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Abstract We present a survey and a comparison of a variety of algorithms
that have been proposed over the years to minimize multilabel optimization
problems based on the Potts model. Discrete approaches based on Markov
Random Fields (MRFs) as well as continuous optimization approaches based
on partial differential equations (PDEs) can be applied to the task. In con-
trast to the case of binary labeling, the multilabel problem is known to be
NP hard and thus one can only expect near-optimal solutions. In this paper,
we carry out a theoretical comparison and an experimental analysis of exist-
ing approaches with respect to accuracy, optimality and runtime, aimed at
bringing out the advantages and short-comings of the respective algorithms.
Systematic quantitative comparison is done on the Graz interactive image seg-
mentation benchmark. This paper thereby generalizes a previous experimental
comparison [18] from the binary to the multilabel case.

1 Introduction

The optimization of energies with respect to a set of variables which can take
one of multiple labels is among the central algorithmic challenges in computer
vision and image analysis. The prototypical example of multilabel problems is
multiregion image segmentation, where every pixel is assigned one of finitely
many region labels. Apart from segmentation, continuous estimation problems
such as denoising, deblurring, stereo and optical flow can be approximated as
a multilabel problem on a discretized label space. We will restrict our at-
tention to algorithms which aim at minimizing a specific class of multiregion
segmentation functionals, often referred to as the Potts problem in the MRF
community or the minimal partition problem in the PDE community.

Over the years, numerous algorithms have been proposed to tackle multil-
abel optimization problems, both in the community of partial differential equa-
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tions (PDEs) and in the community of Markov Random Fields (MRFs). As a
result one may ask how these algorithms compare in theory and in practice.
In [18], an experimental comparison of discrete and continuous optimization
approaches was presented for the specific case of binary labeling problems.
In recent years, the focus has shifted from binary labeling to the more gen-
eral multilabel problem, with a multitude of competing algorithms to solve
it. The contribution of this paper is to provide a systematic theoretical and
experimental comparison of algorithms for multilabel problems of the minimal
partition type, pointing out relations, equivalences and differences.

In general, the segmentation task can be formulated as an energy mini-
mization problem. In the spatially discrete setting, this energy is defined on
a set of nodes, leading to MRF problems whose solution is often calculated
using graph cut methods. In the spatially continuous setting, the respective
optimality conditions for the continuous energy are written in terms of a set
of partial differential equations which are then solved on a discrete grid.

The contributions of this paper are twofold: Firstly, we present relations
between the following relaxations of multilabel optimization problems from
the MRF and PDE communities:

— The linear KT-relaxation by Kleinberg and Tardos [17],
The linear S-relaxation by Schlesinger [37,44].

— The convex CCP-relaxation by Chambolle et al. [6],

— The convex ZGFN-relaxation by Zach et al. [46],

where the acronyms denote the initials of the authors’ last names. Secondly,
we qualitatively and quantitatively compare the following popular PDE- and
graph cut-based algorithms for multilabel segmentation from the continuous
and discrete domain:

— The primal-dual algorithm by Pock et al. [34],
— The discrete a-expansion approach with 4 and 8 connectivity [5],
— The discrete Fast-PD approach with 4 and 8 connectivity [22].

A preliminary version of this work was published in [30]. We plan to make
code publically available at "https://vision.in.tum.de/data/software’.

2 Advantages and Drawbacks of Discrete and Continuous Methods

Concerning graph cut based MRF approaches and PDE methods we encoun-
tered several advantages and short-comings. In particular:

Parameters and Termination Criterion. Graph cuts do not require numerical
tuning parameters, so they can easily be applied as a blackbox algorithm with-
out further need to understand the underlying optimization process. Instead,
PDE approaches typically require more expert knowledge. Optimal step sizes
can be computed automatically as shown in [33]. However, general-purpose
termination criteria are hard to find. Typically one performs a fixed num-
ber of optimization cycles or iterates until the change in the solution or in
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the energy falls below a certain threshold. Alternatively one can threshold
the primal-dual gap, i.e. the difference between the primal and dual energies
which goes to zero upon convergence. Depending on the problem formulation,
this gap can either be computed by solving a simple point-wise optimization
problem or it can be as complicated to determine as the original problem. In
the latter case, only upper or lower energy bounds can be computed leading
to approximations of the primal-dual gap but no hard termination criteria.

Ambiguities. Since we can only compute approximate solutions to the multi-
label segmentation problem, results come with certain ambiguities. The com-
monly used a-expansion and Fast-PD algorithms are based on iteratively solv-
ing binary problems. In each step, each pixel is allowed to choose between its
current label and a fixed label . As we show in Figure 5, results may there-
fore depend on the order the labels a are chosen and also on the initialization.
In the PDE domain ambiguities arise after the optimization stage, when the
globally optimal solution of the relaxed problem is binarized to obtain a fea-
sible labeling of the original problem. The results, however, do not depend on
the initialization of the algorithm due to the convexity of the relaxations.

Metrication Errors. MRF approaches exhibit metrication errors since they
only approximate the Euclidean boundary length — see Section 7.1.2. Instead,
the PDE approaches for multilabel optimization provide smooth object bound-
aries that do not exhibit a prominent grid bias.

