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Abstract—We propose a method for interactive multilabel segmentation which explicitly takes into account the spatial variation of color

distributions. To this end, we estimate a joint distribution over color and spatial location using a generalized Parzen density estimator

applied to each user scribble. In this way, we obtain a likelihood for observing certain color values at a spatial coordinate. This

likelihood is then incorporated in a Bayesian MAP estimation approach to multiregion segmentation which in turn is optimized using

recently developed convex relaxation techniques. These guarantee global optimality for the two-region case (foreground/background)

and solutions of bounded optimality for the multiregion case. We show results on the GrabCut benchmark, the recently published Graz

benchmark, and on the Berkeley segmentation database which exceed previous approaches such as GrabCut [32], the Random

Walker [15], Santner’s approach [35], TV-Seg [39], and interactive graph cuts [4] in accuracy. Our results demonstrate that taking into

account the spatial variation of color models leads to drastic improvements for interactive image segmentation.

Index Terms—Image segmentation, spatially varying, color distribution, convex optimization

Ç

1 INTRODUCTION

1.1 Interactive Image Segmentation

SEGMENTATION denotes the task of dividing an image into
meaningful, nonoverlapping regions. Meaningful, espe-

cially in complex images, depends on the user’s intention of
what he wants to extract from the image. This makes the
problem highly ill posed, so user interaction is indispen-
sable. Typically, bounding boxes, contours, or scribbles are
used to indicate the user’s interest. Such interactive
segmentation algorithms are widely used in image editing
software packages, e.g., for the identification of specific
structures in medical images, for tracking objects in a video,
or to interactively edit and manipulate images. Over the last
few years, we have observed a number of breakthroughs in
image segmentation regarding algorithmic approaches to
efficiently compute minimum energy solutions for respec-
tive cost functions, using graph cuts [16], [5], level set
methods [11], random walks [15], and convex relaxation
techniques [8], [42], [19], [7].

Despite substantial algorithmic advances, state-of-the-art
approaches to interactive image segmentation often fail for
scenes of complex color variability, where objects have
similar colors and may be exposed to difficult lighting
conditions. The reason is that existing approaches often do
not systematically exploit the spatial location of the user
information, and rather model the color variation in a given
region with a single space-independent color distribution.
Due to the strong overlap of respective color distributions,

the segmentation process often fails—see Fig. 2b. In contrast,
if only scribble distance is used for region assignment,
segmentation fails as well—see Fig. 2c. By statistically taking
into account the local distribution of the scribbles we obtain
spatially varying color distributions which are locally
separable and allow for drastic improvements in the
segmentation—see Fig. 2d.

To obtain a good segmentation result most algorithms
require two important concepts: First, based on the user
input, each pixel is assigned a value measuring how well it
fits to each marked region (data fidelity term); second, the
consistency of the segmentation with respect to some prior
knowledge is imposed (regularization term), e.g., the object
boundary length [33], the number of labels [41], specific
interclass cost functions [19], or label co-occurrence [20]. In
this paper, we focus on the data fidelity term and its
importance for the segmentation of natural images taken
under difficult color and illumination conditions such as
those in Fig. 1. A preliminary version of this work was
presented in [25].

1.2 Previous Data Fidelity Terms

Over the years a variety of data fidelity terms for image
segmentation have been proposed. The piecewise constant
Mumford-Shah functional [23], for example, is based on
representing the color in each region with the mean color
value, thus minimizing the color variance in each segment.
Instead of a constant mean color value, foreground and
background histograms are estimated by Boykov and Jolly
[4]. Unger et al. [39] also estimate color histograms in their
TV-Seg framework and make a hard decision for fore-
ground/background by means of a user threshold on the
histogram distance. Mixtures of Gaussians are employed to
approximate these probability distributions for digital
matting by Chuang et al. [9], in the GrabCut segmentation
approach by Rother et al. [32], and for automatic
segmentation of natural images by Tai et al. [37]. Methods
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from machine learning are also applied to solve the
classification task, e.g., support vector machines [12] or
random forests [35].

In general, scribbles contain two kinds of information:
color and location. Disregarding either one of these two
categories leads to suboptimal results, as shown in Fig. 2.
With appropriate user interaction the distance to a scribble
may convey information on region affiliation. Grady
proposes to model this aspect with a random walk [15].
Bai et al. [2] estimate foreground and background color
likelihoods whose gradients are used to define weighted
geodesic distances between each pixel and the user
scribbles. Spatial information has also successfully been
introduced into kernel density estimators, e.g., in the mean-
shift approach [10], in segmentation based on geodesic
distances [2], or in motion analysis [24]. In [40], [30], [14],
[17] distance-based sampling was applied to image matting.
To estimate the pixel’s alpha value, the minimum difference
between the linearly interpolated color from each

foreground and background sample and the current pixel’s
color is sought. In [17], an additional penalty is added for
samples at large distances from the current location. In
contrast to these approaches, in this paper we estimate a
joint probability distribution over color and space from the
whole set of samples simultaneously.

