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Abstract. Confidence measures are crucial to the interpretation of any optical
flow measurement. Even though numerous methods for estimating optical flow
have been proposed over the last three decades, a sound, universal, and sta-
tistically motivated confidence measure for optical flow measurements is still
missing. We aim at filling this gap with this contribution, where such a confi-
dence measure is derived, using statistical test theory and measurable statistics of
flow fields from the regarded domain. The new confidence measure is computed
from merely the results of the optical flow estimator and hence can be applied
to any optical flow estimation method, covering the range from local parametric
to global variational approaches. Experimental results using state-of-the-art opti-
cal flow estimators and various test sequences demonstrate the superiority of the
proposed technique compared to existing ’confidence’ measures.

1 Introduction

It is of utmost importance for any optical flow measurement technique to give a pre-
diction of the quality and reliability of each individual flow vector. This was already
asserted in 1994 in the landmark paper by Barron et al. [1], where the authors stated
that ’confidence measures are rarely addressed in literature’ even though ’they are cru-
cial to the successful use of all [optical flow] techniques’. There are mainly four benefits
of confidence measures: 1st) unreliable flow vectors can be identified before they cause
harm to subsequent processing steps, 2nd) corrupted optical flow regions can be identi-
fied and possibly recovered by model-based interpolation (also denoted as ’inpainting’),
3rd) existing optical flow methods can be improved, e.g. by integrating the confidence
measure into variational approaches, 4th) fast, structurally simple optical flow methods
in combination with a confidence measure can replace slow, complicated ones. Yet, the
confidence measures known today are inadequate for the assessment of the accuracy of
optical flow fields due to the following reasons: First, many confidence measures in-
fer confidence values based on the local structure of the image sequence only, without
taking into account the computed flow field. Second, most confidence measures are di-
rectly derived from specific optical flow computation techniques and, thus, can only be
applied to flow fields computed by this method. In fact, so far no generally applicable
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confidence measure exists, which takes into account the computed flow field without
being limited to a special type of flow computation method. But if the same model
for flow and confidence estimation is used the confidence measure only verifies the re-
strictions already imposed by the flow computation model. Thus, errors are often not
detected as the flow follows the model. Hence, we opt against using the same motion
model for confidence estimation. Third, none of the proposed measures is statistically
motivated despite the notion ’confidence measure’.
Therefore, in this paper we propose a statistical confidence measure, which is generally
applicable independently of the flow computation method. An additional benefit of our
method is its adaptability to application-specific data, i.e. it exploits the fact that typical
flow fields can be very different for various applications.

2 Related Work

The number of previously proposed confidence measures for optical flow fields is lim-
ited. In addition to the comparison by Barron et al. [1], another comparison of different
confidence measures was carried out by Bainbridge and Lane [2]. In the following we
will present confidence measures that have been proposed in the literature so far. Many
of these rely on the intrinsic dimensionality of the image sequence. According to [3]
the notion ’intrinsic dimension’ is defined as follows: ’a data set in n dimensions is
said to have an intrinsic dimensionality equal to d if the data lies entirely within a d-
dimensional subspace’. It has been applied to image processing by Zetzsche and Barth
in [4] in order to distinguish between edge-like and corner-like structures in an image.
Such information can be used to identify reliable locations, e.g. corners, in an image
sequence for optical flow computation, tracking and registration. A continuous formu-
lation has recently been proposed by Felsberg et al. [5]. To make statements on the
intrinsic dimension of the image sequence and thus on the reliability of the flow vec-
tor, Haussecker and Spies [6] suggested three measures for the local structure tensor
method [7]: the temporal coherency measure, the spatial coherency measure and the
corner measure, which is derived from the two former. All three follow the concept
that reliable motion estimation is only possible at those locations in an image sequence
where the intrinsic dimension is two, which refers to fully two-dimensional variations
in the image plane (e.g. at corners). In case of homogeneous regions and aperture prob-
lems, which both correspond to lower intrinsic dimensions, the measures indicate low
reliability.
Other examples for confidence measures based on the image structure are the gradient
or Hessian of the image sequence or the trace or smallest eigenvalue of the structure
tensor [1]. All of these measures are examples for confidence measures which assess
the reliability of a given flow vector exclusively based on the input image sequence. In
this way they are independent of the flow computation method but they do not take into
account the computed flow field.
Other measures take into account the flow field but are derived from and thus limited to
special flow computation methods. Examples are the confidence measure proposed by
Bruhn and Weickert [8] for variational optical flow methods, which computes the lo-
cal inverse of the variational energy to identify locations where the energy could not be
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minimized, e.g. in cases where the model assumption is not valid. Hence, their approach
assigns a low confidence value to these locations. Another example is our previously
proposed measure for local optical flow methods [9]. In that paper, the idea is to learn
a linear subspace of correct flow fields by means of principal component analysis and
then derive the confidence from the distance of the original training flow and the pro-
jection into the learned subspace.
Other confidence estimation methods have been suggested by Singh [10], Waxman et
al. [11], Anandan [12], Uras et al. [13] as well as by Mester and Hoetter [14]. Yet, these
are directly inherent to special optical flow computation methods not applied here.
To obtain a globally applicable, statistically motivated confidence measure which takes
into account the flow field we first derive natural motion statistics from sample data and
carry out a hypothesis test to obtain confidence values.
Probability distributions for the estimation of optical flow fields have been used before
by Simoncelli et al. [15], where the flow is estimated as the solution to a least squares
problem. Yet, in their paper the distribution is a conditional based on the uncertainty in
the brightness constancy equation. In contrast, we estimate the flow distribution from
training data without prior assumptions. The errors in flow estimation have been ana-
lyzed by Fermüller et al. [16]. Linear prediction of optical flow by means of motion
models has been suggested by Fleet et al. [17].

