
1

Spatially Varying Color Distributions for
Interactive Multi-Label Segmentation

Claudia Nieuwenhuis and Daniel Cremers

Abstract—We propose a method for interactive multi-label segmentation which explicitly takes into account the spatial variation of
color distributions. To this end, we estimate a joint distribution over color and spatial location using a generalized Parzen density
estimator applied to each user scribble. In this way we obtain a likelihood for observing certain color values at a spatial coordinate. This
likelihood is then incorporated in a Bayesian MAP estimation approach to multi-region segmentation which in turn is optimized using
recently developed convex relaxation techniques. These guarantee global optimality for the two-region case (foreground/background)
and solutions of bounded optimality for the multi-region case. We show results on the GrabCut benchmark, the recently published
Graz benchmark and on the Berkeley segmentation database, which exceed previous approaches such as GrabCut [32], the Random
Walker [15], Santner’s approach [35], TV-Seg [39] and interactive graph cuts [4] in accuracy. Our results demonstrate that taking into
account the spatial variation of color models leads to drastic improvements for interactive image segmentation.

Index Terms—image segmentation, spatially varying, color distribution, convex optimization
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1 INTRODUCTION
1.1 Interactive Image Segmentation
Segmentation denotes the task of dividing an image into
meaningful, non-overlapping regions. Meaningful, especially
in complex images, depends on the user’s intention of what
he wants to extract from the image. This makes the problem
highly ill-posed, so user interaction is indispensable. Typically
bounding boxes, contours or scribbles are used to indicate
the user’s interest. Such interactive segmentation algorithms
are widely used in image editing software packages, e.g. for
the identification of specific structures in medical images,
for tracking objects in a video or to interactively edit and
manipulate images. Over the last few years, we have observed
a number of breakthroughs in image segmentation regard-
ing algorithmic approaches to efficiently compute minimum
energy solutions for respective cost functions, using graph
cuts [16], [5], level set methods [11], random walks [15] and
convex relaxation techniques [8], [42], [19], [7].

Despite substantial algorithmic advances, state-of-the-art
approaches to interactive image segmentation often fail for
scenes of complex color variability, where objects have similar
colors and may be exposed to difficult lighting conditions. The
reason is that existing approaches often do not systematically
exploit the spatial location of the user information, and rather
model the color variation in a given region with a single space-
independent color distribution. Due to the strong overlap of
respective color distributions the segmentation process often
fails – see Figure 2b. In contrast, if only scribble distance
is used for region assignment segmentation fails as well –
see Figure 2c. By statistically taking into account the local
distribution of the scribbles we obtain spatially varying color
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a) original b) segmentation

Fig. 1. Interactive segmentation result. a) The original
image exhibits strongly overlapping foreground and back-
ground color distributions due to large lighting variations.
b) Explicitly taking into account the spatial dependency
of color likelihoods leads to drastic improvements of the
segmentation.

distributions which are locally separable and allow for drastic
improvements in the segmentation – see Figure 2d.

To obtain a good segmentation result most algorithms
require two important concepts: first, based on the user in-
put each pixel is assigned a value measuring how well it
fits to each marked region (data fidelity term); second, the
consistency of the segmentation with respect to some prior
knowledge is imposed (regularization term), e.g. the object
boundary length [33], the number of labels [41], specific inter-
class cost functions [19] or label co-occurrence [20]. In this
paper, we focus on the data fidelity term and its importance
for the segmentation of natural images taken under difficult
color and illumination conditions such as those in Figure 1. A
preliminary version of this work was presented in [25].

1.2 Previous Data Fidelity Terms

Over the years a variety of data fidelity terms for image
segmentation have been proposed. The piecewise constant
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a) original b) color c) location d) combination

Fig. 2. a) Original images with strong lighting variations and reflections. b) Segmentation results based on color
similarity only. c) Segmentation results based on scribble distance only (i.e. a length-regularized Voronoi tesselation).
d) Segmentation results based on spatial and color information of the scribbles.

Mumford-Shah functional [23], for example, is based on rep-
resenting the color in each region with the mean color value,
thus minimizing the color variance in each segment. Instead
of a constant mean color value, foreground and background
histograms are estimated by Boykov and Jolly [4]. Unger et al.
[39] also estimate color histograms in their TV-Seg framework
and make a hard decision for foreground/background by means
of a user threshold on the histogram distance. Mixtures of
Gaussians are employed to approximate these probability
distributions for digital matting by Chuang et al. [9], in the
GrabCut segmentation approach by Rother et al. [32] and for
automatic segmentation of natural images by Tai et al. [37].
Methods from machine learning are also applied to solve the
classification task, e.g. support vector machines [12] or random
forests [35].

In general, scribbles contain two kinds of information: color
and location. Disregarding either one of these two categories
leads to suboptimal results as shown in Figure 2. With appro-
priate user interaction the distance to a scribble may convey
information on region affiliation. Grady proposes to model
this aspect with a random walk [15]. Bai et al. [2] estimate
foreground and background color likelihoods whose gradients
are used to define weighted geodesic distances between each
pixel and the user scribbles. Spatial information has also
successfully been introduced into kernel density estimators,
e.g. in the mean-shift approach [10], in segmentation based
on geodesic distances [2] or in motion analysis [24]. In
[40], [30], [14], [17] distance based sampling was applied
to image matting. To estimate the pixel’s alpha value, the

minimum difference between the linearly interpolated color
from each foreground and background sample and the current
pixel’s color is sought. In [17] an additional penalty is added
for samples at large distances from the current location. In
contrast to these approaches, in this paper we estimate a joint
probability distribution over color and space from the whole
set of samples simultaneously.