In unsupervised segmentation the approaches by Taron
et al. [38] and Brox and Cremers [6], possibly the most
closely related to ours, are alternating schemes of segmen-
tation and color model estimation. While spatial variation
of color distributions often degrades the convergence of
such unsupervised segmentation methods to suboptimal
local minima (the respective color distributions simply
adapt to the local context), we show that in interactive
segmentation—combined with recent convex relaxation
techniques—explicitly modeling the spatial context of color
information leads to drastic performance improvements
with optimal or near-optimal results.

1.3 Statistical Models of Spatial Color Variation

In the interactive segmentation scenario the user scribbles
contain information on color and space. By disregarding
this spatial information in respective density estimates from
user scribbles, purely color-based approaches implicitly
assume that the color likelihood is independent of the
spatial location. In real-world scenarios this is obviously a
restrictive assumption, in particular for natural images with
varying light conditions, and for multicolored objects that
often rely on camouflaging by adopting similar colors as
their environment. Yet, the user scribbles do contain spatial
information, albeit in a nontrivial highly correlated form.
The aim of this work is to systematically exploit this space-
dependency of user scribbles in a Bayesian framework for
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Fig. 2. (a) Original images with strong lighting variations and reflections. (b) Segmentation results based on color similarity only. (c) Segmentation
results based on scribble distance only (i.e., a length-regularized Voronoi tesselation). (d) Segmentation results based on spatial and color
information of the scribbles.

Fig. 1. Interactive segmentation result. (a) The original image exhibits
strongly overlapping foreground and background color distributions due
to large lighting variations. (b) Explicitly taking into account the spatial
dependency of color likelihoods leads to drastic improvements of the
segmentation.



image segmentation. Experiments confirm that modeling
the spatial dependency of color likelihoods comes at no
extra cost for the subsequent inference algorithms, preser-
ving the same computation times and optimality guaran-
tees, yet it drastically improves segmentation results.

1.4 Contribution: Bridging the Gap between
Distance-Based and Color-Based Segmentation

The contribution of this paper is to demonstrate the
importance of regarding not only the color but also the
spatial location and distribution of user scribbles in
interactive segmentation. The locations of user scribbles
are typically highly correlated (rather than uniformly
distributed). We present a strategy to account for this
violation of the i.i.d. assumption of samples when estimat-
ing kernel densities in the joint space of color and location.
The resulting approach bridges the gap between purely
color-based and purely scribble location-based data terms
and thus generalizes previous approaches within one
framework. More specifically, we will see later on that our
approach has two interesting limiting cases:

. In one limit, we obtain a segmentation method
using the commonly employed space-independent
color likelihood (namely in disregard of spatial
information).

. In another limit, we obtain a length-regularized
Voronoi tesselation (in disregard of color infor-
mation).

A user-defined parameter balances the influence of color
and location information. This leads to strongly improved
segmentation results within a statistically sound approach.

The proposed framework allows us to segment objects
with heavily overlapping color distributions. The approach
is formulated as an energy minimization problem which is
solved in a variational framework. The solution is provably
optimal for two regions, while for multiple regions it lies
within small bounds of about less than 1 percent from the
optimal solution. The proposed approach can be easily
parallelized with computation times of 1.5 seconds on
average and is thus well suited for interactivity. Extensive
experiments on published benchmarks show that taking
into account spatial scribble information outperforms
previous approaches, some of which use not only color
but also textural information.

2 A STATISTICAL FRAMEWORK FOR SEGMENTATION

In this section, we will derive a Bayesian inference formula-
tion for multiregion segmentation in which space-variant
color likelihoods are estimated from a set of user scribbles.
One of the challenges we address is that the locations of user
scribbles are not i.i.d. distributed but spatially correlated.

2.1 Segmentation as Bayesian Inference

Let I : �! IRd denote the input image defined on the
domain � � IR2. The task of segmenting the image plane
into a set of n pairwise disjoint regions �i:

� ¼
[n
i¼1

�i; �i \ �j ¼ ; 8i 6¼ j; ð1Þ

can be solved by computing a labeling u : �! f1; . . . ; ng,
indicating which of the n regions each pixel belongs to:
�i ¼ fx

��uðxÞ ¼ ig. In the framework of Bayesian inference,
one can compute such a segmentation by maximizing the
conditional probability:

arg max
u

Pðu j IÞ ¼ arg max
u

PðI j uÞ PðuÞ: ð2Þ

Assuming that the colors of all pixels are independent of
each other, but—in contrast to previous interactive segmen-
tation approaches—not independent of space, we obtain

PðI j uÞ ¼
Y
x2�

ðPðIðxÞ; xj uÞÞdx
 !

