.25 % 77.95 % 95.18 %

Mondrian Forests 39.21 % 58.78 % 78.36 % 95.21 %
ORF 33.87 % 53.57 % 72.02 % 87.24 %

OMCGB 29.48 % 34.67 % 59.28 % 60.03 %
OMCLP 27.02 % 39.44 % 60.78 % 63.10 %

see, incremental learning methods generally perform better,
which is no surprise as they can rely on more exploitation
of the training data. However, from the online methods the
Mondrian forests clearly perform best.

To increase the difficulty of the learning problem, we ran
a second experiment, where only classes 0 and 1 were used
for initial training. Then, in each learning round, we added

Learning additional classes Influence of splitting

Fig. 5. Left: Results of incremental learning on “pendigits” . The
experiment starts with samples from two classes and adds all samples
from the next class in every round. Right: Experiments on the same data
with varying thresholds ✓s to split nodes with uniform class labels (“un-
pausing”). Performance is substantially increased using these artificial splits.

all samples from the next class for re-training. This can be
seen as the worst case scenario, and it is reflected by the
bad performance of the standard online learning methods
(see Fig. 5, left). Only the Mondrian forests can handle this
hard case comparably well.

C. Benefit of Mondrian block unpausing

As mentioned in Sec. IV-B, we modify the original Mon-
drian forest algorithm in an important detail by artificially
adding splits in nodes that consist only of samples with the
same class label. To show the benefit of this, we plot the
results for different values of the splitting threshold ✓s in
Fig. 5 (right). We see that the earlier we decide to split
these nodes, the better is the result. We note however that
there is a trade-off with the depth of the trees, which leads
to higher memory and run-time requirements. In practice,
a value of ✓s = 20 has proven to be a good compromise
between efficiency and classification performance.

D. Under- and overconfidence

To evaluate under- or overconfidence of Mondrian forests
we generated confidence histograms for correctly and incor-
rectly classified samples on a test set from the KITTI set (see
Fig. 6). From the histograms in the first row, we see that in
the beginning, when only few training samples are available
(250 in our case), the ORF is much more overconfident
than the MF, while underconfidence is not much different. In
numbers we obtained overconfidences of 0.415 vs. 0.820 for
the MF and the ORF respectively and 0.157 vs. 0.116 for the
respective underconfidences. This difference is smaller later,
when the training set consists of 16, 000 samples (see bottom
row in the figure). Here, the numbers are 0.529 and 0.583

for overconfidence and 0.126 and 0.132 for underconfidence
of MF and ORF. However, for good classification results it
is more important to reduce overconfidence already for small
training sets, because then the samples that are incorrectly
classified but detected as such have a stronger influence and
can server better to improve the learned model.

E. Pool-based vs. stream-based Active Learning

In the last set of experiments, we evaluated the perfor-
mance of the MF algorithm for the stream-based scenario.

KITTI dataset - Active Learning

Fig. 7. Left: Learning curves of the Mondrian forest for the “re-sample”
experiment from Sec. III-C. The MF classifier can deal much better with the
data stream. Right: Classification accuracies for Active Learning using an
MF and an ORF, where only 5%, 10% and 20% of the most uncertain data
points are queried. Again, the MF clearly outperform the standard ORF.

First, we ran the same experiment as described in Sec. III-C,
and the result is given in Fig. 7 (left). We can see that the
MF classifier increases its classification accuracy much faster
than the ORF, even in the stream-based setting, and it also
reaches a higher level (about 90% accuracy). We then tested
the Active Learning scenario, where new label queries were
generated after every 1,000 data samples. From these, we
only used the most uncertain predictions for querying and
re-training, and this fraction varied between 5% and 20%,
i.e. from 50 to 200 samples per learning epoch. The result is
shown in the right plot of Fig.7. The plot clearly shows that
the MF can improve its classification accuracy even when
trained only on a very small fraction of the data. Thus, on
one side the MF classifier provides a higher level of learning
autonomy by generating less queries and on the other side it
can deal with the hard problem of learning from data streams.
This is also reflected by the qualitative results in Fig. 8.

VI. CONCLUSIONS

In robotics, stream-based learning applications are much
more relevant than standard pool-based approaches, because
robots need to be adaptive to new environments. Data streams
are however much harder to learn from, but we present a very
effective and efficient approach to handle such situations.
Based on a recent online learning algorithm, we show that
Active Learning can be performed successfully on streams
of data. While in our experiments we considered the problem
to learn class labels, our approach is also useful for many
other applications where semantic information must be au-
tomatically inferred from input data streams.

Acknowledgment: This work was funded by the EU
project SPENCER (ICT-2011-600877).