Parallelization Potential. Graph cuts cannot be parallelized in a straight for-
ward manner, since the max-flow problem lies in the P-complete complexity
class of problems, which are probably not efficiently parallelizable [14]. The
popular augmenting path algorithms sequentially search for paths through the
flow network along which the flow can be incremented. Regardless of the var-
ious strategies that exist to find such a path, these algorithms are not well
suited for parallelization due to two reasons: Firstly, augmenting path opera-
tions are interdependent, since different augmentation paths can share edges.
Secondly, the updates of the edge residuals have to be carried out simulta-
neously in each augmentation operation as they all depend on the minimum
capacity within the augmentation path. Although push relabel algorithms re-
lax the first issue, update operations are still interdependent. In contrast to
MRF approaches, the considered PDE approaches are easily parallelizable on
graphics hardware yielding drastic speedups over CPU algorithms. However,
they come with the drawback of an increased power consumption per pixel.

Runtime Variance. Graph cut methods exhibit a high runtime variance even
among images with the same number of labels (see Table 4). There are mainly
two reasons for this: Firstly, for a-expansion the number of max flow problems
that need to be solved until convergence highly depends on the input image
and the chosen label order. Secondly, the number of augmentation steps needed
to solve each of the max flow problems in turn depends on the graph structure
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and edge residuals. These parameters strongly differ with the current labeling
and the currently chosen label a. In contrast, PDE approaches carry out the
same computation steps on each pixel and thus exhibit smaller runtime vari-
ances. Nevertheless, the number of iterations until convergence depends on the
input image.

While the above advantages and drawbacks are more or less known today,
systematic practical comparisons of both worlds concerning quality and run-
times for multilabel partitioning problems have not been undertaken so far.
Hence, in this paper we extend the research by Klodt et al. [18] to multilabel
problems and investigate theoretical and practical differences for the most
prevalent relaxations and algorithms from the MRF and PDE community.

3 Image Segmentation as a Multilabel Problem

In the context of image segmentation, the multilabel problem can be formu-
lated as follows: Let I : £2 — R? denote the input image defined on the domain
2 C R? (in the discrete case 2 = {1,..., N} x {1,..., M}). The task of seg-
menting the image plane into a set of n pairwise disjoint regions (2;, with
2=U", 2, 2,n802; =0 Vi j, can be solved by computing a labeling
l:92 — {1,...,n} indicating which of the n regions each pixel belongs to:
2; = {z|l(z) = i}.

Segmentation can be formulated as an energy minimization problem con-
sisting of a data term and a regularization term. The data term carries infor-
mation on how strongly a pixel should be associated with each region. The
regularization term corresponds to a prior on the space of feasible solutions.
The most common regularizer for segmentation is the one favoring minimal
boundary length. We will give the corresponding energy minimization prob-
lems in the spatially continuous domain in section 4 and in the spatially dis-
crete domain in section 5.

4 The Spatially Continuous Setting
In this section, we focus on energy minimization problems for multilabel seg-
mentation which are solved by means of variational calculus. We will review

the two convex relaxations by Chambolle et al. [6] and Zach et al. [46], which
allow for near-optimal solutions to the multilabel segmentation problem.

4.1 Minimal Partitions and Mumford-Shah

The multilabel segmentation problems we consider are of the following form

Qmino {;\ ZPerg(Qi, 2)+ Z/ filz) dx } . (1)
bt i=1 =175
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Here, Pery(£2;, £2) denotes the perimeter of the segment {2;, measured with a
metric defined by the non-negative function g : 2 — R{. For example, the
choice g(z) = exp (—y|VI(x)|) energetically favors boundaries that coincide
with strong gradients of the input image I : 2 — R. The data term f; :
2 — R associated with region (2; takes on smaller values if the respective
pixel (based on its color) has stronger affinity to region (2;. In a Bayesian
MAP inference approach, f; = —log P(I,z|f2;) corresponds to the negative
logarithm of the conditional probability for observing a specific color at the
given location within region {2; — see also [9,29].

In the continuous setting, the minimal partition problem is related to the
piecewise constant case of the Mumford-Shah model [28] which aims at seg-
menting the image plane into a set of pairwise disjoint regions with minimal
color variance and minimal boundary length. Optimization of this functional
is difficult. Among the most popular techniques are local optimization ap-
proaches such as level set methods [8,40].

4.2 Total Variation

More recently, minimal partition problems have been tackled on the basis of
functions of bounded variation BV ({2, R), i.e. functions for which the total
variation (TV) is finite. The key idea is to encode the regions (2; by their
indicator function v € BV(£2,{0,1})"

1, ifl(z)=1
ui(x) = Vi=1,...,n (2)
0, otherwise

and to solve for u; using convex relaxation techniques.

The total variation is well suited for geometric optimization problems since
it is convex and - for binary functions u; - equal to the perimeter of the encoded
set £2;. Let £ € C1(02,R?)™, where C! denotes the set of smooth functions with
compact support. Then the perimeter of §2; is given as

Perg(£2;,2) =TVy(u;) = /g |Du;| = sup ¢ — /ul divg dey.  (3)

&<
2 &itl&i|<g

Here Du; refers to the distributional derivative of the function u;, which is
also defined for non-smooth functions. The representation on the right arises
through integration by parts and relies on the dual variables &;. It is valid
for any L;-integrable function (including characteristic functions of sets with
measurable boundary).