; ð3Þ

where the exponent dx denotes an infinitesimal volume in
IR2 and assures the correct continuum limit. Note how the
space-dependency of color likelihoods arises naturally in
this formulation. It has commonly been neglected, yet we
shall show in this paper that taking into account this spatial
variation of color distributions based on scribble locations
leads to drastic improvements of the resulting interactive
segmentation process. Assuming furthermore that the color
probability at location x does not depend on the labeling of
other pixels y 6¼ x, the product in (3) can be written as

PðI j uÞ ¼
Yn
i¼1

Y
x2�i

ðPðIðxÞ; x j uðxÞ ¼ iÞÞdx: ð4Þ

2.2 Inferring Space-Variant Color Distributions

The expression PðIðxÞ; x j uðxÞ ¼ iÞ in (4) denotes the joint
probability for observing a color value I at location x given
that x is part of region �i. It can be estimated from the user
scribbles as follows: Let

Si :¼ xij
Iij

� �
; j ¼ 1; . . . ;mi

� �
; ð5Þ

denote the set of mi user-labeled pixels xij and correspond-
ing color values Iij associated with a given region �i. Then,
we can estimate the joint distribution P̂ on the product
space of color and location by means of a kernel density
estimator [1], [31] of the form:

P̂ðIðxÞ; x j uðxÞ ¼ iÞ ¼ 1

mi

Xmi

j¼1

k
x� xij
I � Iij

� �
; ð6Þ

i.e., a sum of normalized kernel functions k centered at each
sample point in the product space.

Fig. 3 shows an example of a distribution in the joint
space of color and spatial coordinate estimated from a set of
user scribbles. Commonly, the location of the scribbles is
not taken into account and the space-independent color
distribution, the marginal

P̂ðIðxÞ j uðxÞ ¼ iÞ ¼
Z
P̂ðIðxÞ; x j uðxÞ ¼ iÞ dx; ð7Þ

is used, which is plotted on the right. In this case, we obtain
three peaks, one each for a different predominant color of
the foreground object. At each location in the image, the
likelihood for each of these colors follows the same
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marginal distribution, no matter if we are very close to a
scribble or far away. In contrast, the proposed distribution
allows us to distinguish that certain colors may be more or
less likely in different locations of the same region �i.
Hence, at each location we obtain a separate color
distribution, depending on the distance to the scribbles.
Clearly, such relevant information on the spatial variation
of a color distribution is entirely lost in the traditional
space-independent formulations where the spatial depen-
dency is simply integrated out.

The negative logarithm of the estimated probability
distribution can be used as a powerful dataterm for
segmentation. For each region �i we obtain the dataterm

fi ¼ � log P̂ ðIðxÞ; x j uðxÞ ¼ iÞ: ð8Þ

In practice, we choose Gaussian kernels with widths �
and �i in color and space dimension to define the joint
probability distribution:

P̂ðIðxÞ; x juðxÞ ¼ iÞ ¼ 1

mi

Xmi

j¼1

k�iðx� xijÞk�ðI � IijÞ: ð9Þ

The proposed formulation can be seen as a generalization of
the traditional purely color-based approaches. More speci-
fically, it has two interesting limiting cases:

. With larger value of �i the influence of the scribble
locations becomes less important. In the limit �i !1
we obtain the purely color-based probability:

P̂ðIðxÞ; x juðxÞ ¼ iÞ ¼ 1

mi

X
k�ðI � IijÞ: ð10Þ

. With increasing values of �, the influence of scribble
colors becomes neglible. In the limit �!1 we
obtain a purely distance based likelihood:

P̂ðIðxÞ; x juðxÞ ¼ iÞ ¼ 1

mi

X
k�iðx� xijÞ: ð11Þ

In the subsequent segmentation process this will
lead to a regularized Voronoi tesselation.

Hence, by steering �i and �, the variance of the kernel
density estimators, we can scale the influence of color
similarity and scribble distance on the segmentation result.

A variant of the proposed approach can be obtained by
using the conditional distribution instead of the joint
distribution. The conditional distribution for observing a
color I given at coordinate x is obtained by normalizing the
joint distribution:

P̂ðIðxÞ j x; uðxÞ ¼ iÞ ¼ P̂ðIðxÞ; x j uðxÞ ¼ iÞR
P̂ðIðxÞ; x j uðxÞ ¼ iÞ dI

: ð12Þ

The normalization simply assures that for every point x 2 �
the probability of observing different colors integrates to 1.
Due to the relation

P ðI; x j uðxÞ ¼ iÞ ¼ P ðI j x; uðxÞ ¼ iÞP ðx j uðxÞ ¼ iÞ; ð13Þ

the joint distribution differs from the conditional by the
location prior P ðx j uðxÞ ¼ iÞ saying if a specific label is
likely in this part of the image. Via this prior the pure
scribble distance influences the joint probability distribu-
tion leading to Voronoi results in the extreme case, as in
Fig. 2c. In contrast, in the conditional distribution the
normalization neglects this location prior leading to a
separate color probability distribution at each pixel. In our
experiments, both approaches have shown similar results
as, for small values of �, the location prior does not have
large impact on the dataterm. In this paper, we will
concentrate on the joint distribution. This generally gives
us more freedom in modeling the dataterm since the
influence of location and color can be steered separately by
means of � and �. In contrast, with the conditional
distribution (i.e., without location prior) the case of a
purely distance-based segmentation (�!1) cannot be
modeled since we would obtain a uniform distribution.