In unsupervised segmentation the approaches by Taron et
al. [38] and Brox and Cremers [6], possibly the most closely
related to ours, are alternating schemes of segmentation and
color model estimation. While spatial variation of color distri-
butions often degrades the convergence of such unsupervised
segmentation methods to suboptimal local minima (the respec-
tive color distributions simply adapt to the local context), we
show that in interactive segmentation – combined with recent
convex relaxation techniques – explicitly modeling the spatial
context of color information leads to drastic performance
improvements with optimal or near-optimal results.

1.3 Statistical Models of Spatial Color Variation
In the interactive segmentation scenario the user scribbles
contain information on color and space. By disregarding this
spatial information in respective density estimates from user
scribbles, purely color based approaches implicitly assume
that the color likelihood is independent of the spatial loca-
tion. In real-world scenarios this is obviously a restrictive
assumption, in particular for natural images with varying light
conditions, and for multicolored objects that often rely on
camouflaging by adopting similar colors as their environment.
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Yet, the user scribbles do contain spatial information, albeit in
a non-trivial highly correlated form. The aim of this work
is to systematically exploit this space-dependency of user
scribbles in a Bayesian framework for image segmentation.
Experiments confirm that modeling the spatial dependency of
color likelihoods comes at no extra cost for the subsequent
inference algorithms, preserving the same computation times
and optimality guarantees, yet it drastically improves segmen-
tation results.

1.4 Contribution: Bridging the Gap between Dis-
tance Based and Color Based Segmentation

The contribution of this paper is to demonstrate the importance
of regarding not only the color but also the spatial location
and distribution of user scribbles in interactive segmentation.
The locations of user scribbles are typically highly correlated
(rather than uniformly distributed). We present a strategy
to account for this violation of the i.i.d. assumption of
samples when estimating kernel densities in the joint space
of color and location. The resulting approach bridges the
gap between purely color based and purely scribble location
based dataterms and, thus, generalizes previous approaches
within one framework. More specifically, we will see later on
that our approach has two interesting limiting cases:

• In one limit, we obtain a segmentation method using the
commonly employed space-independent color likelihood
(namely in disregard of spatial information).

• In another limit, we obtain a length-regularized Voronoi
tesselation (in disregard of color information).

A user defined parameter balances the influence of color
and location information. This leads to strongly improved
segmentation results within a statistically sound approach.

The proposed framework allows to segment objects with
heavily overlapping color distributions. The approach is for-
mulated as an energy minimization problem, which is solved
in a variational framework. The solution is provably optimal
for two regions, while for multiple regions it lies within small
bounds of about less than 1% from the optimal solution. The
proposed approach can be easily parallelized with computation
times of 1.5 seconds on average and is thus well suited for
interactivity. Extensive experiments on published benchmarks
show that taking into account spatial scribble information
outperforms previous approaches some of which not only use
color but also textural information.

2 A STATISTICAL FRAMEWORK FOR
SEGMENTATION

In this section, we will derive a Bayesian inference formulation
for multi-region segmentation in which space-variant color
likelihoods are estimated from a set of user scribbles. One of
the challenges we address is that the locations of user scribbles
are not i.i.d. distributed but spatially correlated.

2.1 Segmentation as Bayesian Inference
Let I : Ω→ Rd denote the input image defined on the domain
Ω ⊂ R2. The task of segmenting the image plane into a set
of n pairwise disjoint regions Ωi

Ω =

n⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j (1)

can be solved by computing a labeling u : Ω → {1, .., n}
indicating which of the n regions each pixel belongs to:
Ωi = {x

∣∣u(x) = i}. In the framework of Bayesian inference,
one can compute such a segmentation by maximizing the
conditional probability

arg max
u

P(u | I) = arg max
u

P(I |u) P(u). (2)

Assuming that the colors of all pixels are independent of each
other, but – in contrast to previous interactive segmentation
approaches – not independent of space, we obtain

P(I |u) =

(∏
x∈Ω

(
P(I(x), x|u)

)dx)
, (3)

where the exponent dx denotes an infinitesimal volume in
R2 and assures the correct continuum limit. Note how the
space-dependency of color likelihoods arises naturally in this
formulation. It has commonly been neglected, yet we shall
show in this paper that taking into account this spatial variation
of color distributions based on scribble locations leads to
drastic improvements of the resulting interactive segmentation
process. Assuming furthermore that the color probability at
location x does not depend on the labeling of other pixels
y 6= x, the product in (3) can be written as

P(I |u) =

n∏
i=1

∏
x∈Ωi

(
P(I(x), x |u(x) = i)

)dx
. (4)

2.2 Inferring Space-Variant Color Distributions
The expression P(I(x), x |u(x) = i) in (4) denotes the joint
probability for observing a color value I at location x given
that x is part of region Ωi. It can be estimated from the user
scribbles as follows. Let

Si :=

{(
xij
Iij

)
, j = 1, ..,mi

}
(5)

denote the set of mi user-labeled pixels xij and corresponding
color values Iij associated with a given region Ωi. Then we
can estimate the joint distribution P̂ on the product space of
color and location by means of a kernel density estimator [1],
[31] of the form:

P̂(I(x), x |u(x) = i) =
1

mi

mi∑
j=1

k

(
x− xij
I − Iij

)
, (6)

i.e. a sum of normalized kernel functions k centered at each
sample point in the product space.