3 Natural Motion Statistics

In order to draw conclusions on the accuracy of a flow vector, we examine the surround-
ing flow field patch (see Figure 1) of a predefined size (n×n×T , where n×n stands for
spatial and T for temporal size). To obtain statistical information on the accuracy, we
learn a probabilistic motion model from training data, which can be ground truth flow
fields, synthetic flow fields, computed flow fields or every other flow field that is con-
sidered correct. In this way, e.g. even motion boundaries can be included in the model
if they occur in the training data. If motion estimation is performed for an application
domain where typical motion patterns are known a priori, the training data should of
course reflect this. It is even possible to use the flow field for which we want to compute
the confidence as training data, i.e. finding outliers in one single data set. This leads to
a very general approach, which allows for the incorporation of different levels of prior
knowledge. To compute the statistical model, the empirical mean m and covariance C

Fig. 1. Examples of flow field patches from which the motion statistics are computed
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are computed from the training data set containing the n × n × T flow patches, which
are vectorized in lexicographical order. Hence, each training sample vector contains
p := 2n2T components as it consists of a horizontal and a vertical optical flow compo-
nent at each patch position. To estimate the accuracy of a given flow vector we carry out
a hypothesis test based on the derived statistical model. Note that for results of higher
accuracy it is advisable to rotate each training flow field patch four times (each time by
90 degrees) in order to estimate a zero mean vector of the distribution.

4 Hypothesis Testing

We want to test the hypothesis

H0: ’The central flow vector of a given flow field patch follows the underlying
conditional distribution given the remaining flow vectors of the patch.’.

Let D denote the spatio-temporal image domain and V : D → Rp a p-dimensional
real valued random variable describing possible vectorized flow field patches. Testing
the confidence of the central vector of a regarded flow patch boils down to specifying
the conditional pdf of the central vector given the remainders of the flow patch, and
comparing the candidate flow vector against this prediction, considering a metric in-
duced by the conditional pdf. To define an optimal test statistic, we need to know the
correct distribution underlying the flow field patches. Yet, this distribution is unknown.
As this is a standard procedure in statistical test theory, we thus choose the optimum
test statistic for a reasonable approximation of the conditional pdf. This approximation
is here that the conditional pdf of the flow vectors in case that H0 is true is a two di-
mensional normal distribution. Even though this approximation is not precisely true,
this still leads to a valid test statistic, only the claim that this is the uniformly most pow-
erful test statistic is lost. Hence, to develop the test statistic we now assume that V is
distributed according to the multivariate normal distribution described by the estimated
parameters m and C

V ∼ N (m,C) (1)

with probability density function f : Rp → R

f(v) =
1

(2π)
p
2 |C| 12

exp(−1
2
(v −m)TC−1(v −m)) . (2)

We now derive the conditional distribution for the central vector given the remaining
vectors of the patch. For a given image sequence location (x, y, t) ∈ D let v ∈ Rp
correspond to the vectorized flow field patch centered on this location, and let (i, j), i <
j denote the line indices of v corresponding to the horizontal and vertical flow vector
component of the central vector of the original patch. We partition v into two disjoint
vectors, the central flow vector va, and the ’remainders’ vb of the regarded flow patch:

va = (vi, vj)T (3)
vb = (v1, ..., vi−1, vi+1, ..., vj−1, vj+1, ..., vp)T .
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The mean vector and covariance matrix C are partitioned accordingly:

m =
(

ma

mb

)
C =

(
Caa Cab

Cba Cbb

)
.