2.3 Handling Non-iid Samples

Provided that the samples S are independent and identi-
cally distributed (iid), the estimator P̂ in (9) provably
converges to the true distribution for mi !1 [36].
Unfortunately, this independence assumption is not ful-
filled in practice: While observed color values Iij may be
assumed to be independent, the spatial coordinates xij are
certainly not. In particular, the samples are not uniformly
distributed in space but given by the scribble pattern. To
account for this nonuniformity, we employ spatially
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Fig. 3. Top: Fish image with user scribbles indicated in red. Bottom:
Scribble-point-based kernel density estimate of the 5D joint distribution of
3D color and 2D location projected to the gray value I and horizontal
location x (for readability). If space is not taken into account (i.e., if we
marginalize over location), we obtain the same density function PðIÞ at
each pixel, showing several peaks for color values which are predominant
in different parts of the object, like yellow, blue, and black. Using the joint
distribution gives the probabilityPðI; xÞ of observing a color I at a location
x. At each location x we obtain a separate color distribution showing only
a single color peak for the locally predominant color, e.g., the yellow color
in the fin of the fish at horizontal location x1 or the darker colors like blue
and black in the head of the fish at x2. The joint 5D distribution over color
and space is used as a dataterm for image segmentation. For challenging
real-world images it is drastically more informative than the commonly
used space-independent distribution PðIÞ.



adaptive kernel functions by choosing the spatial kernel
width �iðxÞ at location x proportional to the distance from
the nearest sample point xvi 2 Si of region i:

�iðxÞ ¼ �jx� xvi j2: ð14Þ

The effect of this locally dependent spatial variance is
demonstrated in Fig. 4. The further away a pixel is from
the nearest scribble, the more widespread the region

becomes where scribble points are taken into account for

color density estimation at this point. In this way, we

obtain locally separable space-variant color distributions as

shown in Fig. 5.
For several examples, Fig. 5b shows samples randomly

drawn from the commonly estimated spatially constant
color distributions of foreground and background. The
images are challenging in the sense that the spatially
constant distributions strongly overlap, making it hard or
impossible even for humans to detect the object edges
correctly. In contrast, Fig. 5c shows randomly drawn
samples from space-variant color distributions of fore-
ground and background. These reflect the strong variations
of color and light in the images. The local adaptation of the
probability distributions makes the boundaries of the
objects more apparent and ultimately leads to the desired
segmentation results, e.g., in Fig. 2d.

Fig. 6 shows the label probabilities as defined in (9) for
different images from the Berkeley and Graz benchmarks.

2.4 Variational Formulation

Having determined the probability distributions P̂ðI;
x
�� uðxÞ ¼ iÞ from the user scribbles for all regions �i,
i ¼ 1; . . . ; n, we are now ready to solve the optimization
problem (2). To this end, we specify the prior PðuÞ to favor
segmentation regions of shorter boundary:

PðuÞ / exp � 1

2

Xn
i¼1

Pergð�iÞ
 !

; ð15Þ

where Pergð�iÞ denotes the perimeter of each set �i ¼ fx 2
� j uðxÞ ¼ ig measured with either an edge dependent or a
euclidean metric defined by the nonnegative function
g : �! IRþ:

gðxÞ ¼ expð��jrIðxÞjÞ; ð16Þ
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Fig. 4. Influence of scribbles (red) for foreground color density estimation
at different image locations. (b) Close to the scribble �ðxÞ tends to 0 and
only the closest scribble points influence the color distribution. (c)
Further away from the scribbles several scribbles in the vicinity influence
the estimated color distribution. (d) Far away all scribbles have (almost)
equal influence on the estimated color distribution, similar to the case of
spatially constant color models.

Fig. 5. Random samples from the estimated foreground and back-
ground distributions for the tiger image in Fig. 1a and others.
Neglecting the scribble location (b) makes it hard to distinguish
between foreground and background and extract the exact boundary
line. If the scribble location is regarded (c), the estimated distributions
are locally separable and the synthesized image better approximates
the original image colors.

Fig. 6. Label probability P̂ ðIðxÞ; xj uðxÞ ¼ iÞ as defined in (9) for
different images from the Berkeley and Graz benchmarks: (a) probability
for foreground label, (b) probability for background label, (c) segmenta-
tion result



for example, favors the coincidence of object and image
edges. Maximizing the a posteriori distribution (2) can be
solved equivalently by minimizing its negative logarithm.
Up to constants and according to (15) and (8), the maximum
a posteriori estimation is equivalent to the minimization of
the energy

Eð�1; . . . ;�nÞ ¼
1

2

Xn
i¼1

Pergð�iÞ þ �
Xn
i¼1

Z
�i

fiðxÞ dx;

with fiðxÞ ¼ � log P̂
�
IðxÞ x

�� uðxÞ ¼ i�:
ð17Þ

� is a weighting parameter which regulates the influence of

the dataterm.