Figure 3 shows an example of a distribution in the joint
space of color and spatial coordinate estimated from a set
of user scribbles. Commonly, the location of the scribbles
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Fig. 3. Above: fish image with user scribbles indicated in
red. Below: scribble point based kernel density estimate
of the 5-dimensional joint distribution of color and location
projected to horizontal location x and grey value I (for
readability). If space is not taken into account (i.e. if we
marginalize over location) we obtain the same density
function P(I) at each pixel showing several peaks for
color values, which are predominant in different parts of
the object, like yellow, blue and black. Using the joint
distribution gives the probability P(I, x) for observing a
color I at a location x. At each location x we obtain a
separate color distribution showing only a single color
peak for the locally predominant color, e.g. the yellow
color in the fin of the fish at horizontal location x1 or the
darker colors like blue and black in the head of the fish
at x2. The joint 5-dimensional distribution over color and
space is used as a dataterm for image segmentation.
For challenging real-world images it is drastically more
informative than the commonly used space-independent
distribution P(I).

is not taken into account and the space-independent color
distribution, the marginal

P̂(I(x) |u(x) = i) =

∫
P̂(I(x), x |u(x) = i) dx, (7)

is used, which is plotted on the right. In this case we obtain
three peaks, each one for a different predominant color of
the foreground object. At each location in the image, the
likelihood for each of these colors follows the same marginal
distribution, no matter if we are very close to a scribble
or far away. In contrast, the proposed distribution allows to
distinguish that certain colors may be more or less likely
in different locations of the same region Ωi. Hence, at each
location we obtain a separate color distribution depending on

the distance to the scribbles. Clearly such relevant information
on the spatial variation of a color distribution is entirely lost
in the traditional space-independent formulations where the
spatial dependency is simply integrated out.

The negative logarithm of the estimated probability distri-
bution can be used as a powerful dataterm for segmentation.
For each region Ωi we obtain the dataterm

fi = − log P̂ (I(x), x |u(x) = i). (8)

In practice, we choose Gaussian kernels with widths σ and
ρi in color and space dimension to define the joint probability
distribution

P̂(I(x), x |u(x) = i) =
1

mi

mi∑
j=1

kρi(x− xij)kσ(I − Iij). (9)

The proposed formulation can be seen as a generalization of
the traditional purely color-based approaches. More specifi-
cally it has two interesting limiting cases:
• With larger value of ρi the influence of the scribble

locations becomes less important. In the limit ρi → ∞
we obtain the purely color-based probability:

P̂(I(x), x |u(x) = i) =
1

mi

∑
kσ(I − Iij) (10)

• With increasing values of σ, the influence of scribble
colors becomes neglible. In the limit σ → ∞ we obtain
a purely distance based likelihood:

P̂(I(x), x |u(x) = i) =
1

mi

∑
kρi(x− xij) (11)

In the subsequent segmentation process this will lead to
a regularized Voronoi tesselation.

Hence, by steering ρi and σ, the variance of the kernel density
estimators, we can scale the influence of color similarity and
scribble distance on the segmentation result.

A variant of the proposed approach can be obtained by using
the conditional distribution instead of the joint distribution.
The conditional distribution for observing a color I given at
coordinate x is obtained by normalizing the joint distribution:

P̂
(
I(x) |x, u(x) = i

)
=

P̂(I(x), x |u(x) = i)∫
P̂(I(x), x |u(x) = i) dI

. (12)

The normalization simply assures that for every point x ∈ Ω
the probability of observing different colors integrates to 1.
Due to the relation

P (I, x |u(x) = i) = P (I |x, u(x) = i)P (x |u(x) = i) (13)

the joint distribution differs from the conditional by the loca-
tion prior P (x |u(x) = i) saying if a specific label is likely in
this part of the image. Via this prior the pure scribble distance
influences the joint probability distribution leading to Voronoi
results in the extreme case as in Figure 2c. In contrast, in the
conditional distribution the normalization neglects this location
prior leading to a separate color probability distribution at
each pixel. In our experiments, both approaches have shown
similar results as for small values of σ the location prior does
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not have large impact on the dataterm. In this paper, we will
concentrate on the joint distribution. This generally gives us
more freedom in modeling the dataterm since the influence
of location and color can be steered separately by means of
α and σ. In contrast, with the conditional distribution (i.e.
without location prior) the case of a purely distance based
segmentation (σ → ∞) cannot be modeled, since we would
obtain a constant distribution.