Minimization of total variation based geometric optimization problems is
typically done by convex relaxation techniques. To this end, one ignores the
binary constraint on the indicator variables u;, optimizes respective energies
over the convex function space BV (£2,[0,1]) and subsequently binarizes the
computed real-valued solutions. Such total-variation based approaches to par-
titioning problems were proposed in [10,11,7].
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4.3 Convex Relaxations of the Multilabel Segmentation Problem

For the multilabel segmentation problem three convex relaxations of the min-
imal partition problem (1) were proposed in the fall of 2008 by Lellmann et
al. [24], by Zach et al. [46] and by Chambolle et al. [6]. These approaches differ
in the norm used in the regularizer, in their computational complexity and in
the tightness of the relaxation. Since the latter two relaxations were shown to
be tighter [6], we will concentrate on these in the following.

Zach et al. [46] and Chambolle et al. [6] represent the n regions (2; by the
indicator function w in (2) which transforms the minimal partition problem
(1) into the equivalent form

wenvh _Q{O oy Z/szz dr + - /g\Dul| s.t. ;ul(x) =1,Vze. (4

As shown in (3), the total variation can be rewritten based on the dual
variables &;. Relaxing the binary variables u; to real-valued ones, we obtain
the relaxed convex problem

min sup Z/ulfl dx — Z/ul div &; dx (5)

ueB ceKAg =1 J

Zul —l,VxGQ}.

The difference between the relaxations by Zach et al. [46] and Chambolle et
al. [6] only lies in the definition of the constraint set K*9.

B :{uGBV

4.8.1 ZGFN-Relazation
The relaxation by Zach et al. [46] is based on the energy in (5) with the

following constraints on the dual variables according to the dual formulation
of the total variation in (3)

€i(z)] <

Koden = {5 € CH(,R?)"

4.8.2 CCP-Relaxation
Chambolle et al. [6] originally proposed an energy formulation based on the

upper level sets, which can be transformed into the energy formulation in (5)
with the following constraint set on the dual variables where &,41 =0

K, = {€ € CL (2,R?) ”“‘ 1€:(x) — & ()] < Ag(x),1<i<j< n+1, V:cefz}.
(7)
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4.4 Optimization

For the indicated continuous relaxations we give update schemes, which are
iterated until convergence. They are based on the primal-dual algorithm pro-
posed in [34] with step sizes chosen according to [33].

ZGFN-Relazation. Optimization of 4.3.1 is done by iterating the following up-
date scheme. Essentially, it consists of alternating a projected gradient descent
in the primal variables u with projected gradient ascent in the dual variables &.
In addition, it contains an over-relaxation step in the primal variables (giving
rise to auxiliary variables @) assuring fast convergence of the algorithm [34]:

=B (€179
ut = g (uf 4 (F — div €)) (8)

@t = utt (Wt - t) = 2utl — ot

The projection IT,.,  of the dual variables § is done by simple clipping, while
ZGFN

that of the primal variables Iz is a projection onto the simplex in R™ [27].

CCP-Relazation. In order to find the globally optimal solution to the relaxed
convex optimization problem in 4.3.2 we introduce the constraints on the
dual variables (7) into the energy in (5) by means of Lagrange multipliers
pij € M o= {pi; : 2 — R?|1 < i < j < n+ 1} and additional vari-
ables Q := {qij € C1(2,R?) ‘ lgij ()| < Ag(z), 1<i<j<n+1, Vze Q}
We obtain

min sup Z/ui(fi —div &) dx + Z /Quij(fi —& —qij)dx p. (9)

pij €M q? ECQ =1 0 1<i<j<n+1

Note again that &,y; = 0. As before we employ the primal-dual algorithm
published in [34] based on the following update scheme:

£t+1 — 575 + 2_"_#” va' + (Zp‘fj o Z’a;i)1<i<n
i>i i>j T
qt+1 =1lg (qt + (*ﬁ))
uttt = ig (Ut - i(f — div ng)) o

p =t =& - & - @)

L _ g, i+l t

U U

Gt = opttl b,
The projections of the dual variables IIg are done by simple clipping, while
that of the primal variables ITg is a projection onto the simplex in R™ [27].
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4.5 Implementation and Optimality

For the implementation of the continuous approaches, information on the dis-
cretization, the convergence, termination criteria, the computation of the bi-
nary solutions based on the relaxed solution and the pseudocode of the algo-
rithms is given in the following.