3 MINIMIZATION VIA CONVEX RELAXATION

The optimization problem (17) is a classical shape optimiza-

tion problem, the continuous equivalent of the Potts model

[29], which is known to be NP hard. Building upon recent

developments in optimization [8], [42], [19], [7], [27], [18],

[28], we solve this problem by means of a convex relaxation

strategy with the following favorable properties:

. The segmentation is independent of initialization.

. We obtain globally optimal segmentations for the case
of two regions and near-optimal—in practice often
globally optimal—solutions for the multiregion case.

. The algorithm can be efficiently implemented on the
GPU with average computation times of 0.43 sec-
onds, which makes it suitable for realtime user
interactions.

3.1 Conversion to a Convex Differentiable Problem

The key idea is to represent the n regions �i by the indicator

function � 2 BVð�; f0; 1gÞn, where

�iðxÞ ¼
1; if x 2 �i

0; otherwise

�
8i ¼ 1; . . . ; n: ð18Þ

Here, BV denotes the functions of bounded variation,

i.e., functions with a finite total variation. In order to rewrite

energy (17) in terms of the indicator functions �i, let us

observe that the boundary of the set indicated by �i can be

written by means of the total variation. Let D�i denote the

distributional derivative of �i (which is D �i ¼ r�i dx for

differentiable �i), �i 2 C1
c ð�; IR2Þ the dual variables, with C1

c

the space of smooth functions with compact support.
Then, following the coarea formula [13] the weighted

perimeter of all regions �i is equivalent to the weighted

total variations:

1

2

Xn
i¼1

Pergð�iÞ ¼
1

2

Xn
i¼n

Pergðfx j �iðxÞ ¼ 1gÞ ð19Þ

¼ 1

2

Xn
i¼n

TVgð�iÞ ð20Þ

¼ 1

2

Xn
i¼n

Z
�

g jD �i j ð21Þ

¼ sup
�2Kg

Xn
i¼n

Z
�

�i D�i ð22Þ

¼ sup
�2Kg

�
Xn
i¼n

Z
�

�i div �i dx

 !

with Kg ¼
�
� 2 C1

c

�
�; IR2

�n ���j�iðxÞj � gðxÞ
2

;

x 2 �; i ¼ 1; . . . ; n

�
:

ð23Þ

The latter transformation (23) follows from integration by
parts and the compact support of the dual variables �i.

For segmentation, we require that at each location x 2 �
the sum of all indicator functions amount to 1, so each pixel
is assigned to exactly one label. With this notation, (17) is
equivalent to

min
�2B

Eð�Þ ¼ ð24Þ

min
�2B

sup
�2Kg

Xn
i¼1

�

Z
�

�i fi dx�
Z

�

�i div �i dx

( )
ð25Þ

with B ¼ � 2 BVð�; f0; 1gÞn
���� Xn

i¼1

�i ¼ 1

( )
: ð26Þ

To obtain a relaxed convex optimization problem which can
be minimized globally, we relax the set B to the convex set

~B ¼ � 2 BVð�; ½0; 1�Þn
���� Xn

i¼1

�i ¼ 1

( )
: ð27Þ

3.2 Numerical Implementation

To solve the relaxed convex optimization problem, we
employ a primal dual-algorithm proposed in [28].
Essentially it consists of alternating a projected gradient
descent in the primal variables �i with projected gradient
ascent in the dual variables �i. In addition, it contains an
overrelaxation step in the primal variables (giving rise to
auxiliary variables ��i):

�tþ1 ¼ �Kg �t þ 	d
@E
@�

� �
¼ �Kg

�
�t þ 	dr��t

�
;

�tþ1 ¼ �~B �t � 	p
@E
@�

� �
¼ �~B

�
�t þ 	p

�
div �tþ1 � �f

��
;

��tþ1 ¼ �tþ1 þ
�
�tþ1 � �t

�
¼ 2�tþ1 � �t;

ð28Þ

where � denotes the projections onto the respective convex
sets and 	p and 	d the primal and dual step sizes. The
projection onto Kg is straightforward by simple clipping;
the projection onto the simplex ~B is given in [22]. As shown
in [28], the algorithm (28) provably converges to a
minimizer of the relaxed problem for sufficiently small
step sizes 	p and 	d which are chosen according to [26].

By allowing the primal variables �i to take on inter-
mediate values between 0 and 1, we may end up with
nonbinary solutions. By thresholding these to 0 or 1 we can
project solutions back to the binary-valued set B. This
projection is known to preserve optimality in case of two
regions [8]. In the multiregion case it allows us to compute a
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bound of optimality given by the energy difference between

the minimizer of the relaxed problem and its thresholded

version (see Proposition 1). Typically, the thresholded

solution deviates less than 1 percent from the optimal

energy in the multiregion case.