2.3 Handling non-iid Samples

Provided that the samples S are independent and identically
distributed (iid), the estimator P̂ in (9) provably converges to
the true distribution for mi → ∞ [36]. Unfortunately, this
independence assumption is not fulfilled in practice: while
observed color values Iij may be assumed to be independent,
the spatial coordinates xij are certainly not. In particular, the
samples are not uniformly distributed in space but given by
the scribble pattern. To account for this non-uniformity, we
employ spatially adaptive kernel functions by choosing the
spatial kernel width ρi(x) at location x proportional to the
distance from the nearest sample point xvi ∈ Si of region i:

ρi(x) = α|x− xvi |2. (14)

The effect of this locally dependent spatial variance is demon-
strated in Figure 4. The further away a pixel is from the nearest
scribble the more wide-spread becomes the region where scrib-
ble points are taken into account for color density estimation
at this point. In this way, we obtain locally separable space-
variant color distributions as shown in Figure 5.

For several examples, Figure 5b shows samples randomly
drawn from the commonly estimated spatially constant color
distributions of foreground and background. The images are
challenging in the sense that the spatially constant distributions
strongly overlap making it hard or impossible even for humans
to detect the object edges correctly. In contrast, Figure 5c
shows randomly drawn samples from space-variant color
distributions of foreground and background. These reflect
the strong variations of color and light in the images. The
local adaptation of the probability distributions makes the
boundaries of the objects more apparent and ultimately leads
to the desired segmentation results, e.g. in Figure 1b.

Figure 6 shows the label probabilities as defined in (9) for
different images from the Berkeley and Graz Benchmark.

2.4 Variational Formulation

Having determined the probability distributions
P̂
(
I, x
∣∣u(x) = i

)
from the user scribbles for all regions

Ωi, i = 1, . . . , n, we are now ready to solve the optimization
problem (2). To this end, we specify the prior P(u) to favor
segmentation regions of shorter boundary:

P(u) ∝ exp

(
−1

2

n∑
i=1

Perg(Ωi)

)
, (15)

where Perg(Ωi) denotes the perimeter of each set Ωi = {x ∈
Ω |u(x) = i} measured with either an edge-dependent or a

a) original b) ρ(x)→ 0

c) ρ(x) ≈ 10 d) ρ(x)→∞
Fig. 4. Influence of scribbles (red) for foreground color
density estimation at different image locations. b) Close
to the scribble ρ(x) tends to 0 and only the closest
scribble points influence the color distribution. c) Further
away from the scribbles several scribbles in the vicinity
influence the estimated color distribution. d) Far away all
scribbles have (almost) equal influence on the estimated
color distribution similar to the case of spatially constant
color models.

a) original b) spat. constant c) spat. varying

Fig. 5. Random samples from the estimated foreground
and background distributions for the tiger image in Figure
1a and others. Neglecting the scribble location (b) makes
it hard to distinguish between foreground and background
and extract the exact boundary line. If the scribble location
is regarded (c) the estimated distributions are locally sep-
arable and the synthesized image better approximates the
original image colors.
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a) foregr. prob. b) backgr. prob. c) segm. result

Fig. 6. Label probability P̂ (I(x), x|u(x) = i) as defined
in (9) for different images from the Berkeley and Graz
Benchmark, a) probability for foreground label, b) prob-
ability for background label, c) segmentation result

Euclidean metric defined by the non-negative function g : Ω→
R+.

g(x) = exp(−γ|∇I(x)|) (16)

for example favors the coincidence of object and image edges.
Maximizing the a posteriori distribution (2) can be solved
equivalently by minimizing its negative logarithm. Up to
constants and according to (15) and (8), the maximum a
posteriori estimation is equivalent to the minimization of the
energy

E(Ω1, . . . ,Ωn) =
1

2

n∑
i=1

Perg(Ωi) + λ

n∑
i=1

∫
Ωi

fi(x) dx,

with fi(x) = − log P̂
(
I(x) x

∣∣u(x) = i
)
. (17)

3 MINIMIZATION VIA CONVEX RELAXATION

The optimization problem (17) is a classical shape
optimization problem, the continuous equivalent of the
Potts model [29], which is known to be NP hard. Building up
on recent developments in optimization [8], [42], [19], [7],
[27], [18], [28], we solve this problem by means of a convex
relaxation strategy with the following favorable properties:

• The segmentation is independent of initialization.

• We obtain globally optimal segmentations for the case of
two regions and near-optimal – in practice often globally
optimal – solutions for the multi-region case.

• The algorithm can be efficiently implemented on the GPU
with average computation times of 0.43 seconds, which
makes it suitable for realtime user interactions.

3.1 Conversion to a Convex Differentiable Problem

The key idea is to represent the n regions Ωi by the indicator
function θ ∈ BV(Ω, {0, 1})n, where

θi(x) =

{
1, if x ∈ Ωi

0, otherwise
∀i = 1, . . . , n. (18)

Here BV denotes the functions of bounded variation, i.e.
functions with a finite total variation. In order to rewrite energy
(17) in terms of the indicator functions θi, let us observe that
the boundary of the set indicated by θi can be written by
means of the total variation. Let Dθi denote the distributional
derivative of θi (which is Dθi = ∇θi dx for differentiable
θi), ξi ∈ C1

c (Ω,R2) the dual variables with C1
c the space of

smooth functions with compact support.
Then, following the coarea formula [13] the weighted

perimeter of Ωi is equivalent to the weighted total variation

1

2
Perg(Ωi) =

1

2
Perg({x | θi(x) = 1}) (19)

=
1

2
TVg(θi) (20)

=
1

2

∫
Ω

g |Dθi | (21)

= sup
ξi∈Kg

∫
Ω

ξi Dθi (22)

= sup
ξi∈Kg

(
−
∫

Ω

θi div ξi dx
)

(23)

with Kg =

{
ξi ∈ C1

c (Ω,R2)
∣∣∣ |ξi(x)| ≤ g(x)

2
, x ∈ Ω

}
.