4.5.1 Discretization

For optimization of the given relaxations, the energies have to be discretized.
The computation of the gradient of the primal variables, Vu;, is done by
forward differences with von Neumann boundary conditions. Let w denote the
width of the image and h its height. Then the gradient is given by

(ui(x + 1,y) —ui(z,y),u(x,y + 1) —u;(z,y)) fz<w, y<h

vui(m7y): (O,ui(ﬂc,y—l—l)—ui(x,y)) ?fﬂ?ZUJ, y<h
(ui(z +1,y) —wi(z,y),0) fe<w,y=nh
(0,0) fr=w,y=nh
The divergence of the dual variables &; is computed by backward differences
div fl(xa y) =
EHr,y) =&l —1,y) ifl<z<w (x,y) — (x,y—1) ifl<y<h
& (z,y) ifr=1 + {&(x,y) if y =1
& (x —1,y) if v =w —&(z,y—1) ify=nh

4.5.2 Convergence and Termination Criteria

There are different ways to determine the convergence of the algorithm. Ide-
ally, the primal-dual gap can be computed, which is the difference between the
primal and the dual energy of the optimization problem. This is not always
possible as the primal and dual energies themselves are optimization prob-
lems of variable complexity. Exemplarily, we give the primal energy of the
optimization problem by Zach et al. (4):

Ey(u) = {ZI/QUZ fi dx — )\/99|D Uz|} +05(u), (11)

0, webB

where dp is the indicator function of the set B: dg(u) = { .
oo, u¢B

Computation of the dual energy amounts to a point-wise optimization problem

Eq(§) = min {;/Q u; (fi —div &) do — 5n;gFN(5)}

_ /Q min(f; — div &) dz — 5z, (6). (12)

ZGFN
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Fig. 1 Convergence analysis of the algorithm by Zach et al. for two examples from the Graz
benchmark database. The progress of the primal energy (blue) is depicted with respect to the
dual energy (green). The optimal solution of the relaxed optimization problem is obtained
as soon as the primal-dual gap goes to zero.

Here 6’C%%FN denotes the indicator function for the set KjpZpx. During the
optimization, the primal energy decreases, while the dual energy increases.
When the optimal solution is reached, the primal-dual gap goes to zero. The
size of the gap can be used to formulate suitable convergence criteria for the
algorithm, e.g. if the gap decreased less than 1% from one iteration to the
next. Figure 1 shows the primal-dual gap for the ZGFN algorithm for up to
2500 iterations.

As the primal-dual gap is difficult to compute for the CCP-relaxation,
we apply a different convergence criterion in this survey. It is based on the
difference between the current and the previous relaxed solution of the op-
timization problem. If the norm of this difference vector averaged over the
number of pixels falls below a certain threshold we regard the optimization
procedure as converged. In this paper we use 0.0001 as the threshold.

4.5.8 Binarization and Optimality Bounds

To obtain a labeling function I : £2 — {1,..,n} and a binary indicator function
u : 2 — {0,1}" from the globally optimal relaxed solution @ € B some
rounding scheme must be applied, which can lead to suboptimal results. We
assign each pixel x to the first label with maximum indicator function

1, Uz)=1

. Ve e 2. (13)
0, otherwise

[(x) = min{arg imax{ﬂ,-(:v)}}, ui(x) = {

There are other rounding schemes, which can be more appropriate e.g. in the
case of anisotropic total variation regularization [23].

In 2006, Chan et al. [7] proved the thresholding theorem for total variation
approaches, which states that for the case of two segments (i.e. n = 2 with a
single indicator function u : 2 — R) any threshold T € (0,1) can be applied
to obtain a globally optimal binary solution. No such theorem can be proved
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for the case of more than two segments. Yet, in the multiregion case we can
compute bounds of optimality.

Let u* € B be the global minimizer of the original binary problem formu-
lation (4), w € B the solution of the relaxed problem (5) and « the binarized
solution (13) of the relaxed problem. Chambolle et al. [6] gave an a posteriori
optimality bound, which states that

E(u) — E(u*) < E(u) — E(@). (14)

This means that the energy difference between the globally optimal binary
result and the binarized solution of the algorithm is bounded by the energy
difference between the relaxed and the binarized solution.

In [25], Lellmann et al. gave an a priori optimality bound based on a
probabilistic rounding scheme stating that

E(E(u)) < 2E(u™) (15)

for the Potts model. A similar “factor of two”-bound was earlier suggested in
the discrete setting by Boykov et al. [5] (see section 5.3.3).

4.5.4 Pseudocode

The pseudocode for the algorithm in [34] is given as Algorithm 1. The only
input parameters are the data term f, the smoothness parameter \ and the
stopping parameter e.

Algorithm 1 Continuous Multilabel-Segmentation

1: procedure OPTIMIZE(f, \, €)

2: Initialize u® € [0,1]™ arbitrarily, ¢ := 1

3 repeat

4 t=t+1

5 Compute primal-dual updates as in (8) or (10)

6: Compute difference vector d = ut — ut~1 (sec. 4.5.2)

7 until |d| < €[] > Stopping criterion
8

9

10:

Compute labeling ! as in (13)
return labeling
end procedure

4.6 Related Approaches

There have been several extensions to the presented TV-based segmentation
approaches. Examples include weighted TV norms which depend on the label
indices [23], anisotropic TV norms [19] and multilabel approaches which allow
direction-dependent transition penalties [38].
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5 The Spatially Discrete Setting

In this section we discuss discrete multilabel segmentation based on the mini-
mization of the Potts energy derived from an MRF model. We review different
relaxations as well as minimization and inference algorithms and concentrate
on the best performing methods today, a-expansion and Fast-PD.

5.1 Segmentation via Inference on Markov Random Fields

In the discrete setting the segmentation task can be formulated as an undi-
rected graph, a so called Markov Random Field. The nodes of the graph rep-
resent random variables taking on different labels whereas the edges encode
the dependencies between different variables.

