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Abstract

In this paper we combine the concept of adaptive filters
with neural networks in order to be able to include high
level knowledge about the contents of the image in the fil-
tering process. Adaptive image enhancement algorithms
often utilize low level knowledge like gradient information
to guide filtering parameters. The advantage is that these
filters do not need any specific knowledge and can thus
be applied to a broad spectrum of images. However, for
many problems this low level information is not sufficient to
achieve good results. For example in medical imaging it is
often very important that some features are preserved while
others are suppressed. Usually these features cannot be dis-
tinguished by low level information. Therefore we propose
a method to incorporate high level knowledge in the filter-
ing process in order to adjust the parameters of any given
filter thus creating a guided filter. We present a scheme for
acquiring this high level knowledge which allows us to ap-
ply our method to all kinds of images using pattern recog-
nition and special preprocessing techniques. The design of
the guided filter itself is easy as for the high level knowledge
only some sample pixels including their neighborhood and
the desired parameters for these pixels are necessary.

1. Introduction

Objectives in image enhancement are noise reduction,
feature enhancement, the removal of inhomogeneous back-
ground etc. Most proposed adaptive filters have relied only
on low level information like gradient information or edge
direction. These features are usually not sufficient to dis-
tinguish between structures that need to be preserved and
others that should be filtered. In general, an adaptive filter
uses information derived from the region around each pixel
to adapt its parameters to the contents of the image. But
the contents is only measured in terms of low level con-
cepts such as the gradient. Thus the results of the filter

could be improved to a great extent by deriving high level
information from the surroundings of each pixel in order to
adapt the filter parameters. In our approach this is done by
generating a continuous parameter map that assigns specif-
ically adjusted filter parameters to each pixel. The high
level knowledge required for each pixel can be derived from
some sample pixels associated with their respective desired
parameters. To obtain the prior knowledge we use a neural
network, for example a multilayer perceptron (MLP) with
the backpropagation algorithm. The crucial part of design-
ing a MLP is the preprocessing of the data. We do this in
a standardized way that can be applied to many different
kinds of images. An advantage of our preprocessing tech-
nique is that it reduces the dimensionality of the network to
a large extent, when compared with simply using the neigh-
borhood of each pixel as input. Its performance is improved
at the same time. To demonstrate the concepts, digital color
retinal images are used as an example to better explain the
application of our method.

Concerning image enhancement a lot of related work ex-
ists. Adaptive filters in general make use of the local image
structure, see for example [3], [6], [4]. We combine this
concept with neural networks to achieve better performance
in image enhancement. The basic concept has been realized
in [5] where so-called neurofilters are used to achieve the
results of standard filters without having to use mathemati-
cal models. However, there are two main differences to our
approach: 1) the neurofilters mainly aim at realizing results
that can also be achieved with standard filters, e.g. detect-
ing edges or removing noise. In contrast to that we create
new filters by adapting the filter to the semantic contents of
the image. 2) We also propose a preprocessing framework
to improve the results of the neurofilter. The idea of using
higher level knowledge to interpret images has been men-
tioned in [2] where a preliminary segmentation is calculated
to improve object detection results. Here we do not segment
the image but compute a continuous filter parameter map.

The rest of the paper is organized as follows: Section
2 describes the selection and preprocessing of the training
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data in order to obtain a continuous parameter map which
is used for the definition of guided filters. In section 3 we
show results for different kinds of filters applied to different
images and our conclusion in section 4.

2. Image enhancement with guided filters

In this section we will first describe how to obtain a fil-
ter parameter map by training a neural network. This map
includes structure information about the contents of the im-
age that is not contained in low level features like the gra-
dient and thus cannot be used in common filters. Then we
will show how this map can be used to define guided fil-
ters. When explaining the general approach we will make
our concept clear by using retinal images as an application
example. In retinal images like in most medical images,
important information is usually included in the foreground
that must not be changed by the image enhancement algo-
rithm in order to preserve any knowledge needed for a diag-
nosis. The ideal result of such an image enhancement algo-
rithm would thus leave the foreground unchanged while re-
moving or adjusting the background. In this case the ”back-
groundness” of the pixel is essential to determine the filter-
ing parameters.

2.1. Training data selection

The first step when training a neural network is the selec-
tion of training data. The neighborhoods of some represen-
tative pixels are stored in a vector and saved as one training
sample which is preprocessed and associated with the de-
sired filter parameter set for this particular pixel as teacher
for the network.