The latter transformation (23) follows from integration by parts
and the compact support of the dual variables ξi.

For segmentation, we require that at each location x ∈ Ω
the sum of all indicator functions amounts to 1, so each pixel
is assigned to exactly one label. With this notation, (17) is
equivalent to

min
θ∈B

E(θ) = (24)

min
θ∈B

sup
ξi∈Kg

{
λ

n∑
i=1

∫
Ω

θi fi dx−
∫

Ω

θi div ξi dx

}
(25)

with B =

{
θ ∈ BV(Ω, {0, 1})n

∣∣∣ n∑
i=1

θi = 1

}
.(26)

To obtain a relaxed convex optimization problem which can
be minimized globally we relax the set B to the convex set

B̃ =

{
θ ∈ BV(Ω, [0, 1])n

∣∣∣ n∑
i=1

θi = 1

}
. (27)

3.2 Numerical Implementation

To solve the relaxed convex optimization problem, we employ
a primal dual-algorithm proposed in [28]. Essentially it con-
sists of alternating a projected gradient descent in the primal
variables θi with projected gradient ascent in the dual variables
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ξi. In addition, it contains an over-relaxation step in the primal
variables (giving rise to auxiliary variables θ̄i):

ξt+1
i = ΠKg

(
ξti + τd

∂E
∂ξi

)
= ΠKg

(
ξti + τd∇θ̄ti

)
θt+1
i = ΠB̃

(
θti − τp

∂E
∂θi

)
= ΠB̃

(
θti + τp( div ξt+1

i − fi)
)

θ̄t+1
i = θt+1

i + (θt+1
i − θti) = 2θt+1

i − θti , (28)

where Π denotes the projections onto the respective convex
sets and τp and τd the primal and dual step sizes. The
projection onto Kg is straightforward, the projection onto the
simplex B̃ is given in [22]. As shown in [28], the algorithm
(28) provably converges to a minimizer of the relaxed problem
for sufficiently small step sizes τp and τd.

By allowing the primal variables θi to take on intermediate
values between 0 and 1 we may end up with non-binary
solutions. By thresholding these to 0 or 1 we can project
solutions back to the binary-valued set B. This projection is
known to preserve optimality in case of two regions [8]. In the
multi-region case it allows us to compute a bound of optimality
given by the energy difference between the minimizer of the
relaxed problem and its thresholded version (see Proposition
1). Typically the thresholded solution deviates less than 1%
from the optimal energy in the multi-region case.

Proposition 1. Let θ∗ ∈ B be the global minimizer of the orig-
inal problem (25), θ̃ ∈ B̃ the result of the proposed algorithm
for the relaxed problem and θ′ ∈ B the binarized solution.
Then we can compute an energy bound δ(θ′, θ̃) such that the
following holds for the energy gap: E(θ′)−E(θ∗) ≤ δ(θ′, θ̃).

Proof: Since B ⊂ B̃, we have E(θ̃) ≤ E(θ∗) ≤ E(θ′).
Energetically the (unknown) optimal binary solution θ∗ lies in
between the computed relaxed solution θ̃ and the computed
thresholded solution θ′:

E(θ′)− E(θ∗) ≤ E(θ′)− E(θ̃) =: δ(θ′, θ̃).

3.3 Convergence Analysis

In [28] it has been shown that the presented algorithm con-
verges for τpτdL2 < 1 where L denotes the operator norm of
the gradient of θ. To examine the convergence rate, we can
compute the primal-dual gap, which is the difference between
the primal and the dual energy of the optimization problem.
The primal energy is given as the original optimization prob-
lem

Ep(θ) =

{
n∑
i=1

∫
Ω

λ θi fi dx− g(x) |D θi|

}
+ δB(θ), (29)

where δB is the indicator function of B:

δB(θ) =

{
0, θ ∈ B
∞, θ /∈ B.

(30)

The computation of the dual energy amounts to a point-wise
optimization problem

Ed(ξ) = min
θ∈B

{
n∑
i=1

∫
Ω

λ θi ( fi − div ξi) dx− δKg
(ξ)

}

=

∫
Ω

min
i

(fi − λ div ξi) dx−
n∑
i=1

δKg
(ξi). (31)

Here δKg denotes the indicator function for the set Kg . Dur-
ing the optimization, the primal energy constantly decreases,
whereas the dual energy increases. When the optimal solution
is reached, the primal-dual gap goes to zero. The size of the
gap can be used to formulate suitable convergence criteria for
the algorithm, e.g. the iterations are terminated if the current
gap decreases less than 1% compared to the previous gap.
Figure 7 shows the primal-dual gap for up to 2500 iterations
for two examples.

4 RESULTS

We have developed an interactive approach for extracting
multiple objects from an image. A key contribution of this
paper is to regard both color similarity and the local infor-
mation of the scribbles. To this end, we introduce space-
variant color distributions to model objects with spatially
varying appearance in the scene. In the following, we will
show experimental results on a variety of real-world images
and focus on showing how modeling the spatial variation
of color distributions leads to substantial improvements of
the segmentation over the traditionally employed spatially
constant color distributions. We use the following parameters
for space-variant color distributions: σ = 1.3, λ = 0.008,
γ = 5, α = 1.8. τp = 0.25 and τd = 0.5 according to [26]. To
obtain the spatially constant approach we set α to a very large
value yielding an (approximately) constant spatial distribution.