Proposition 1. Let �� 2 B be the global minimizer of the original

problem (25), ~� 2 ~B the result of the proposed algorithm for the

relaxed problem, and �0 2 B the binarized solution. Then, we

can compute an energy bound 
ð�0; ~�Þ such that the following

holds for the energy gap: Eð�0Þ �Eð��Þ � 
ð�0; ~�Þ.
Proof. Since B � ~B, we have Eð~�Þ � Eð��Þ � Eð�0Þ. Energe-

tically, the (unknown) optimal binary solution �� lies in

between the computed relaxed solution ~� and the

computed thresholded solution �0:

Eð�0Þ � Eð��Þ � Eð�0Þ � Eð~�Þ ¼: 
ð�0; ~�Þ:
tu

3.3 Convergence Analysis

To examine the convergence rate, we can compute the

primal-dual gap, which is the difference between the primal

and the dual energy of the optimization problem. The primal

energy is given as the original optimization problem:

Epð�Þ ¼
Xn
i¼1

Z
�

� �i fi dx� gðxÞ jD �ij
( )

þ 
Bð�Þ; ð29Þ

where 
B is the indicator function of B:


Bð�Þ ¼
0; � 2 B
1; � 62 B:

�
ð30Þ

The computation of the dual energy amounts to a point-

wise optimization problem:

Edð�Þ ¼ min
�2B

Xn
i¼1

Z
�

�i ð�fi � div �iÞ dx� 
Kgð�Þ
( )

¼
Z

�

min
i
ð�fi � div �iÞ dx� 
Kgð�Þ:

ð31Þ

Here, 
Kg denotes the indicator function for the set Kg.
During the optimization, the primal energy constantly

decreases, whereas the dual energy increases. When the

optimal solution is reached, the primal-dual gap goes to

zero. The size of the gap can be used to formulate suitable

convergence criteria for the algorithm, e.g., the iterations are

terminated if the current gap decreases less than 1 percent

compared to the previous gap. Fig. 7 shows the primal-dual

gap for up to 2,500 iterations for two examples. Alterna-

tively, the change of the solution j�t � �t�1j can be measured

to determine convergence of the algorithm.

4 RESULTS

We have developed an interactive approach for extracting

multiple objects from an image. A key contribution of this

paper is to regard both color similarity and the local

information of the scribbles. To this end, we introduce

space-variant color distributions to model objects with

spatially varying appearance in the scene. In the following,

we will show experimental results on a variety of real-

world images and focus on showing how modeling the

spatial variation of color distributions leads to substantial

improvements of the segmentation over the traditionally

employed spatially constant color distributions. We use the

following parameters for space-variant color distributions:

� ¼ 1:3, � ¼ 0:008, � ¼ 5, � ¼ 1:8. 	p ¼ 0:25, and 	d ¼ 0:5

according to [26]. To obtain the spatially constant approach

we set � to a very large value, yielding an (approximately)

constant spatial distribution.

4.1 Qualitative Benchmark Results

For automatic segmentation, several benchmarks are

available, e.g., the Berkeley database, the GrabCut data-

base, or the PascalVocDatabase. As extensively discussed

in [34], these benchmarks are not suited for testing

interactive segmentation. Hence, Santner et al. [35]

published a benchmark for interactive scribble-based

segmentation, the Graz benchmark. We nevertheless start

our evaluation on the somewhat simpler but widely

NIEUWENHUIS AND CREMERS: SPATIALLY VARYING COLOR DISTRIBUTIONS FOR INTERACTIVE MULTILABEL SEGMENTATION 7

Fig. 7. Convergence analysis of the algorithm for two examples from the Graz benchmark database. The progress of the primal energy (blue) is
depicted with respect to the dual energy (green). The optimal solution of the optimization problem is obtained as soon as the primal-dual gap goes to
zero.



known trimap segmentation problem of the GrabCut

benchmark. In a second step we then evaluate the

proposed algorithm on the Graz benchmark. We also

compare against common segmentation algorithms such as

GrabCut and Random Walker.

4.1.1 GrabCut Benchmark

For the GrabCut benchmark either bounding boxes enclosing

the foreground and—inevitably—part of the background

can be used as input or trimaps. Since our approach is based

on adaptable color distributions, rough bounding boxes

containing both regions are unsuitable for estimating the

probability density functions for foreground and back-

ground. Hence, we use the trimap input. Trimaps are maps

which roughly segment the image except the region around

the object boundary, which is to be inferred by the algorithm.
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Fig. 10. Comparison to common segmentation approaches such as the
Random Walker approach and the GrabCut approach on the standard
GrabCut Benchmark based on the misclassification error (in percent)
and given trimaps. Segmentation based on trimaps actually represents a
simplified problem since the number of objects and the rough boundary

Fig. 9. Failed and improved segmentations. (a) The scribbles are too
sparse to adequately reflect the changing colors in the segments.
(b) More scribbles have been introduced to obtain the correct
segmentations.

Fig. 8. Results on the GrabCut Benchmark. (a) Original image, (b) trimap
input (white: foreground, black and dark gray: background, light gray:
region to be classified), (c) segmentation result of the proposed
approach.



The benchmark’s suitability for testing multilabel segmenta-

tion algorithms is limited due to three reasons:

. All examples are limited to two regions, i.e.,
foreground/background segmentation, which
means n ¼ 2.

. The objects are assumed to be connected.

. The trimaps contain very large seed regions for
foreground and background which already
indicate the ground-truth segmentation of most
pixels in the image.

