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Abstract

We propose a convex multilabel framework for image
sequence segmentation which allows to impose proportion
priors on object parts in order to preserve their size ratios
across multiple images. The key idea is that for strongly de-
formable objects such as a gymnast the size ratio of respec-
tive regions (head versus torso, legs versus full body, etc.)
is typically preserved. We propose different ways to impose
such priors in a Bayesian framework for image segmenta-
tion. We show that near-optimal solutions can be computed
using convex relaxation techniques. Extensive qualitative
and quantitative evaluations demonstrate that the propor-
tion priors allow for highly accurate segmentations, avoid-
ing seeping-out of regions and preserving semantically rel-
evant small-scale structures such as hands or feet. They
naturally apply to multiple object instances such as play-
ers in sports scenes, and they can relate different objects
instead of object parts, e.g. organs in medical imaging.
The algorithm is efficient and easily parallelized leading
to proportion-consistent segmentations at runtimes around
one second.

1. Introduction
1.1. Image Sequence Segmentation

Automatic image sequence segmentation denotes the
task of jointly segmenting one or several objects from a se-
ries of images taken under different view points, lighting
conditions and background scenes. The difficulty lies in the
fact that none of the objects’ properties is guaranteed to be
preserved over time. Both the geometry and the photome-
try of the objects of interest may change from one image to
the next. Changing illumination affects the observed color
model, different viewpoints lead to different object scales
and possibly self-occlusions, whole parts of the object can
even vanish from the image, and objects may occlude each
other in the case of multiple foreground objects. Moreover,
articulations and non-rigid deformations give rise to sub-
stantial shape changes. Modeling such variable conditions
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Multi-label segmentation with length regularity

Multi-label segmentation with proportion priors
Figure 1. Proportion priors allow to constrain the relative size
between different object parts (e.g. hair, skin, body, 101-sign).
They enable stable segmentations over long image sequences, pre-
venting the seeping out of regions into the background (e.g. the
green hair region) or the removal of semantically important small
parts (e.g. hands or feet).

and exploiting information which is shared among the im-
ages is a challenging task.

In general, the co-segmentation problem deals with the
situation that we have no knowledge on the object of interest
besides that it appears in all images. To make the problem
tractable many approaches introduced at least some kind
of prior knowledge based on training data or user scrib-
bles [1, 12, 7, 21]. The resulting optimization problems are
often iterative and hard to optimize [12, 19, 11, 20] lead-
ing to runtimes of several seconds or even minutes. For
complex real-world image sequences the task of leveraging
relevant shared information for co-segmentation remains an
open challenge. In this paper, we propose a Bayesian frame-
work for multi-region co-segmentation which allows to im-
pose learned proportion priors — see Figure 1. We show
that near-optimal solutions can be efficiently computed by
means of convex relaxation techniques.

1.2. Related Work

Existing co-segmentation approaches can be loosely
grouped into two classes regarding the additional assump-
tions they make:
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Shape similarity: One class of methods assumes that
the segmentations of each image only differ by a rigid
body transformation [22] or — somewhat relaxed — that
they are highly similar [18]. Unfortunately, this limits
the applicability to rigid objects observed from similar
viewpoints. Upon strong viewpoint changes, articulations
or non-rigid deformations, the arising segmentations are
too different in their shape to be accounted for. Multiple
foreground objects cannot be handled, either.

Color similarity: On the other extreme are methods
which make no assumptions on shape similarity, but which
strongly rely on similarity of color or feature distributions
[19, 11, 6, 1, 21, 5]. These methods do not generalize well
to certain real-world challenges where firstly object and
background may have similar and possibly overlapping
color distributions and where secondly these distributions
may vary from image to image due to illumination changes,
motion blur or scale-dependent color sampling. Recent
approaches relax these assumptions, requiring less color
similarity [7] and instead derive high level knowledge on
object properties such as object subspaces [12] or region
correspondences [20]. However, the resulting optimization
problems become more difficult to solve.

To increase the stability of segmentation results, it was
suggested [8] to impose shape moment constraints into vari-
ational segmentation methods. Since these constraints are
absolute, they are not invariant to changes in scale, view-
point, occlusions or multiple object instances and are thus
not applicable to the general co-segmentation problem.