4.1 Qualitative Benchmark Results
For automatic segmentation several benchmarks are available,
e.g. the Berkeley database, the GrabCut database or the
PascalVocDatabase. As extensively discussed in [34], these
benchmarks are not suited for testing interactive segmenta-
tion. Hence, Santner et al. [35] published a benchmark for
interactive scribble based segmentation, the Graz benchmark.
We nevertheless start our evaluation on the somewhat simpler
trimap segmentation problem of the GrabCut benchmark.
In a second step we then evaluate the proposed algorithm
on the Graz Benchmark. We also compare against common
segmentation algorithms such as GrabCut and Random Walker.

4.1.1 GrabCut Benchmark
For the GrabCut benchmark either bounding boxes enclosing
foreground and - inevitably - part of the background can be
used as input or trimaps. Since our approach is based on
adaptable color distributions rough bounding boxes containing
both regions are unsuitable for estimating the probability
density functions for foreground and background . Hence, we
use the trimap input. Trimaps are maps which roughly segment
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Fig. 7. Convergence analysis of the algorithm for two examples from the Graz Benchmark database. The progress of
the primal energy (blue) is depicted with respect to the dual energy (green). The optimal solution of the optimization
problem is obtained as soon as the primal-dual gap goes to zero.

the image except the region around the object boundary, which
is to be inferred by the algorithm. The benchmark’s suitability
for testing multi-label segmenation algorithms is limited due
to three reasons:
• All examples are limited to two regions, i.e. fore-

ground/background segmentation which means n = 2.
• The objects are assumed to be connected.
• The trimaps contain very large seed regions for fore-

ground and background, which already indicate the
groundtruth segmentation of most pixels in the image.

Hence, this benchmark simulates strongly simplified condi-
tions for interactive segmentation.

Figure 8 shows several segmentation results from the Grab-
Cut benchmark, the original image on the left, the trimap
in the center and the segmentation result on the right. The
segmentation results are very close to the groundtruth. Small
errors occur due to non-sharp object boundaries (banana),
the length regularization (the ear of the llama) or insufficient
foreground seed marking (the shoes of the woman).

4.1.2 Graz Benchmark
Since common segmentation databases are not suitable for
testing interactive multi-label segmentation [34], Santner et
al. recently published the first benchmark for interactive
scribble based multi-label segmentation containing 262 seed-
groundtruth pairs from 158 natural images containing between
2 and 13 user labeled segments. Santner et al. [35] show
impressive results for different combinations of color and
texture features: RGB, HSV and CIELab colors combined with
image patches, Haralick features and Local Binary Patterns
(LBP). However, they neglect the locality of the scribbles by
estimating a single, invariant color model for each region.
In our experiments we tested the proposed approach with
spatially constant and spatially varying color models on their
benchmark. If we use the spatially constant model the results
are slightly better than those obtained by Santner et al. (RGB

color information without texture). They obtain the best results
combining CIELab and LBP features in a 21 dimensional
vector based on a scribble brush of radius 13. Without revert-
ing to such a sophisticated high-dimensional texture feature
space, we obtain a better benchmark performance simply by
correctly modeling the spatial variation of color distributions
as proposed in this paper.

Figure 11 shows qualitative benchmark results. The figure
contains 16 image pairs, where we contrast Santner’s best
results (CIELab colors combined with LBP features) with
the results of our space-variant approach. The locality of
the color models allows us to release the regularizing model
assumptions, since we can better distinguish between different
regions, especially in case of overlapping color models. In this
way, for example the second foot of the duck, the fin of the
fish, the head of the man at the lake, the legs of the beacon,
the oversmoothed contour of the parrot, the astronaut and the
feathers of the small bird could be correctly recovered. In case
of the snake the locality of the color model helps to assign
the objects to the closer matching segment. This explains the
higher accuracy of our approach.

Figure 9a shows two examples for failed segmentations,
which are due to sparse scribbling. The scorpion image would
require more scribbles to adequately model the changing color
of the animal. In the second image the red background scribble
does not reflect the color change in the upper left image
corner. This part of the image is assigned to the foreground
due to the strong color similarity with the bee. In Figure 9b
scribbles have been added to better reflect the color variance
of the scorpion and the background of the bee. Based on this
additional information the color distributions are better adapted
to the color variation in the images and correct segmentation
results can be obtained.
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a) Image b) Trimap c) Segmentation

Fig. 8. Results on the GrabCut Benchmark. a) Original
image, b) Trimap input (white: foreground, black and dark
grey: background, light grey: region to be classified) , c)
Segmentation result of the proposed approach.

a) Failed segmentations

b) Improved segmentations

Fig. 9. Failed and improved segmentations. a) The scrib-
bles are too sparse to adequately reflect the changing
colors in the segments. b) More scribbles have been
introduced to obtain the correct segmentations.

4.2 Quantitative Benchmark Results
We now compare the average quality of the proposed algo-
rithm to previous approaches on the GrabCut and the Graz
benchmarks. For each benchmark, different quality measures
have been published, which will be explained below.