Hence, this benchmark simulates strongly simplified condi-

tions for interactive segmentation.
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Fig. 11. Results on the Graz benchmark. (a) Approach by Santner et al. [35] based on color and texture, (b) proposed space-variant approach
regarding scribble locations.



Fig. 8 shows several segmentation results from the Grab-
Cut benchmark, the original image on the left, the trimap in
the center, and the segmentation result on the right. The
segmentation results are very close to the ground truth. Small
errors occur due to nonsharp object boundaries (banana), the
length regularization (the ear of the llama), or insufficient
foreground seed marking (the shoes of the woman).

4.1.2 Graz Benchmark

Since common segmentation databases are not suitable for
testing interactive multilabel segmentation [34], Santner
et al. recently published the first benchmark for interactive
scribble based multilabel segmentation containing 262
seed-ground-truth pairs from 158 natural images contain-
ing between two and 13 user labeled segments. Santner et
al. [35] show impressive results for different combinations
of color and texture features: RGB, HSV, and CIELab
colors combined with image patches, Haralick features,
and Local Binary Patterns (LBP). However, they neglect
the locality of the scribbles by estimating a single,
invariant color model for each region. In our experiments
we tested the proposed approach with spatially constant
and spatially varying color models on their benchmark. If
we use the spatially constant model, the results are slightly
better than those obtained by Santner et al. (RGB color
information without texture). They obtain the best results
combining CIELab and LBP features in a 21D vector based
on a scribble brush of radius 13. Without reverting to such
a sophisticated high-dimensional texture feature space, we
obtain a better benchmark performance simply by
correctly modeling the spatial variation of color distribu-
tions as proposed in this paper.

Fig. 11 shows qualitative benchmark results. The figure
contains 16 image pairs, where we contrast Santner et al.’s
best results (CIELab colors combined with LBP features)
with the results of our space-variant approach. The locality
of the color models allows us to release the regularizing
model assumptions since we can better distinguish between

different regions, especially in case of overlapping color

models. In this way, for example, the second foot of the

duck, the fin of the fish, the head of the man at the lake, the

legs of the beacon, the oversmoothed contour of the parrot,

the astronaut, and the feathers of the small bird could be

correctly recovered. In the case of the snake, the locality of

the color model helps to assign the objects to the closer

matching segment. This explains the higher accuracy of our

approach.
Fig. 9 a shows two examples for failed segmentations

which are due to sparse scribbling. The scorpion image
would require more scribbles to adequately model the
changing color of the animal. In the second image, the red
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Fig. 12. Comparison to the multilabel segmentation approach by
Santner et al. [35] on the Graz benchmark. For each method the
dimensionality of the feature vector, the scribble brush radius, and the
average dice score are compared. Rather than reverting to sophisticated
high-dimensional feature spaces the introduction of spatial information
into the estimated color distributions yields better results and allows for
higher speeds.

Fig. 13. Comparison to known foreground/background extraction
approaches. (a) Interactive Graph Cuts [4], (b) TV-Seg [39], (c) the
proposed space-variant approach. For (a) and (b) a lot more user
interaction is required.



background scribble does not reflect the color change in
the upper left image corner. This part of the image is
assigned to the foreground due to the strong color
similarity with the bee. In Fig. 9b, scribbles have been
added to better reflect the color variance of the scorpion
and the background of the bee. Based on this additional
information, the color distributions are better adapted to
the color variation in the images and correct segmentation
results can be obtained.

4.2 Quantitative Benchmark Results

We now compare the average quality of the proposed
algorithm to previous approaches on the GrabCut and the
Graz benchmarks. For each benchmark, different quality
measures have been published, which will be explained
below.

4.2.1 GrabCut Benchmark

Based on the simplified segmentation problem on the
GrabCut benchmark, we obtain the results given in Fig. 10,
which indicates the average misclassification error:

Emiss ¼
no: of misclassified pixels

no: of pixels in unclassified trimap region
: ð32Þ

From the results we can conclude that the proposed

approach outperforms the GrabCut approach [3] by

1.4 percent. However, the Random Walker approach [15]

outperforms both algorithms by far. For the Random Walker

we chose � ¼ 100.

4.2.2 Graz Benchmark

To further assess the quality of the proposed algorithm we
apply it to the Graz benchmark data set containing 262 images
with user scribbles. To evaluate the overall segmentation
accuracy Santner et al. [35] compute the arithmetic mean of
the Dice-score over all segments. It relates the overlap area of
the ground-truth segment ��i and the computed segment
�i ¼ fxjuðxÞ ¼ ig to the sum of their areas:

diceð��i;�iÞ ¼
2j��i \ �ij
j��ij þ j�ij

: ð33Þ

Fig. 12 compares the average Dice-score of the proposed

method to the approach by Santner et al. [35] and the

Random Walker [15]. The dimension of the feature vector

and the brush size for the scribbles is given. The results

indicate that merely regarding the spatial location of

scribbles provides stronger performance improvements
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Fig. 14. Multilabel segmentation results for difficult images from the Berkeley and Graz databases. The spatially constant approach (b) is compared
to the space variant (c). If spatial scribble information is included in the color model the animals, vegetables, and window reflections can be
segmented correctly.



than a multitude of sophisticated features. Contrary to the
GrabCut benchmark, in the more realistic setting posed by
the Graz Benchmark, where only small seeds farther away
from the object boundary are given, the Random Walker
yields the least accurate results of all algorithms.