Then, the conditional distribution p(va|vb) is a two-dimensional normal distribution
with probability density function fa|b, mean vector ma|b and covariance matrix Ca|b.

ma|b = ma + CabC−1
bb (vb −mb) (4)

Ca|b = Caa −CabC−1
bb Cba . (5)

We stress that these first and second order moments of the conditional pdf are valid
independent of the assumption of a normal distribution.
To derive the test statistic let

dM : Rp → R+
0

dM (v) = (va −ma|b)TC−1
a|b(va −ma|b) (6)

denote the squared Mahalanobis distance between va and the mean vector ma|b given
the covariance matrix Ca|b. The Mahalanobis distance is the optimal test statistic in
case of a normally distributed conditional pdf of the central flow vector. This does not
imply that the image data or the flow data are assumed to be normally distributed as
well. Even though we do not know the conditional distribution, we choose the squared
Mahalanobis distance as test statistic. To carry out a hypothesis test (significance test),
we have to determine quantiles of the distribution of the test statistic for the case that the
null hypothesis to be tested is known to be true. To this end, we compute the empirical
cumulative distribution function G : R+ → [0, 1] of the test statistic from training data.
We obtain the empirical quantile function

G−1 : [0, 1]→ R+ (7)
G−1(q) = inf{x ∈ R | G(x) ≥ q} . (8)

To, finally, examine the validity of H0 we apply a hypothesis test

ϕα : Rp → {0, 1} (9)

ϕα(v) =

{
0 , if dM (v) ≤ G−1(1− α)
1 , otherwise

(10)

where ϕα(v) = 1 indicates the rejection of the hypothesisH0. Based on this hypothesis
test we would obtain a binary confidence measure instead of a continuous mapping to
the interval [0, 1]. Furthermore, it would be inconvenient to recompute the confidence
measure each time the significance level α is modified. Therefore, we propose to use
the concept of p-values introduced by Fisher [18]. A p-value function Π maps each
sample vector to the minimum significance level α for which the hypothesis would still
be rejected, i.e.

Π : Rp → [0, 1] (11)
Π(v) = inf{α ∈ [0, 1]|ϕα(v) = 1} = inf{α ∈ [0, 1]|dM (v) > G−1(1− α)} .
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Hence, we finally arrive at the following confidence measure

c : Rp → [0, 1] (12)
c(v) = Π(v) = inf{α ∈ [0, 1]|dM (v) > G−1(1− α)} .

As the computation of the confidence measure in fact reduces to the computation of
the mean vector and covariance matrix given in (4), the computation can be carried out
efficiently.

5 Results

As there are several test sequences with ground truth data and numerous optical flow
computation methods with different parameters each, it is impossible to present an ex-
tensive comparison between the proposed and previously known confidence measures.
Hence, we will present results for a selection of typically used real and artificial se-
quences and flow computation methods. Here, we will use the Yosemite, the Marble,
the Dimetrodon and the RubberWhale sequence (from the Middlebury database [19]).
As optical flow computation methods we use the local structure tensor method [7], the
non-linear 2d multiresolution combined local global method (CLG) [20] as well as the
methods proposed by Nir [21] and Farnebäck [22]. To quantify the error e(x) ∈ R of
a given flow vector at image sequence location x ∈ D the endpoint error [19] is used.
It is defined by the length of the difference vector between the ground truth flow vector
g(x) ∈ R2 and the computed flow vector u(x) ∈ R2:

e(x) := ‖g(x)− u(x)‖2 (13)

We compare our approach to several of the confidence measures described in section 2.
These are the three measures examining the intrinsic dimension of the image sequence
by Haussecker and Spies [6] (strCt, strCs, strCc) [6], the inverse of the energy of the
global flow computation method by Bruhn et al. [8] (inverse energy) [8], the PCA-based
measure by Kondermann et al. (pcaRecon) [9] and the image gradient measure (grad),
which is approximated by central differences. In the following, the approach proposed
in this paper will be abbreviated by pVal. Note that the inverse of the energy measure
is only applicable for variational approaches and has thus not been applied to the flow
fields computed by methods other than CLG. The Yosemite flow field by Nir et al. [21]
was obtained directly from the authors. Hence, no variational energy is available for the
computation of the inverse energy confidence measure.
In order to numerically compare the proposed confidence measure to previously used
measures we follow the comparison method suggested by Bruhn et al. in [8] called
’sparsification’, which is based on quantile plots. To this end, we remove n% of the flow
vectors (indicated on the horizontal axis in the following figures) from the flow field in
the order of increasing confidence and compute the average error of the remaining flow
field. Hence, removing fraction 0 means that all flow vectors are taken into account, so
the value corresponds to the average error over all flow vectors. Removing fraction 1
indicates that all flow vectors have been removed from the flow field yielding average
error 0. For some confidence measures, the average error even increases after removing
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a certain fraction of the flow field. This is the case if flow vectors with errors below
the average error are removed instead of those with the highest errors. As a benchmark,
we also calculate an ’optimal confidence’ copt, which reproduces the correct rank order
of the flow vectors in terms of the endpoint error (13) and, thus, indicates the optimal
order for the sparsification of the flow field:

copt(x) = 1− e(x)
max{e(y)|y ∈ D}

. (14)