1.3. Contribution
In this paper we revisit the problem of image sequence

segmentation and reconsider the following question: Can
we identify aspects of an object’s shape which are shared
among the various images of this object and are preserved
despite rigid transformation, despite articulation and despite
substantial non-rigid deformation?

The central idea is to tackle the problem in a multilabel
framework where an object, say an athlete, is made up of
multiple components (the various limbs of the body). While
the object may undergo substantial changes — rigid body
motion, articulation, non-rigid deformation — what is typ-
ically preserved is the relative size of object parts (e.g. the
head to the entire body), the object part proportions. We
formulate image sequence segmentation as a problem of
Bayesian inference and introduce proportion priors to re-
strict the relative size of object parts. This approach comes
with the following advantages:

• It can handle overlapping color distributions, moderately
variable lighting conditions, various object scales and
multiple foreground objects. The proposed ratio con-
straints preserve small or elongated object parts.

• It extends recent convex relaxation techniques [9, 2, 23]
from multilabel segmentation to multilabel sequence seg-
mentation. We present an efficient optimization scheme
which can be parallelized with runtimes of around one
second to compute pixel-accurate segmentations.

• The approach yields state-of-the-art results on the ICoseg
benchmark for subdivisible object sequences.

2. Multilabel Image Sequence Segmentation
Let I : ⌦ ! R3 denote an input image of the sequence

defined on the domain ⌦ ✓ R2. The task of segmentation is
to partition the image plane into a set of n pairwise disjoint
regions ⌦

i

s.t. ⌦ =

S
n

i=1 ⌦i

and ⌦

i

\ ⌦

j

= ; 8i 6= j. It
can be solved by computing a labeling l : ⌦! {1, . . . , n}
indicating which of the n regions each pixel belongs to:
⌦

i

= {x
��
l(x) = i}. In the framework of Bayesian infer-

ence, one can compute such a segmentation by maximizing
the conditional probability

argmax

l

P(l | I) = argmax

l

P(I | l) P(l). (1)

It combines the observation likelihood P(I | l) (typically fa-
voring a color-based region association) with prior knowl-
edge P(l) regarding what kinds of partitionings are more or
less likely.

In the case of image sequence segmentation, commonly
used color and boundary length priors are often insufficient
to obtain good results. Firstly, the object boundaries are not
necessarily short. Secondly, the color distributions of ob-
ject and background may have substantial overlap and may
exhibit strong variations across images. In order to stabilize
the segmentation process against color and lighting varia-
tions, pose changes and substantial non-rigid deformations,
and in order to leverage it to a parsing of objects into their
semantic components, we propose to introduce proportion
priors into the optimization problem.

2.1. Framework for Proportion Preserving Priors
In the following, we will introduce proportion priors as

a means to impose information on the relative size of re-
spective object parts. Whereas the absolute size of parts
will vary with viewing angle and distance from the camera,
their relative size is typically well preserved – i.e. the size
of the head is typically 10% of the size of the entire body.

Let us assume that the object we want to segment can
be divided into n�1 sub-regions (e.g. head, feet, body and
hands) with the n-th region denoting the background of the
image. Then in the Bayesian framework, the prior P(l) =

P(⌦1, . . . ,⌦n

) can be expressed in the following way:

P(l) = P(⌦1, . . . ,⌦n�1 |⌦n

) P(⌦

n

)

=

n�1Y

i=1

P(⌦

i

|⌦
n

) P(⌦

n

),

(2)



where we assume conditional independence of the segments
⌦1, ..,⌦n�1 given the background ⌦

n

. A ratio constraint
relates the size ⌦

i

of the i-th region to the size
P

n�1
j=1 |⌦

j

|
of the whole object:

r
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For segmentation we want to impose regions of short
boundary length Per(⌦

i

), whose ratios additionally follow
a learned (or specified) ratio probability distribution P

p
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(4)
where C is a normalization constant and � a weighting pa-
rameter. Finally, we assume each background ⌦

n

to be
equally likely a priori, so that P(⌦

n

) = const.
Instead of maximizing P(I|l)P(l) in (1) we minimize its

negative logarithm and obtain the energy

E(⌦1, . . . ,⌦n

, r1, .., rn�1) = (5)
nX
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where f

i

(x) := � logP(I(x)|l(x) = i).