Choosing sample data positions: In general it is neces-
sary to choose sample data from every feature that can ap-
pear in the image so the network learns to map specifically
adapted parameters to these features. Usually an image con-
sists of many different features we call feature classes. In
retinal images we have for example small and large vessels,
vessel connections, microaneurysms and the background.
The problem of selecting the training data is that we want to
select the data randomly from several sample images while
ensuring at the same time that all feature classes are well
represented in the training data set. If we simply chose the
data randomly the distribution of the training data would
represent the distribution of the feature classes in the image
instead of being adapted to the special needs of the learn-
ing process for each class. Thus the learning ability of the
network would be poor due to the fact that certain rare fea-
tures, in our case small vessels, would be under represented.
To obtain an adaptive distribution of the training data we
choose three training images containing together all rele-
vant features and create binary masks for each feature class.

This method enables us to select the positions of the sam-
ple data randomly but according to a predefined distribution
which improves the flexibility of the training process as well
as the network’s ability to learn.

Creating training data: In order to adapt the parame-
ters of the filter to the contents of the image in the surround-
ings of each pixel, we define a rectangular region of interest
(ROI) around the pixel. The size of the rectangle should be
as small as possible to make the network sensitive to small
structures (for example small vessels on noisy background),
but large enough to contain significant information about
the contents of the region.

2.2. Training data preprocessing

By applying two preprocessing techniques to the training
data we improve the performance of the network and mini-
mize its size, but we do not use any prior knowledge about
the image itself. Therefore these techniques can be applied
to many kinds of images.

Rotation: Features that are to be classified by a neural
network obey a certain pattern, like for example the line
shaped vessels in a retinal image. Often these patterns can
appear in different orientations like the vessels which point
in arbitrary directions. The problem is that the network
has to learn all these orientations even though these pat-
terns could be recognized much more easily if they were all
aligned in the same way. Furthermore it does not matter if
the ROI is always rotated correctly to align all the different
features in the same way - the only thing that matters for
classification is that similar patterns are rotated in similar
ways so their resemblance is preserved. For this reason the
rotation of the ROI is surely helpful for any task where at
least some of the different patterns show orientations that
are not necessary for classification. The problem is now
that we do not know if any feature exists within the ROI at
all and which angle has to be used for rotation. However we
still can rotate the ROI in the following way. First we define
a threshold ensuring that at least one dominant characteris-
tic line of the feature stands out after thresholding. For reti-
nal images the threshold can be set to the mean value of all
pixels in the ROI as vessels are among the darkest objects
in the image. We then determine the main direction of the
remaining pixels after thresholding. Now the ROI is rotated
around the smaller angle between this direction and the hor-
izontal axis. If the ROI contains only part of a feature or no
feature at all the result is rather arbitrary but still similar for
similar features thus ensuring similar classification. How-
ever, if there is a feature in the ROI it will afterwards be
horizontal. An example for vessels can be seen in figure 1.

Multi-class Principal Component Analysis: Principal
component analysis (PCA) is a good preprocessing method
to reduce the size of the network and the noise of the sample



Figure 1. Rotation of network input to sim-
plify learning process; left: original vessel
feature; center: binarized feature before rota-
tion around major axis; right: rotated feature

data provided two requirements are fulfilled: the dependen-
cies between the data samples are linear and the features
used to distinguish between the classes do not lie on axes
with low variance. In practice we can assume linear de-
pendencies but since there might be classes providing low
variance compared to other classes the information neces-
sary to discriminate between them could be lost due to the
dimensionality reduction by PCA. For example this could
be the case for the small vessel and the background feature
classes. But due to the fact that PCA provides the above
mentioned advantages we would still like to use it on the
training data. This can be done in the following way: In-
stead of applying PCA to all samples together we apply
PCA to each of the feature classes separately thus preserv-
ing the most important information of each class in its k
eigenvectors. The number of eigenvectors chosen for each
class is calculated by sorting the eigenvectors of the class
by their eigenvalues ei in descending order and determining
the number of vectors as the maximum n satisfying the con-
dition

∑n
i=1 |ei| ≤ ε

∑k
i=1 |ei| where 0 < ε ≤ 1 denotes

the amount of information preserved of each class. The re-
sulting principal components of each class are then com-
bined creating one large set which represents the most im-
portant properties of all classes. However, there may be an
axis exhibiting low variance for all feature classes but high
variance between samples belonging to different classes. In
order to preserve this information for classification we add
the most important principal components derived from PCA
carried out on all data samples together to our set of princi-
pal components. Now the dimension of the dataset can be
reduced by projecting each sample vector containing the ro-
tated ROI onto each of the principal components, that means
into all resulting eigenspaces. The vector of the coordinates
in the eigenspaces is finally used as input to the network.