4.3 Comparison to Foreground Extraction Tools

Most algorithms for interactive segmentation are limited to
two regions, i.e., foreground/background extraction. In this
section, we compare our results to those obtained by
TV-Seg [39] and Interactive Graph Cuts [4] for images
containing only one object in front of the background.
Beyond a quantitative analysis of the performance we
examined the qualitative performance with varying
amounts of scribbles. To demonstrate the effectiveness of
space-variant color models we choose images from the
Berkeley database with difficult lighting conditions, reflec-
tions, or overlapping color models. We used the available
implementation of TV-Seg from the TU Graz and the
Interactive Graph Cuts implementation in the Toolbox by
McGuinness [21]. During segmentation of these images we
aimed at minimizing the amount of user scribbles. Fig. 13
shows that all three methods provide segmentations of
similar quality. However, the proposed space-variant
method better reflects the color variations and thus
requires fewer scribbles and user interaction.

4.4 Multilabel Segmentation Results

Finally, we show results for the spatially constant compared
to the spatially varying approach for a collection of
interesting images from the Berkeley and Graz databases
in Fig. 14. The first two rows show different animals in front
of a similarly colored background. Segmentation here only
succeeds based on color and spatial information. The third
row shows the displayed goods of a vegetable stall and a
skyscraper. In the vegetable stall, the peppers as well as the
cauliflower and broccoli exhibit different colors, but belong
to the same segment. Since the color distributions of
different segments vary and overlap, it is important to
regard the local distribution of the scribbles to obtain a
correct segmentation. The right-hand side shows a sky-
scraper with reflecting windows. Since reflections contain
any color from the surroundings, segmentation with global
color models is difficult. Based on locally adaptive color
models, we obtain correct results.

4.5 Runtimes

Interactive image segmentation algorithms demand run-
times close to real time to be useful for the user. We
computed the results on an INTEL XEON 2.27 GHz CPU
with an NVIDIA Geforce GTX 580 GPU. The average
computation time per image on this benchmark is
1.14 seconds for the dataterm and 0.43 seconds for the
optimization for two to 13 labels.

4.6 Sensitivity to Parameters and Scribbles

Finally, we examine the sensitivity of the algorithm with
respect to parameter choices and scribble locations.

4.6.1 Parameter Sensitivity

The proposed approach requires the user to select four
input parameters: the color kernel variance �, the distance
factor � determining the spatial scribble influence, the

smoothness factor � regulating the strength of the dataterm,
and the parameter � of the edge indicator function g.

As mentioned above, all experiments reported so far
were carried out with a fixed set of parameters.
Nevertheless, in order to assess the sensitivity of our
algorithm to variations in these parameters, we reran the
Graz benchmark performance for a variety of parameter
settings. Fig. 15 shows that for variations of these para-
meters within a reasonable range, the benchmark perfor-
mance only varies within 2 percent. Among the parameters
to be set, the spatial influence of the scribbles �, the
dataterm weight �, and the brush size seem to have the
largest impact on the results.

4.6.2 Sensitivity to Scribble Location

Fig. 16 shows segmentation results for different amounts
and locations of user scribbles. The segmentation based on
the first four input sets is almost identical. The random
distribution of scribble points in the last image yields
slightly better results for the legs of the animal and the stem
of the flower due to the wide-spread sample distribution in
the image. We can conclude that provided the scribbles are
set reasonably to represent the color distributions of the
separate regions, the segmentation quality is not very
sensitive to their amount or location.

5 CONCLUSION

In this paper, we proposed an algorithm for interactive
multiregion segmentation which takes into account not
only color similarity but also the spatial location of the
user scribbles. Since correct density estimation requires iid
assumptions on the spatial location of the scribbles, which
is not the case, we proposed a way to handle this
problem. The result is a scalable dataterm which bridges
the gap between purely color-based and purely distance-
based segmentations. In this way, overlapping color
distributions become locally separable, allowing for
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Fig. 15. Sensitivity to parameter modifications. The table shows the

average Dice-score on the Graz Benchmark for different sets of the

algorithm’s parameters. For reasonable choices the performance only

varies within 2 percent.



weaker regularization assumptions and correct segmenta-

tions in difficult images. The variational approach is

derived rigorously in a framework of Bayesian inference

and minimized by efficient convex relaxation techniques,

leading to globally optimal solutions for the two-region

case and solutions of bounded optimality (and, in practice,

often optimal solutions) for the multiregion case. The

approach can be parallelized, leading to computation

times around 1.1 seconds on average for 2 to 13 labels.

Results on the GrabCut, Graz, and Berkeley databases

show that we exceed previous approaches such as

GrabCut, Random Walker, and TV-Seg.
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