4.2.1 GrabCut Benchmark
Based on the simplified segmentation problem on the GrabCut
benchmark, we obtain the results given in Figure 10, which
indicates the average misclassification error

Emiss =
no. of misclassified pixels

no. of pixels in unclassified trimap region
. (32)

From the results we can conclude that the proposed approach
outperforms the GrabCut approach [3] by 1.4 %. However, the
Random Walker approach [15] outperforms both algorithms by
far. For the Random Walker we chose β = 100.

4.2.2 Graz Benchmark
To further assess the quality of the proposed algorithm we
apply it to the Graz benchmark dataset containing 262 images
with user scribbles. To evaluate the overall segmentation
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a) Santner et al. b) our approach a) Santner et al. b) our approach

Fig. 11. Results on the Graz benchmark. a) Approach by Santner et al. [35] based on color and texture, b) Proposed
space-variant approach regarding scribble locations.
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Method Emiss in %

GrabCut - Simple Mixture Model [3] 16.3

GrabCut - learned GMMRF [3] 7.9

our approach, space-variant 6.5

Random Walker [15] 1.1

Fig. 10. Comparison to common segmentation ap-
proaches such as the Random Walker approach and the
GrabCut approach on the standard GrabCut Benchmark
based on the misclassification error (in %) and given
trimaps. Segmentation based on trimaps actually repre-
sents a simplified problem since the number of objects
and the rough boundary are already given. The proposed
approach outperforms both variants of GrabCut. The Ran-
dom Walker shows the best performance.

accuracy Santner et al. [35] compute the arithmetic mean of
the Dice-score over all segments. It relates the overlap area
of the groundtruth segment Ω̄i and the computed segment
Ωi = {x|u(x) = i} to the sum of their areas

dice(Ω̄i,Ωi) =
2|Ω̄i ∩ Ωi|
|Ω̄i|+ |Ωi|

. (33)

Figure 12 compares the average Dice-score of the proposed
method to the approach by Santner et al. [35] and the Random
Walker [15]. The dimension of the feature vector and the brush
size for the scribbles is given. The results indicate that merely
regarding the spatial location of scribbles provides stronger
performance improvements than a multitude of sophisticated
features. Contrary to the GrabCut benchmark, in the more
realistic setting posed by the Graz Benchmark, where only
small seeds farther away from the object boundary are given,
the Random Walker yields the least accurate results of all
algorithms.

4.3 Comparison to Foreground Extraction Tools
Most algorithms for interactive segmentation are limited to two
regions, i.e. foreground/background extraction. In this section
we compare our results to those obtained by TV-Seg [39]
and Interactive Graph Cuts [4] for images containing only
one object in front of the background. Beyond a quantitative
analysis of the performance we examined the qualitative per-
formance with varying amounts of scribbles. To demonstrate
the effectiveness of space-variant color models we choose
images from the Berkeley database with difficult lighting
conditions, reflections or overlapping color models. We used
the available implementation of TV-Seg from the TU Graz and
the Interactive Graph Cuts implementation in the Toolbox by
McGuinness [21]. During segmentation of these images we
aimed at minimizing the amount of user scribbles. Figure 13
shows that all three methods provide segmentations of similar
quality. However, the proposed space-variant method better
reflects the color variations and thus requires fewer scribbles
and user interaction.

Method Dim Brush Score

Random Walker [15] 3 13 0.855

Santner et al. [35], RGB 3 - 0.877

our approach, spatially constant 3 3 0.889

[35], CIELab + LBP 21 5 0.917

our approach, space-variant 5 5 0.922

[35], CIELab + LBP 21 13 0.927

our approach, space-variant 5 13 0.931

Fig. 12. Comparison to the multi-label segmentation
approach by Santner et al. [35] on the Graz benchmark.
For each method the dimensionality of the feature vector,
the scribble brush radius and the average dice score are
compared. Rather than reverting to sophisticated high-
dimensional feature spaces the introduction of spatial
information into the estimated color distributions yields
better results and allows for higher speeds.

4.4 Multi-Label Segmentation Results
Finally we show results for the spatially constant compared to
the spatially varying approach for a collection of interesting
images from the Berkeley and Graz database in Figure 14. The
first two rows show different animals in front of a similarly
colored background. Segmentation here only succeeds based
on color and spatial information. The third row shows the
displayed goods of a vegetable stall and a skyscraper. In the
vegetable stall, the peppers as well as the cauliflower and broc-
coli exhibit different colors, but belong to the same segment.
Since the color distributions of different segments vary and
overlap it is important to regard the local distribution of the
scribbles to obtain a correct segmentation. The right hand side
shows a skyscraper with reflecting windows. Since reflections
contain any color from the surroundings, segmentation with
global color models is difficult. Based on locally adaptive color
models we obtain correct results.

4.5 Runtimes
Interactive image segmentation algorithms demand runtimes
close to real-time to be useful for the user. We computed the
results on an INTEL XEON 2.27 GHz CPU with an NVIDIA
Geforce GTX 580 GPU. The average computation time per
image on this benchmark is 1.14 seconds for the dataterm and
0.43 seconds for the optimization for 2 to 13 labels.