2.2. Contribution: Proportion Preserving Priors
In this section we propose two different proportion

preserving priors: the uniform distribution prior and the
Laplace distribution prior. Both assume that the ratios of
the object parts follow a specific distribution P

p

(r

i

) whose
parameters are estimated from sample data, i.e. sample seg-
mentations from which ratio samples can be obtained.

To convert the energy in (5) to a convex optimization
problem in Section 2.3, the key challenge is to express the
terms � logP

p

(r

i

) in (5) as a convex function of the vari-
ables a

i

:= |⌦
i

|/|⌦|, which denote the fraction of the size
of region ⌦

i

with respect to the image size. It holds that
a

i

2 [0, 1] and
P

n

i=1 ai = 1. The ratios r

i

in (3) can be
easily expressed in terms of a

i

by

r

i

=

a

i

1� a

n

. (6)

2.2.1 Uniform Distribution Prior

As a first case, we assume a uniform distribution of the ra-
tios r

i

over a specific interval [l
i

, h

i

]. The left and right
boundaries l

i

and h

i

are computed from training data by
means of maximum likelihood estimation, which assigns l

i

and h

i

the minimum and maximum values of the sample
ratios, respectively. We obtain for the ratio probabilities

P
p

(r

i

) =

(
1

hi�li
if l

i

 r

i

 h

i

,
0 otherwise.

(7)

Since � logP
p

is either constant or infinity, this prior corre-
sponds to 2(n� 1) constraints in the optimization problem:

l

i

(1� a

n

)  a

i

 h

i

(1� a

n

) 81  i < n. (8)

These relative ratio constraints are linear and thus convex
in terms of the a

i

. The advantage of this prior is the sim-
ple computation and the convexity of the constraints. Yet,
in the case of large variations of the ratios r

i

in the sample
data (i.e. sample outliers) we can obtain very large inter-
vals [l

i

, h

i

], which hardly limit the resulting segmentations.
Therefore, we propose Laplace distribution priors.

2.2.2 Laplace Distribution Prior

The Laplace distribution prior penalizes deviations of the
ratios r

i

from their median r̄

i

. In this way, the influence
of ratio sample outliers on the constraints is limited. We
assume the following Laplace distribution

P
p

(r

i

) =

1

2�

i

exp

✓
� |r

i

� r̄

i

|
�

i

◆
. (9)

Given a set of sample ratios s
i1, . . . , siM for segment i from

M training segmentations, the parameters r̄

i

are obtained
by means of maximum likelihood estimation as the median
of the samples for each ratio, and �

i

=

1
M

P
M

j=1 |sij � r̄

i

|.
Taking the negative log-likelihood in energy (5) and mul-

tiplying it by a parameter µ > 0 for balancing the prior with
respect to the other terms, we get the energy

E

p

(r

i

) = �µ logP
p

(r

i

) =

µ

�

i

|r
i

� r̄

i

|. (10)

Unfortunately, after replacing r

i

by (6), this function is not
convex in a

i

and a

n

. For example, for r
i

< r̄

i

we obtain
E

p

(r

i

) =

µ

�i
(r̄

i

� ai
1�an

), which is not convex in a

n

for fixed
a

i

. To make global optimization possible, in the following
we propose two methods to convexify this prior.

Convex Relaxation. First, we consider the convex relax-
ation of E

p

as a function E

p

(a

i

, a

n

), i.e. the tightest pos-
sible convex lower bound. The definition domain of E

p

is
naturally given by a

i

, a

n

� 0 and a

i

+ a

n

 1, where the
latter inequality follows from

P
n

j=1 aj = 1. We obtain the
convex relaxation

E1 :=

µ

�

i

��
a

i

� r̄

i

(1� a

n

)

��
. (11)

Proof. See supplementary material.



In contrast to the Laplace prior (10) this approxima-
tion is convex. However, E1 is minimal not only for
a

i

= r̄

i

(1� a

n

) but also for a

n

= 1, a

i

= 0, i.e. when
the segmentation only consists of the background. Thus,
this prior is biased towards smaller foreground object ar-
eas. This can be understood as an additional compact-
ness prior which removes cluttered background regions, but
sometimes also parts of the objects.