REFERENCES

[1] P. Lamon, C. Stachniss, R. Triebel, P. Pfaff, C. Plagemann, G. Grisetti,
S. Kolski, W. Burgard, and R. Siegwart, “Mapping with an autonomous
car,” in IEEE/RSJ IROS Workshop: Safe Navigation in Open and
Dynamic Environments, 2006.

[2] H. Grimmett, R. Paul, R. Triebel, and I. Posner, “Knowing when we
don’t know: Introspective classification for mission-critical decision
making,” in Int. Conf. on Rob. and Autom. (ICRA), 2013.

[3] T. Rühr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers, “A
generalized framework for opening doors and drawers in kitchen
environments,” in Int. Conf. on Rob. and Autom. (ICRA), 2012.

[4] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning, 2010.

(a) MF - 250 - correct (b) MF - 250 - false (c) ORF - 250 - correct (d) ORF - 250 - false

(e) MF - 16000 - correct (f) MF - 16000 - false (g) ORF - 16000 - correct (h) ORF - 16000 - false

Fig. 6. Confidence values of a Mondrian forest (a, b, e, f) and an online Random Forest (c, d, g, h) on the KITTI data set. The upper row shows the
confidence histograms after training on 250 samples and the lower row results after learning on 16,000 samples. We see that the MF is less overconfident,
particularly in the beginning with little training data, as it makes wrong predictions with lower confidence (or, equivalently with higher uncertainty). At
the same time, it is not more underconfident, as the correct predictions are mostly made with high confidence.

Fig. 8. Further results on the scene given in Fig. 1. From left to right, we show the next five data frames (point clouds), again after training on a stream
of 10000 samples. The upper row shows the result for ORF, the lower row the MF result. Again, most classifications are done correctly by the MF (green
boxes), while the ORF has many false classifications (red boxes).

[5] V. Polikar, Robi and Upda, Lalita and Upda, Satish S and Honavar,
“Learn++: An incremental learning algorithm for supervised neural
networks,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 31, pp. 497–508, 2001.

[6] M. Ristin, M. Guillaumin, J. Gall, and L. V. Gool, “Incremental
Learning of NCM Forests for Large-Scale Image Classification,”
Computer Vision and Pattern Recogn. (CVPR), pp. 3654–3661, 2014.

[7] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, Advanced Topics
in Computer Vision, ser. Adv. in Computer Vision and Pattern Recogn.,
G. M. Farinella, S. Battiato, and R. Cipolla, Eds. Springer, 2013.

[8] L. Yang, W.-m. Ma, and B. Tian, Advances in Neural Networks, ser.
LNCS. Springer, 2011, vol. 6676, ch. New Multi-class Classification
Method Based on the SVDD Model, pp. 103–112.

[9] A. K. N. Ho, N. Ragot, J. Y. Ramel, V. Eglin, and N. Sidere,
“Document classification in a non-stationary environment: A one-class
svm approach,” in Proc. of the Intern. Conf. on Document Analysis
and Recognition (ICDAR), 2013, pp. 616–620.

[10] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, “Online
multi-class lpboost,” in CVPR, 2010.

[11] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line
random forests,” Computer Vision Workshops (ICCV Workshops), pp.
1393–1400, 2009.

[12] B. Settles, Active Learning. Morgan & Claypool, 2012.
[13] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Gaussian

processes for object categorization,” Intern. Journal of Computer

Vision, vol. 88, no. 2, pp. 169–188, 2010.
[14] A. Vezhnevets, J. Buhmann, and V. Ferrari, “Active learning for

semantic segmentation with expected change,” in CVPR, 2012.
[15] D. Wang, C. Yan, S. Shan, and X. Chen, “Active learning for

interactive segmentation with expected confidence change,” in Asian
Conf. on Computer Vision, 2012.

[16] L. Geurts, Pierre and Ernst, Damien and Wehenkel, “Extremely
randomized trees,” Machine learning, vol. 62, pp. 3–42, 2006.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in Proc. of Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012.

[18] B. Lakshminarayanan, D. M. Roy, and Y. W. Teh, “Mondrian Forests:
Efficient Online Random Forests,” in Advances in Neural Information
Processing Systems (NIPS), 2014.

[19] D. Mund, R. Triebel, and D. Cremers, “Active online confidence
boosting for efficient object classification,” in Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA), 2015.

[20] E. Alpaydin and C. Kaynak, “Optical Recognition of Handwritten
Digits Data Set,” 1995.

[21] H. Himmelsbach, M. and Luettel, T. and Wuensche, “Real-time Object
Classification in 3D Point Clouds Using Point Feature Histograms,”
in Intern. Conf. on Intell. Robots and Systems (IROS), 2009.

[22] L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image
classification: Architecture and fast algorithms,” in Advances in neural
information processing systems (NIPS), 2011, pp. 2115–2123.