4.6 Sensitivity to Parameters and Scribbles
Finally, we examine the sensitivity of the algorithm with
respect to parameter choices and scribble locations.

4.6.1 Parameter Sensitivity
The proposed approach requires the user to select four input
parameters: the color kernel variance σ, the distance factor
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a) original b) constant c) space-variant

a) original b) constant c) space-variant a) original b) constant c) space-variant

Fig. 14. Multi-label segmentation results for difficult images from the Berkeley and Graz database. The spatially
constant approach (b) is compared to the space-variant (c). If spatial scribble information is included in the color
model the animals, vegetables and window reflections can be segmented correctly.

α determining the spatial scribble influence, the smoothness
factor λ regulating the strength of the dataterm and the
parameter γ of the edge indicator function g.

As mentioned above, all experiments reported so far were
carried out with a fixed set of parameters. Nevertheless, in
order to assess the sensitivity of our algorithm to variations in
these parameters we reran the Graz benchmark performance
for a variety of parameter settings. Figure 15 shows that for
variations of these parameters within a reasonable range, the
benchmark performance only varies within 2%. Among the
parameters to be set the spatial influence of the scribbles α,
the dataterm weight λ and the brush size seem to have the
largest impact on the results.

4.6.2 Sensitivity to Scribble Location
Figure 16 shows segmentation results for different amounts
and locations of user scribbles. The segmentation based on the
first four input sets is almost identical. The random distribution
of scribble points in the last image yields slightly better results
for the legs of the animal and the stem of the flower due to the
wide-spread sample distribution in the image. We can conclude

that provided the scribbles are set reasonably to represent the
color distributions of the separate regions the segmentation
quality is not very sensitive to their amount or location.

5 CONCLUSION

In this paper we proposed an algorithm for interactive multi-
region segmentation which takes into account not only color
similarity but also the spatial location of the user scribbles.
Since correct density estimation requires iid-assumptions on
the spatial location of the scribbles, which is not the case,
we proposed a way to handle this problem. The result is
a scalable dataterm, which bridges the gap between purely
color based and purely distance based segmentations. In this
way, overlapping color distributions become locally separable
allowing for weaker regularization assumptions and correct
segmentations in difficult images. The variational approach is
derived rigorously in a framework of Bayesian inference and
minimized by efficient convex relaxation techniques, leading
to globally optimal solutions for the two-region case and
solutions of bounded optimality (and in practice often optimal
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a) Graph Cuts b) TV-Seg c) our approach

Fig. 13. Comparison to known foreground/background
extraction approaches. a) Interactive Graph Cuts [4], b)
TV-Seg [39], c) proposed space-variant approach. For a)
and b) a lot more user interaction is required.

solutions) for the multi-region case. The approach can be
parallelized leading to computation times around 1.1 seconds
on average for 2 to 13 labels. Results on the GrabCut, Graz and
Berkeley databases show that we exceed previous approaches
such as GrabCut, Random Walker and TV-Seg.
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σ λ γ α Brush Score

1 100 5 0.7 3 0.909

1.5 100 5 0.7 3 0.909

1.5 100 5 0.7 5 0.910

1.5 100 5 1 5 0.917

1.5 100 4 1 5 0.917

1.5 100 5 1.8 5 0.923

1.5 100 5 1.8 13 0.927

1.3 200 5 1.8 13 0.912

1.3 125 5 1.8 13 0.931

Fig. 15. Sensitivity to parameter modifications. The table
shows the average Dice-score on the Graz Benchmark
for different sets of the algorithm’s parameters. For rea-
sonable choices the performance only varies within 2%.

Fig. 16. Segmentation results for different scribble
amounts and locations. The results show that the algo-
rithm is not very sensitive to the user input provided that
the scribbles are placed in reasonable locations to well
represent the color variation in the image.
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[8] T. Chan, S. Esedoḡlu, and M. Nikolova. Algorithms for finding global
minimizers of image segmentation and denoising models. SIAM Journal
on Applied Mathematics, 66(5):1632–1648, 2006.

[9] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A Bayesian
approach to digital matting. In Proceedings of IEEE CVPR 2001,
volume 2, pages 264–271, 2001.

[10] D. Comaniciu and P. Meer. Mean shift: a robust approach to feature
space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:603–619, 2002.

[11] D. Cremers, M. Rousson, and R. Deriche. A review of statistical
approaches to level set segmentation: integrating color, texture, motion
and shape. Int. J. of Computer Vision, 72(2):195–215, April 2007.

[12] O. Duchenne and J.-Y. Audibert. Fast interactive segmentation using
color and textural information. Technical report, Certis, Paris Tech.,
2006.

[13] H. Federer. Geometric Measure Theory. Springer, 1996.
[14] E. S. L. Gastal and M. M. Oliveira. Shared sampling for real-time

alpha matting. Proceedings of Eurographics, Computer Graphics Forum,
29(2):575–584, 2010.

[15] L. Grady. Random walks for image segmentation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 28(11):1768–1783, 2006.

[16] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a
posteriori estimation for binary images. J. Roy. Statist. Soc., Ser. B.,
51(2):271–279, 1989.

[17] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun. A global sampling
method for alpha matting. In Computer Vision and Pattern Recognition,
pages 2049–2056, 2011.

[18] J. Lellmann, F. Becker, and C. Schnörr. Convex optimization for
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