Convex Upper Bound. As shown in the last paragraph,
even the greatest convex lower bound E1 is too small. This
suggests to go in the other direction. As a second convex-
ification method we propose a convex upper bound on E

p

.
Note that E

p

does not have a lowest upper bound, in con-
trast to the convex relaxation case. To arrive at one possible
solution, the idea is to write E

p

in (10) by replacing the
ratios r

i

by the a

i

in (6)

E

p

=

µ

�

i

��
a

i

� r̄

i

(1� a

n

)

��
p
1� a

n

· 1p
1� a

n

and apply Young’s inequality pq  1
4"p

2
+ "q

2, valid for
all p, q 2 R and arbitrary " > 0 (we choose " = 10 in the
experiments). It is equivalent to (

1
2
p
"

p�
p
"q)

2 � 0. This
leads to E

p

 E2 with

E2 :=

µ

2

4"�

2
i

�
a

i

� r̄

i

(1� a

n

)

�2

1� a

n

+

"

1� a

n

. (12)

This energy is convex: the first addend is a linear transfor-
mation of the convex function (x, y) 7! x

2

y

, x 2 R, y > 0,
and the second one is obviously convex in a

n

2 [0, 1).
The main advantage is that E2 always favors the relation

a

i

⇡ r̄

i

(1� a

n

) regardless of the size of the object. It also
avoids large background regions as E2 ! 1 for a

n

! 1,
which can be alleviated by using a small ".

Since (12) is used for all 1  i < n, for optimization it
will be convenient to decouple the a

i

s from a

n

using the
dual representation 1

4b"
x

2

y

= sup

��b"↵2 ↵x � �y for all
x, y 2 R, b" > 0, where the left hand side is defined as 1
for y < 0, as well as for x 6= 0 and y = 0, and as zero for
x = y = 0. Applying this dual formulation for 1  i < n,
we obtain the following dual representation of the convex
upper bound for the Laplace proportion preserving prior:

sup

↵,�

n�1X

i=1

⇣
↵
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�
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� r̄
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(1�a
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"(n� 1)

1� a

n
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(13)
with the constraints �

i

� "�

2
i

µ

2 ↵

2
i

for each 1  i < n.
We note that a Gaussian distribution instead of a Laplace

distribution (9) would still yield a non-convex E

p

in (10),
while leading to more complex and slower relaxations. In
addition, we observed that the Laplace prior better repre-
sents the training data than the Gaussian prior.

2.3. Conversion to a Convex Optimization Problem
Several approaches to efficiently compute minimum en-

ergy solutions for respective cost functions based on con-
vex relaxation techniques have been proposed [4, 9, 16, 17].
The idea is to introduce label indicator functions u

i

: ⌦ !
{0, 1} for each label 1  i  n, defined by

u

i

(x) =

(
1 if x 2 ⌦

i

,

0 otherwise.
(14)

At each image point x 2 ⌦ the label uniqueness constraintP
n

i=1 ui

(x) = 1 is imposed. Energy (5) can now be rewrit-
ten in a convex way in terms of u as follows:

First, the (weighted) boundary length Per(⌦

i

) is given
by the weighted total variation of u

i

[23, 14]:

�

2 Per

g

(⌦

i

) =

�

2

Z

⌦
g|ru

i

| dx = sup

⇠i2K

Z

⌦
�u

i

div ⇠

i

dx

with K :=

�
⇠ 2 C

1
c

�
⌦;R2

)

�� |⇠(x)|  �

2 g(x)
 

. Here C

1
c

is
the space of smooth functions with compact support and the
weighting g(x) := exp(��|rI(x)|) for some � > 0 favors
the coincidence of object and image edges. We set � = 5.

Next, the variables a

i

= |⌦
i

|/|⌦| used to replace r

i

in
(6) can be written in terms of the indicator functions u

i

as

a

i

=

1

|⌦|

Z

⌦
u

i

(x) dx. (15)

These are linear and thus convex constraints in a and u.
The final step is to relax the binary and there-

fore non-convex constraints u

i

(x) 2 {0, 1} to the con-
vex ones u

i

(x) 2 [0, 1]. The domain of u becomes
D :=

�
u : ⌦ ! [0, 1]

n

�� Pn

i=1 ui

(x) = 1 8x 2 ⌦

 
.