The multilabel segmentation problem can then be formulated as the min-
imization of the following energy, which is a discrete version of (1)

min SO finttiz + g D oy Y |thia — uiyl (16)

ceQiel e~y €L
s.t. Zuu =1, {ui} € {0,1}1£x4
icL

Here, x ~ y denotes that z and y are neighboring nodes in the grid. Typically
4 or 8 pixel neighborhoods are considered.

The unary terms determine how well each pixel complies with each label,
where f;; indicates the cost for assigning pixel x € 2 to label i € L. The
pairwise terms impose some sort of regularity on neighboring labels. They
are weighted by the edge indicator function g, = M (see explanation
following (1)).

We will present two linear relaxation schemes for the above energy formula-
tion, which are directly related to the continuous ZGFN- and CCP-relaxations.

5.1.1 KT-Relaxation

The following linear relaxation of the energy in (16) was proposed by Kleinberg
and Tardos [17]:

muin Z Z fiztiz + g Z Gy Zuzzy (17)

r€Nicl Ty i€L
s.t. § Uie = 1, Ujgy > ‘uiw - uiy‘z Uiz = 0, Ujzy >0
€L

The indicator variables in their binarized form, w;,; € {0, 1}‘5”2' and wizy €
{0, 1}1£x2x21 " can be understood as follows:
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y :{1, I(x) =i " :{1, Wz)=1 @ U(y) =i

0, otherwise 0, otherwise

where @ means exclusive or.

5.1.2 S-Relaxation

A more general linear relaxation of the energy in (16) was suggested by
Schlesinger [37] and later reviewed by Werner [44]:

win 33 Fotia #2300y 3 iy (18)

TEN IEL T~y ,JEL

s.t. E Uie = 1, Usp = E Uijzy Vy, Ujy = § Uijzy Vl’, Uiy > 0, Uijzy > 0.
€L JjeL €L

The indicator variables in their binarized form, u;, € {0, 1}/£*?! and Uijoy €
{0, 1}Ex£x2%2] " can be understood in a slightly different way

. {1, I(z) =i . {1, Ux) =i A lly) =]

0, otherwise 0, otherwise

5.2 Optimization

For the Potts model with two labels a polynomial-time optimal solution of the
MRF problem can be computed by solving a minimum s-t-cut [15]. For more
than two labels, the problem is NP-hard [5]. Therefore, efficient algorithms only
allow for approximate solutions with corresponding optimality bounds with
respect to the global optimum. Several inference algorithms exist to compute
such approximations:

Message passing describes iterative algorithms for computing MAP es-
timates or marginals in Markov Random Fields. For calculating MAP esti-
mates the maz-product (or min-sum) algorithm can be applied. For comput-
ing marginals, the sum-product algorithm is used of which Belief Propagation
[32] is a special case. In general, message passing strategies find the global
optimum only for tree shaped graphs. Newer algorithms for graphs contain-
ing cycles were proposed in [43,20]. A message passing scheme based on dual
decomposition was proposed by Komodakis et al. [22]. It decomposes the origi-
nal problem into a set of simpler optimization problems under the assumption
that their solutions are consistent. If the domain is decomposed into trees the
algorithm is parallelizable. However, the smaller the trees the slower is the
convergence of the algorithm. Hence, qualitatively this parallelization is not
comparable to that obtained by the continuous algorithms on the GPU.

Apart from message passing, algorithms that iteratively change one or sev-
eral node labels in order to improve the solution are often applied for optimiza-
tion. Iterated conditional modes [3] (ICM) and simulated annealing [13] only
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allow for label changes of single nodes in each iteration leading to local minima
in the former case and an exponential runtime in the latter. Algorithms that
change labels of multiple nodes include a-8-swap, a-expansion and FastPD,
all of which are optimized by iteratively solving a set of graph cut problems.

In [39] different algorithms for the minimization of Markov Random Field
approaches are compared: ICM, graph cuts (a- expansion and a-B-swap) and
Belief Propagation algorithms. Of those algorithms, a-expansion yields the
best performance results for the Potts model. Hence, in this paper we concen-
trate on a-expansion and its recent generalization FastPD.

Both algorithms approximate the Potts model segmentation problem (16)
based on graph cuts. They do not compute a relaxation of the minimization
problem in the sense of Kleinberg and Tardos or Schlesinger, but instead the
original functional (16) is optimized under relaxed optimality conditions, see
Section 5.2.2.

In computer vision, graph cuts were applied for the first time by Greig et
al. [15]. The basic idea is to compute a binary partition (‘cut‘) of the nodes in
a graph that separates a source from a sink node. The sum of the edge weights
which are cut by the partition interface should be minimal over all possible
separations. This is equivalent to computing a maximum flow on the graph,
which can be done in polynomial time.

A globally optimal graph cut solution for multilabel segmentation problems
was proposed by Ishikawa [16] for the case of a convex regularizer and a linear
label space. A related convex variational approach was proposed by Pock et
al. [35]. Unfortunately the Ishikawa approach does not apply to discontinuity
preserving energies such as the Potts model.

5.2.1 a-Expansion

In 2001, Boykov et al. [5] proposed to solve multilabel segmentation problems
by repeated graph cuts. Each step of the algorithm iterates over all labels «.
For each a an ’expansion move’ is computed in which each pixel can either
switch to a or keep its current label. The procedure terminates if no expansion
moves exist that reduce the energy.