2.3. Filters guided by parameter maps

After selecting and preprocessing the training data we
can now use a neural network to learn the parameter map.
An example of a parameter map describing the background
of each pixel in a retinal image can be seen in figure 2.

Figure 2. left: original green channel of a reti-
nal image; right: parameter map derived from
network and specifically adapted to features
such as vessel and microaneurysms.

Given the parameter map obtained from the application of
the network, there are numerous possibilities to adapt the
parameters of a given filter, for example the sigma of a sim-
ple Gaussian filter, the parameters of an anisotropic filter,
the degree of correction of inhomogeneous lighting (called
shading correction) or of contrast enhancement.

3. Results

We use the green channels of 3 color retinal images with
a size of 1024x1280 to test the guided filter performance.
Comparing the network answer for each pixel with the man-
ually labeled ground-truth the performance of the network
is measured in terms of sensitivity and specificity (where
sensitivity means the ratio of as foreground classified pixels
to all foreground pixels and specificity means the ratio of as
background classified pixels to all background pixels). To
demonstrate the improvement of different filters by incor-
porating high level knowledge, we choose 4 different ap-
plications: Gaussian filtering, anisotropic filtering, contrast
enhancement and shading correction.

Network and preprocessing results: The network we
applied to a series of retinal images is a MLP with one hid-
den layer trained with the backpropagation algorithm using
a momentum term. It consists of 47 neurons in the input
layer due to the number of principal components chosen in
the preprocessing step. 5 neurons have been found a good
choice for the hidden layer. The output layer depends on
the number of filter parameters. The learning rate and the
momentum term decreased over time and the block size was
set to 11.
Application of the network without preprocessing - that
means without rotation and multi-class PCA - resulted in
89.6% (with 20 hidden neurons) and 86.3% (with 5 hid-
den neurons) correctly classified pixels. By adding our pre-
processing methods we achieved 91.8%. Rotation by itself
improved the result by 0.9% whereas combined multiclass
PCA improved the results of normal PCA by 1.3%. This



Figure 3. left: original cropped retinal image;
center: Gaussian filter result; right: result of
the same filter guided by a parameter map

Figure 4. left: original artificial image
containing two different patterns; center:
anisotropic filter result; right: result of the
same filter guided by a parameter map

demonstrates that our preprocessing techniques improve the
performance and reduce the dimensionality of the network
from (121,20,2) to (47,5,2). When comparing the binarized
background map with the hand labeled ground-truth images
we achieved 90.3% sensitivity and 97.1% specificity.

Guided filtering on different images: A simple way
to design an adaptive Gaussian filter is to adjust the sigma
of the filter to the parameter map returned by the network.
Figure 3 shows that in this way features are preserved while
the background is smoothed. Figure 4 shows the results
of a guided anisotropic filter, where the image containing
two different structures (wood and light refractions) is first
filtered using an anisotropic filter which effects both struc-
tures. To preserve the light refractions structure we train
a network which assigns each pixel a value for the resem-
blance to the light refraction structure. This information can
be used to adapt the filter parameters. Our method can also
be used to improve the contrast in an image without incre-

Figure 5. left: original cropped retinal image;
center: adaptive contrast enhancement re-
sult; right: result guided by a parameter map

Figure 6. left: original cropped retinal image;
center: shading correction result, right: re-
sult of the filter guided by a parameter map

menting the noise level as is a common problem with local
adaptive filters. Here the parameter map is used to adjust
the sigma in the contrast enhancement filter described in
[1]. Guiding an adaptive contrast enhancement filter yields
the results in figure 5. Another way to make use of the prior
knowledge obtained from the neural network result is to de-
sign a filter for shading correction. The parameter map con-
tains the number of control points for a spline which ap-
proximates the background and is then subtracted from the
image. Figure 6 demonstrates that in this way the correction
can be made stronger without losing details.

4. Conclusion

We proposed a new adaptive filtering concept providing
a framework to create prior high level knowledge of images
and use it to locally adjust the filtering parameters. Fur-
thermore we showed that the binarized rotation of the sam-
ple data and the application of multi-class PCA improves
the performance of the network. The results demonstrate a
clear advantage of our method compared to the use of non-
adaptive and adaptive filters that cannot make use of high
level knowledge about the image contents. This framework
can easily be adapted for many kinds of images due to the
very general approach.
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