Convex Energy. We obtain the following energy

min

u2D
a

sup

⇠i2K

nX

i=1

Z

⌦
u

i

(f

i

� div ⇠

i

) dx�
n�1X

i=1

logP
p

(a

i

, a

n

)

s.t. (15), (16)

which is to be minimized w.r.t. u and a and maximized
w.r.t. ⇠. For the uniform prior the constraints (8) replace the
second term. For the Laplace convex relaxation prior it is
given by (11), and for the Laplace convex upper bound prior
by (12) respectively (13). The relaxed convex optimization
problem can be minimized globally yielding results which
are independent of the initialization.

3. Implementation
To find the globally optimal solution of the saddle-point

optimization problem (16) we employ the fast primal-dual
algorithm [3], which guarantees convergence to a global



minimum. Basically, optimization is done by alternating
a gradient descent step in u and a and a gradient ascent step
in ⇠, with reprojections onto the constraint sets, respectively
application of more general proximal operators [3].

For the Laplace convex relaxation prior (11), in order to
simplify the resulting proximal operators it is convenient to
decouple the a1, . . . , an�1 from a

n

by using the dual rep-
resentation E1 = sup|↵i|µ/�

↵

i

(a

i

� r̄

i

(1 � a

n

)). This
introduces new dual variables ↵

i

, 1  i < n, into the opti-
mization. For the Laplace convex upper bound prior (12), it
is also advisory to decouple the a

i

s to simplify the compu-
tations by formulation (13). For the projection of ↵

i

,�

i

and
the proximal operator for a

n

, see supplementary material.
The linear constraints (15) and (8) can be im-

plemented by means of Lagrange multipliers, adding
the terms sup

⌘i2R ⌘

i

�
|⌦|a

i

�
R
⌦ u

i

(x) dx

�
, respectively

e.g. sup
⌘i0 ⌘i(ai � l

i

(1� a

n

)) to the energy. Finally, pro-
jection of ⇠ 2 K is done by clipping of the absolute value,
while that of the variable u is a simplex-projection [10].

In order to obtain a binary solution to the original opti-
mization problem, we assign at each pixel x the label l(x)
with the maximum value u, i.e. l(x) = argmax

i

{u
i

(x)}.
This yields a solution, which is not globally optimal but
within computable bounds of the optimum. Let u⇤ be the
global minimizer of the original binary problem, uconv the
solution of the relaxed problem obtained by the proposed
algorithm, and u

conv
bin the binarized version of u

conv. Then
E(u

conv
bin ) � E(u

⇤
)  E(u

conv
bin ) � E(u

conv
) holds and the

right hand side is computable a posteriori.

4. Experiments
We have developed an approach for image sequence seg-

mentation which preserves object proportions by impos-
ing relative size priors on different object components. In
this way we allow for arbitrary scaling of the objects, spa-
tially varying color distributions and the recovery of easily
missed object components. To evaluate the proposed prior
we selected several different image series from the ICoseg-
database [1] and the web, requiring that the foreground ob-
jects can be subdivided into several parts, see Fig. 3 and 4.

The image series in the ICoseg dataset consist of up to
40 images in each class. To obtain a small set of proportion
samples1 and separate color models for each object part,
we created a small training set for each class consisting of
five images partitioned into object part labels. The color
models f

i

in (5) for each part can then either be learned
from these images or derived from user scribbles on one
or several of them, e.g. by means of the Parzen density
estimator [15, 13]. We used the CIELab color space and a
Gaussian kernel with standard deviation 8. The remaining

1 Note that optimizing for the proportions by alternative minimization
is not reasonable: They will be set to match the initial segmentation so that
each subsequent segmentation will be driven towards this first (bad) one.

images of the series are then segmented automatically. For
most image sequences the parameter set � = 15 and µ =

200 yielded optimal results.