Two advantages come with a-expansion: Firstly, for each label a the opti-
mal expansion move can be computed given that the pairwise term is a metric
in the label space. Secondly, the solution lies energetically within a constant
factor from the global optimum (see sec. 5.3.3). Other strategies for label
changes, such as a-#-swap, have no provable optimality bounds and do not
perform as well in practice.

5.2.2 Fast Primal-Dual

A generalization of a-expansion was proposed by Komodakis et al. [21]. They
suggested a primal-dual technique to minimize the energy in (16) based on the
S-relaxation (18). The relaxed linear program and its dual are of the following
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form with suitable A,b and ¢ for (18)

primal: minclu, st. Au=b, x>0 (19)
dual: maxb’v, st. ATv<c. (20)

In contrast to other LP-Relaxation techniques, Komodakis et al. do not solve
the relaxed linear program directly, but instead generate a sequence of integer-
primal and relaxed-dual solutions in each step. The basic idea is that if the
relaxed dual complementary slackness conditions

m
YVu; >0 = % < Zajivj <g¢ (21)
j=1

are fulfilled, then the primal (integer) solution u is an approximation of the
global (integer) optimum u* with ¢fu < h - cTu* where h := max; h;. ! For
the Potts model h equals 2.

Algorithmically, FastPD works similarly to a-expansion: each step iter-
ates over all labels and for each label computes a new pair of integer-primal,
relaxed-dual solutions by solving a graph cut problem. If no more label changes
occur the algorithm terminates and the solution is shown to fulfill (21).

FastPD and a-expansion are equivalent in the sense that both algorithms
compute the optimal a-expansion in each step leading to identical results and
optimality bounds. However, in contrast to a-expansion, the Fast-PD method
keeps track of the relaxed dual energy which leads to a simplified graph cut
problem in each step and decreases the overall runtime. In the following, the
FastPD-method will be called FastPD4 and FastPD8 depending on the size of
the selected pixel neighborhood.

5.3 Implementation and Optimality

In the following we will give details on the implementation of the discrete
approaches and discuss optimality bounds for solutions.

5.8.1 Label Selection Strategy

Different orders are conceivable for the selection of labels for a-expansion and
FastPD. We will show in the experimental section 7 that the segmentation
results as well as the runtime are influenced by this order. a-expansion main-
tains a priority list of labels for which a previous expansion step led to an
energy reduction. In contrast, FastPD uses a fixed label order in each cycle.

1 In [21] several algorithms are proposed for different choices of parameters h;. In this
paper we use the a-expansion equivalence of FastPD (called PD2,—1 in [21]) since it corre-
sponds to the Potts model.
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5.8.2 Pseudocode

For testing the discrete methods we use the following publicly available im-
plementations: the a-expansion code by Veksler and Delong?, which uses the
graph cut implementation by Boykov and Kolmogorov [4], and the FastPD
code implemented by Komodakis® [21]. Pseudocode for both algorithms are
given in Algorithms 2 and 3.

Algorithm 2 a-Expansion
1: procedure OPTIMIZE(f, \)

2: Initialize labeling u arbitrarily

3: labelChanged = false

4: for all « € £ do > Label priority list, see section 5.3.1
5: Compute the a-expansion @t with lowest energy E(l1) via graph cuts

6: if E(4) < E(u) then

7 u=1u

8: labelChanged = true

9: end if

10: end for
11: if labelChanged then

12: goto 3
13: end if
14: return labeling

15: end procedure

Algorithm 3 Fast Primal Dual Algorithm

1: procedure OPTIMIZE(f, \)

2: Initialize labeling u arbitrarily

3: Initialize dual variables v according to the dual constraints

4: for all « € £ do > Linear label list, see section 5.3.1
5: Pre-edit dual variables v [22]

6: Compute new integer-primal and dual pair (@, V) via graph cuts

7 Post-edit dual variables ¥ [22]

8: if G # u then

9: (u,v) = (,7)

10: labelChanged = true

11: end if

12: end for
13: if labelChanged then

14: goto 4
15: end if
16: return labeling

17: end procedure

2 http://vision.csd.uwo.ca/code/
3 http://www.csd.uoc.gr/ komod /FastPD/
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5.8.83 Optimality Bounds

Both a-expansion and Fast-PD can be shown to yield solutions lying within
specific a priori optimality bounds, e.g. for the Potts model

E(l) < 2B(1"), (22)

Here [ is the computed solution and [* is a globally optimal solution of (16).
Note that this bound is the discrete equivalent to the bound shown by Lell-
mann et al. in (15) for the continuous multilabel minimal partition problem.

Similar to the continuous methods, an a posteriori bound can also be
computed for the discrete approaches. Let [ be the solution of the relaxed
problem, then we can state that

E(l) — E(*) < B(l) — EQ). (23)

5.4 Related Approaches

There are several extensions to the presented approaches, e.g. the LogCut
algorithm [26] which fuses the current solution with an alternate solution in
each step, ordering constraints enforcing spatial relationships between labels
[45,12], anisotropic regularization based on Wulff-shapes [48] and performance
improvements [1,2]. Veksler [41,42] proposed multilabel moves to minimize
multilabel segmentation energies with truncated convex priors resulting in
piecewise smooth solutions.