For the experiments the patch size n × n × T was not optimized but kept constant
at 3 × 3 × 1 for all test sequences. The influence of this parameter is rather negligible
as shown in Figure 2. Figure 3 shows that the performance of the confidence measure
is also mostly independent of the training data. In case ground truth or similar training
data is used the performance is improved, but even particle sequence data yields results
close to ground truth data.
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Fig. 2. Remaining mean error for given frac-
tion of removed flow vectors based on different
patch sizes for the proposed confidence mea-
sure (Farnebäck method on RubberWhale se-
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sults show that the patch size chosen for the
confidence measure is rather negligible.
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Quantile plots of the average flow field error for the state-of-the-art flow compu-
tation method by Nir et al. [21], Farnebäck et al. [22], the nonlinear 2d CLG method
[20] and the structure tensor method [7] have been computed for the Dimetrodon and
the RubberWhale sequence proposed in [19] as well as for the standard Yosemite and
Marble test sequences. Selected results are shown in Figures 4 and 5.
For all test examples except for one case the results indicate that the remaining average
error for almost all fractions of removed flow vectors is lowest for our proposed con-
fidence measure. As confidence measures are applied to remove the flow vectors with
the highest errors only, the course of the curves is most important for small fractions
of removed flow vectors and can in practice be neglected for larger fractions. Hence,
the results indicate that our proposed confidence measure outperforms the previously
employed measures for locally and globally computed optical flow fields on all our
test sequences except on the CLG field for the RubberWhale sequence. In this case the
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inverse energy measure yields results slightly closer to the optimal curve than the pro-
posed measure. It should be noted that for a flow field density of 90% the average error
of the local structure tensor method is already lower than that of the CLG flow fields
for 100% density on the Marble, Yosemite and RubberWhale test sequences (see for
example Figure 5 d),e)). If the CLG flow field is sparsified to 90% as well, the error is
approximately equal to that of the structure tensor method for the Yosemite and Marble
sequence. Yet, the structure tensor approach only needs a fraction of the computation
time of the CLG method and is much simpler to implement. Hence, for the local struc-
ture tensor method in two out of three cases we were able to obtain a flow field of 90%
density of a quality level equal to that of the CLG method by means of the proposed
confidence measure, which clearly shows the benefit of our approach.

To graphically compare confidence measure results we use the structure tensor flow
field computed on the RubberWhale test sequence as example as here the difference be-
tween the proposed confidence measure and the previously used ones is most eminent.
As the scale of confidence measures is not unique we again only compare the order of
removal of the flow vectors based on increasing confidence. Hence each flow vector is
assigned the time step of its removal from the field. The resulting orders for three of the
confidence measures is shown in Figure 6.

6 Summary and Conclusion

In this paper we have proposed a confidence measure, which is generally applicable
to arbitrarily computed optical flow fields. As the measure is based on the computa-
tion of motion statistics from sample data and a hypothesis test, it is to the best of our
knowledge the first confidence measure for optical flows, for which the notion ’confi-
dence measure’ is in fact justified in a statistical sense. Furthermore, the method can
be adapted to specific motion estimation tasks with typical motion patterns by choice
of sample data if prior knowledge on the type of computed flow field is available. In
this case the results can even be superior to those shown in this paper as here we did
not assume any prior knowledge. Results for locally and globally computed flow fields
on ground truth test sequences show the superiority of our method compared to previ-
ously employed confidence measures. An interesting observation is that by means of
the proposed confidence measure we were able to obtain lower average errors for flow
fields of 90% density computed by the fast structure tensor method compared to 100
% dense flow fields computed by the non-linear multiresolution combined local global
method. And we obtained approximately equal error values for 90% density for both
methods. Hence, fast local methods combined with the proposed confidence measure
can, in fact, obtain results of a quality equal to global methods, if only a small fraction
of flow vectors is removed.
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Fig. 4. Average error quantile plot for the comparison of previous confidence measures to the
proposed method (pVal); the previous confidence measures are three measures examining the
intrinsic dimension of the image (strCt, strCs, strCc) [6], the image gradient (grad), a PCA model
based measure [9] (pcaRecon), the inverse of the global energy [8] (Inverse Energy) and the
optimal confidence defined in (14) (optConf ); horizontal axis: fraction of removed flow vectors,
vertical axis: mean error of remaining flow field.
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Fig. 6. Sparsification order of flow vectors based on increasing confidence value for structure
tensor flow field on RubberWhale sequence. The proposed confidence measure (pVal) is closest
to the optimal confidence.
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20. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local
and global optic flow methods. International Journal of Computer Vision 61 (2005) 211–231

21. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Interna-
tional Journal of Computer Vision 76 (2008) 205–216
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