4.1. Benchmark Results

In Table 1 we compare the average accuracy (ratio of
correctly labeled pixels with respect to total number of pix-
els) of the proposed proportion priors on the sequences of
the ICoseg benchmark, which contain subdivisible objects.
First, we compare the proportion prior results to the results
of the same algorithm without proportion priors. The table
shows drastic improvements of up to 40 or 50%.

We also compare against state-of-the-art image sequence
and co-segmentation approaches. Almost all of these ap-
proaches are at least partially supervised just as ours since
they use training data from a small set of images or scrib-
bles to learn common object properties or classifiers, e.g.
Mukherjee et al. [12] learn dictionaries of appearance mod-
els, Vicente et al. [21] train a random forest based on ap-
pearance model features, Batra et al. [1] learn Gaussian
Mixture Models for foreground and background from user
scribbles, and Joulin et al. [7] train a supervised classi-
fier for object class separation. Others such as Rubio et al.
[20] and Collins et al. [5] do not make use of prior knowl-
edge. However, the former build on an algorithm to measure
’objectness’ that again requires learning on general images.
Not all of these methods indicate accuracy per sequence or
not for all sequences we tested. Missing results are marked
by ’-’. Collins et al. [5] evaluated only on two sequences of
our test set, so we indicate the average score reported in [5],
and Batra et al. [1] only gave the average accuracy on the
whole benchmark. The results show that we outperform all
other methods on the given test set.

Finally, we compare the different types of proportion
prior formulations we proposed in Section 2.2. The results
show that all three types outperform the other approaches.
However, two points need to be mentioned: 1) The uni-
form prior (8) is too weak in case of outliers since all ra-
tios within the maximum and minimum sample range are
equally likely. This can be observed in the kite panda series
in the benchmark, where the accuracy drops to 82% since
most images contain only parts of the kite with strongly
varying proportions (for most other scenes the object is usu-
ally fully visible). 2) The relaxed Laplace prior (11) is
biased towards large background regions and thus comes
with a shrinking bias which tries to minimize the area of the
whole foreground object, see (11) and the remark thereafter.
Figure 2 illustrates both points. Hence, we can conclude
that the convex upper bound Laplace prior (12) yields the
best and most stable performance over all test sequences.



Dataset w/o proportions uniform relaxed L. bounded L. [21] [7] [20] [12] [5] [1]
Gymnastics 55.13 98.35 97.86 98.51 91.7 90.9 87.1 92.18 - -

Ferrari 49.71 97.83 97.72 98.19 89.9 85.0 84.3 89.95 96.4 -
Balloon 83.53 96.46 96.74 96.73 90.1 85.2 89.0 95.17 - -

KitePanda 78.77 82.41 89.69 92.09 90.2 73.2 78.3 93.37 - -
Baseball 63.01 95.85 96.20 95.01 90.9 73.0 90.5 95.66 - -
Skating 93.72 96.42 96.55 96.60 77.5 82.1 76.8 96.64 - -

Liverpool 70.22 95.44 95.55 95.50 87.5 76.4 82.6 - 93.9 -
Ice-skating 56.05 99.33 99.41 99.41 - - - - - -

Mean 68.77 95.26 96.22 96.51 88.26 80.83 85.7 93.83 93.14 92.8
Table 1. Proportion prior accuracy. Comparison of the accuracy (in %) of the proposed proportion prior formulations (uniform, relaxed
Laplace, bounded Laplace prior) to the same algorithm without proportion priors and to state-of-the-art segmentation results on the ICoseg
benchmark. The upper bound formulation of the Laplace distribution performs best.

a) Uniform (51.7%) b) Relaxed Laplace (79.8%)

c) Bounded Laplace (98.8%) d) Bounded Laplace (94.6%)
Figure 2. Proportion prior comparison. a) The uniform prior (8)
is weakened in case of strongly varying sample proportions (the
panda kite is often only partially visible in the training images). b)
The Laplace convex relaxation prior (11) is biased towards larger
backgrounds and thus comes with a shrinking bias, which some-
times yields suboptimal results. c+d) The Laplace convex upper
bound prior (12) yields stable results.