6 A Theoretical Comparison of Continuous and Discrete
Multilabel Approaches

We have presented several relaxations of the Potts model suggested in the
MRF and PDE communities. We will now characterize their relation for L,
regularity ([, |Vul1 dz) and Ly regularity ([, |Vulz dz).

Proposition 1 For L; reqularity the convexr relaxations by Zach et al. in
4.8.1, Chambolle et al. in 4.3.2, Kleinberg and Tardos in 5.1.1 and Schlesinger
in 5.1.2 are equivalent.

Proof
1. Equivalence of the relaxations by Zach et al. and Chambolle et al. for L;
regularity

For one-dimensional problems this equivalence was shown in [6]. We gener-
alize this proof to L regularity by showing that the minimum energies for
both relaxations are equal. Remember that both relaxations merely differ in
the constraint set of the dual variables, i.e. the sets ICQ\EC’;FN in (6) and Kégp in
(7). For simplicity, we will omit the dependency on z.
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Let € € Ké‘cg;FN. The dual norm of the L1 norm is the maximum norm, so for all

elements 1 < i < n we have |£;|o < %. For any two indices ¢ and j it follows
that & — &|lec < Ag and hence £ € K29, This implies that Kodon C K22,
and thus E,cpyn(u, &) > Eccp(u, §).

Let now f € lCé-gP, ie. |§AZ — fj|oo < Ag. We will now define a translation

which maps each £ € K29, to an element ¢ e Kpden without affecting the
energy — see below. To this end, we define £ € C1(§2, R?)"

; max; &; + min; §;

&i=§—-C, C:= 5

€ R?, (24)
where min/max denote the component-wise minimum/maximum. We obtain

& -, 5}2—02‘}§%- (25)

€iloo = max {|¢}], €2} = max {

It follows that & € KpZpx.

The constant shift introduced in (24) does not affect the energy. To see this,
it suffices to consider the energy term measuring the contour length, since the
data term is independent of £. Due to the Divergence Theorem of Gauss we
have

Erv(u,§) =) / up div & dx = Bry(u,§) — / > i div C dx =Erv(u,§)
=1} 5 i=1
since Y, u; = 1 and € € CL(2,R?)™. Tt follows that Eccp(u, &) > Egcen(u, &)

Vf € Koop. Altogether, we obtain min, ¢ Foep(u, §) = miny, ¢ Eyqen(u, §). This
proves the equivalence of both relaxations in the case of L; regularity.

2. Equivalence of the relaxations by Zach et al. and Kleinberg and Tardos
for L regularity

We now show the equivalence between the relaxed optimization problems in
(17) and (4) (with relaxed w : 2 — [0,1]™). Kleinberg and Tardos minimize
over the variables u;,,, which only appear in the second energy term defining
the contour length. Thus, in the minimum the constraint w;zy > Uiz — Uiy
holds with equality and we obtain the following energy

xef2icl Ty €L €L

For a 4-neighborhood relation for = ~ y, this energy is equivalent to the dis-
cretization of the energy in (4) after relaxation of the indicator function w.

3. Equivalence of the relaxations by Kleinberg and Tardos and by Schlesinger

This equivalence was shown by Osokin et al. [31].
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€3

oA

Fig. 2 For Lg regularity, the CCP-relaxation dominates the ZGFN-relaxation because the
set of permissible dual variables is strictly larger: K}qpy © Kécep- The three corners of the
blue isosceles triangle define an element ¢ = (£1,&2,&3,0,...,0) € K&op which cannot be
mapped to a corresponding element é € KLgrn, because there exists no circle of radius 1/2
which contains this triangle.

§1

Interestingly, the above equivalence of various relaxations is no longer true
for Ly regularity.

Proposition 2 For Ly reqularity the linear relaxzations of Kleinberg and Tar-
dos and Schlesinger no longer apply. Moreover, the relazation by Chambolle
et al. is tighter than that by Zach et al.

Proof In the case of Ly regularity the linear relaxations by Kleinberg and Tar-
dos and by Schlesinger are not applicable since they do not admit quadratic
constraints. Among the convex relaxations the one by Chambolle et al. domi-
nates the one by Zach et al. — see also [6]: W.l.o.g. we assume A\g = 1. While we
still have KL, C KL, the converse no longer holds. We indicate an element

¢ € KL, which does not admit a corresponding element £ € KL\

Let f = (617£2a§3507"'70) € ’Cécp with 51 = (_%a0)7 52 = (%7O)a 53 =
(0, @) As shown in Figure 2, these vectors form an isosceles triangle with

edge length 1. A corresponding é € KLl,pn must preserve these distances and,

thus, must fulfill:
. 1 S S FU
|§i|§§and |61 =&l =6 — &l =1L — &l =1 (27)

Clearly, there exists no circle with radius % which contains all three vertices
éi of this isosceles triangle.