4.2. Qualitative Results

In this section we show qualitative results for the propor-
tion prior algorithm on the ICoseg dataset, for single objects
in Figure 3 and for multiple foreground objects in Figure 4.
For each series, we show the result of the proposed segmen-
tation algorithm without proportion priors in the left column
and with proportion priors based on the convex upper bound
Laplace relaxation (12) in the right column. From the re-
sults we can draw four conclusions.
Higher Accuracy. The imposed proportion prior yields
segmentation results of much higher accuracy than the orig-
inal approach without size constraints. In several of the
series in Figure 3 it is a common problem for object re-
gions to seep out into the background and cover large parts
of it, e.g. the background of the gymnast series is some-
times completely assigned to the ’hair’ label, or the ice
background is marked as ’skates’ in the figure-skating se-

ries. Larger parts of the car background are assigned as
various car elements as well, and the sky in the panda kite
series is often misclassified as kite. Without the application
of proportion priors, further problems appear with different
regions of similar color, which are easily mixed up due to
low energy differences. Take for example the shoulders of
the gymnast in the leftmost image of Figure 3, which are
marked as ’101-sign’.

Scale Invariance. Depending on the viewpoint of the cam-
era, the objects have different sizes. Take for example the
balloon or the car in Figure 3, which appear at different
distances to the camera. Absolute size constraints would
not allow for a correct segmentation in these cases without
changing the size constraints for each image, which would
be very tedious for the user. In contrast, relative proportion
constraints relating different parts of the object, are natu-
rally invariant with respect to object scale.

Preservation of Small or Elongated Object Parts. An-
other advantage of the proposed approach is that it pre-
serves semantically meaningful small-scale objects. If these
parts are either similar to the background in color or small
or elongated, the algorithm without size constraints will re-
move these parts to minimize the segment boundary length.
Examples can be seen in the first and third image of the
ice-skater series in Figure 3, where the shoes are assigned
to the background. By defining proportion constraints for
each object part separately, we can learn and impose ratio
likelihoods, which prevent such regions from disappearing.

Multiple Object Instances. Most segmentation algorithms
are limited to single foreground objects. Since the propor-
tion priors within the multilabel framework naturally apply
to multiple object instances in the same image we can also
apply our approach to image series with many foreground
objects such as baseball or soccer scenarios, see Figure 4. In
addition, proportion priors are not limited to different parts
of the same object but can also relate different objects, e.g.
the size of a mouse with respect to a dog or the heart with
respect to the lungs in medical imaging.



Image Without proportion prior With proportion prior
Figure 3. Segmentation results for different image sequences containing a single object. The left three columns of each sequence show
the segmentation results without proportion prior, the right three columns after imposing proportion priors.

4.3. Runtime
An important advantage of the proposed method is its

efficiency, especially for large sequences of images. Pre-
vious and current state-of-the-art approaches demand run-
times per image of 45 seconds [7], 10 seconds [5] or 25–100
seconds [12]. Due to the inherent parallel structure of the al-
gorithm, each pixel can be updated independently. Hence,
the proposed method can be easily parallelized. Using a
single NVIDIA GTX 680 GPU we obtained an average run-
time of 2.2 seconds per image. Using three GPUs in parallel
we reduced the average runtime to one second.

5. Conclusion
We introduced the concepts of part decompositions

and proportion priors into a framework for multilabel co-
segmentation. The problem is formulated as a variational
approach together with a convex relaxation which can be

globally optimized. Extensive evaluations on various image
series show that proportion priors provide accurate segmen-
tations despite changing illumination, despite viewpoint or
background changes, and despite substantial articulations
and non-rigid deformations. The relativity of the proportion
constraints allows for stable, scale-invariant segmentations
over long ranges of images (see suppl. material) containing
single or multiple foreground objects and helps to recover
small-scale semantically important object parts which are
frequently suppressed in existing approaches. With an aver-
age runtime of about one second on graphics hardware the
algorithm is more than an order of magnitude faster than
existing techniques.
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A. Convex Relaxation for the Laplace Prior

In Section 2.2.2 of the paper, the Laplace distribution
proportion prior energy

Ep(ri) =
µ

�i
|ri � r̄i| =

µ

�i

�

�

�

ai
1� an

� r̄i
�

�

�

(1)

is introduced and the following is stated:

Proposition 1. The convex relaxation of (1) on the domain

ai, an � 0 and ai + an  1 is given by

E1(ai, an) :=
µ

�i

�

�ai � r̄i(1� an)
�

�. (2)

Here we give a proof of this proposition:

Proof. W.l.o.g. let µ
�i

= 1. First, E1 is a convex lower
bound on Ep since it is convex with E1 = Ep · (1� an) 
Ep. For any other such bound bE1, by bE1  Ep it follows

bE1(0, an)  r̄i, (3)
bE1

�

r̄i(1� an), an
�

 0. (4)

From this, bE1(0, 0)  r̄i and bE1(0, 1)  0, and therefore

bE1(0, an)  an bE1(0, 1) + (1� an) bE1(0, 0)

 r̄i(1� an).
(5)

For ai  r̄i(1 � an) we can define ↵ :=

ai
r̄i(1�an)

2 [0, 1].

By convexity of bE1, and from (5) and (4) we get

bE1(ai, an) = bE1((1� ↵) · 0 + ↵ · r̄i(1� an), an)

 (1� ↵) bE1(0, an) + ↵ bE1

�

r̄i(1� an), an
�

 (1� ↵) · r̄i(1� an) + ↵ · 0
= r̄i(1� an)� ai = E1(ai, an).

Similarly, one can show bE1  E1 also for ai � r̄i(1� an).
Thus, E1 is the greatest convex lower bound on Ep.

B. Implementation Details
In Section 2.2.2 of the paper we give the following dual

formulation for the convex upper bound of the Laplace dis-
tribution prior E2:

E2 = sup

↵,�

n�1
X

i=1

⇣

↵i

�

ai � r̄i(1� an)
�

� �i(1� an)
⌘

+

"(n� 1)

1� an
.

(6)

The duals ↵,� are constrained to be in the convex set

A :=

n

(↵,�) 2 R2(n�1)
�

� �i � "�2
i

µ2 ↵2
i 81  i < n

o

.

(7)
Section 3 of the paper contains implementation details for
the employed primal-dual algorithm.

B.1. Proximal Operator for an

For the primal-dual algorithm, in each iteration one must
compute the proximal operator

argmin

an

(

(an � a0n)
2

2⌧
+

"(n� 1)

1� an

)

, (8)

where a0n 2 R and ⌧ > 0 are constants. Setting the deriva-
tive w.r.t. an to zero, one has to solve a cubic equation.
We use the method of [1] for this. Define c := ⌧"(n � 1),
v :=

1�a0
n

3 , w := v3 and D :=

c
4 + w.

The case D � 0. In this case the solution is given by

an = 1� v � z � v2

z
(9)

with z :=

3

q

c
2 + w +

p
cD > 0.

The case D < 0. Otherwise, the solution is

an = 1� v + 2v cos
⇣

1
3 arccos

�

1� 2D
w

�

⌘

. (10)

1



B.2. Proximal Operator for ↵,�

The proximal operator is here

argmin

(↵,�)2A

n�1
X

i=1

(↵� ↵0
i )

2

2⌧
+

n�1
X

i=1

(� � �0
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2

2⌧

+
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(11)

for some ↵0
i ,�

0
i 2 R and ⌧ > 0 with the set A in (7). Define

b↵i := ↵0
i +⌧ r̄i and b�i := �0

i +⌧ . Then the solution is given
by the projection onto a parabola, separately for each i:

(↵i,�i) = proj�i�b"i↵2
i

�

b↵i, b�i

�

(12)

with b"i :=

"�2
i

µ2 . Considering the optimality conditions for
this projection leads to a cubic equation, which we again
solve by the method of [1]:

If already b�i � b"ib↵2
i , the solution is (↵i,�i) =

�

b↵i, b�i

�

.
Otherwise, with a := 2b"i|b↵i|, b := 2

3 (1 � 2b"ib�i) and d :=

a2 + b3 set

v :=

8

<

:

c� b
c with c =

3
p

a+

p
d if d � 0,

2

p
�b cos

⇣

1
3 arccos

ap
�b

3

⌘

if d < 0.
(13)

If c = 0 in the first case, set v := 0. The solution is then
given by

↵i =

(

v
2b"i

b↵i
|b↵i| if b↵i 6= 0

0 else

)

, �i = b"i↵
2
i . (14)
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