From this follows that the CCP-relaxation dominates the ZGFN-relaxation for
L regularity, i.e. Eccp > E,qrn, and thus the solution of the relaxed problem
is energetically closer or equally close to the global optimum of the binary
problem. However, the ZGFN-relaxation is simpler than the CCP-relaxation
since it leads to simpler constraints on the dual variables. In addition, it can
be implemented more efficiently because the number of constraints on the dual
variables (6) increases only linearly with the number of labels. In contrast, the
CCP-relaxation imposes quadratically many constraints on the dual variables
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(7) yielding higher computation times. In practice, one can accelerate the
CCP-relaxation by first solving the ZGFN-relaxation and locally switching to
the CCP-relaxation if needed, i.e. if the boundary of the smaller constraint set
is reached [47].

7 An Experimental Comparison of Discrete and Continuous
Multilabel Approaches

We have introduced the main approaches for solving the minimal partition
problem for multiple labels and have discussed relations, differences, advan-
tages and drawbacks. To experimentally evaluate the performance of the dif-
ferent algorithms we apply them to the problem of interactive segmentation.
In this section we compare results of the proposed multilabel segmentation
approaches for the relaxations by Zach et al. (PdeZGFN), by Chambolle et
al. (PdeCCP), for a-expansion based on 4 and 8-neighborhood (Alpha4, Al-
pha8) as well as for the algorithm by Komodakis et al. (FastPD4, FastPD8).
For the PDE approaches we set A = 67. We used a GTX 680 for the parallel
GPU computations. For a-expansion and Fast-PD we used A = 5.2 for the
4-neighborhood case and A = 1.7 for the 8-neighborhood case. Computations
were carried out on an Intel Xeon Quad Core with 2.27GHz. All values for
A were chosen optimally for each approach with respect to the chosen data
base. For segmentation we require a data term f, which indicates the associ-
ation of each pixel with each label. Here, we use the data term for interactive
segmentation proposed in [29] with the parameters o = 1.2, « = 0.7 and y = 5.
In the following, we will experimentally compare the different approaches
with respect to segmentation quality, optimality and runtimes. Note that the
energy formulations depend on model choices whose optima do not necessarily
coincide with the ground truth of the segmentation. Hence the quality evalu-
ation reflects both the quality of the optimization and of the chosen model.

7.1 Segmentation Accuracy

For unsupervised segmentation several benchmarks are available, e.g. the Berke-
ley database, the GrabCut database or the Pascal VOC Database. As exten-
sively discussed in [36], these benchmarks are not suited for testing interac-
tive segmentation. Hence, Santner et al. recently published the first bench-
mark for interactive scribble based multilabel segmentation containing 262
seed-groundtruth pairs from 158 natural images containing between 2 and 13
user labeled segments. The label frequencies (Table 1) are not uniformly dis-
tributed. Instead, small label numbers up to 4 appear frequently, whereas large
numbers are rare. This influences the statistics on quality and runtime.

To assess the segmentation quality, the Dice-score relates the overlap area
of the groundtruth (2; and the computed segment (2; to their sum. Taking the
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Labels 2 3 4 5 6 7 8 9 13
Frequency 66 104 58 18 11 2 2 1 1

Table 1 Appearance frequency for different label numbers in the Graz benchmark for
interactive segmentation [36].

Optimization | avg. Dice-Score 2 regions | avg. Dice-Score avg. Runtime
PdeZGFN 0.9397 (£0.0724) 0.9322 (£0.0746) | 0.49 (+0.44) sec
PdeCCP 0.9350 (£0.0803) 0.9314 (£0.0782) 1.77 (£2.46) sec

Alpha4 0.9477 (+0.0533) 0.9358 (£0.0686) | 1.29 (+1.37) sec
Alpha8 0.9466 (£0.0550) 0.9372 (£0.0680) | 2.63 (£2.59) sec
FastPD4 0.9472 (£0.0533) 0.9360 (£0.0682) | 0.74 (£0.63) sec
FastPD8 0.9466 (£0.0550) 0.9366 (+0.0683) 1.52 (£1.81) sec

Table 2 Comparison of the examined methods for PDE (PdeZGFN and PdeCCP) and
MRF (Alpha4, Alpha8, FastPD4, FastPD8) optimization on the Graz benchmark. The mean
and standard deviation are given for the Dice-score for the (globally optimally solvable) case
of two regions and for the whole database, as well as for the runtime per image on the whole
database.

arithmetic mean over all segments yields
Z 2\(2 N 2]
192:] + 92|
The closer to 1 the Dice-score the more accurate is the segmentation. To
evaluate the segmentation accuracy of the continuous and discrete approaches
we computed the arithmetic mean and standard deviation of the Dice-score
over all images of the database in Table 2. The values are very similar for

all methods suggesting that the segmentation accuracy is independent of the
optimization method.

Dice($2,2) (28)

7.1.1 Statistical Evaluation

We want to statistically validate this statement. To this end, we used the
Kolmogorov-Smirnov test in order to test the following hypothesis for each
two optimization methods

H : The Dice-scores follow the same distribution. (29)

The test is based on the comparison of the empirical cumulative distribution
function of each Dice-score dataset. This hypothesis could not be rejected for
any two optimization approaches on a significance level of 5%. Figure 3 shows
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Fig. 3 Statistical evaluation of the Dice-score for all methods. The plot shows the empirical
cumulative distribution function of the Disce-score (P(Dice—score > d)) over all benchmark
images. The closer to 1 the function is the higher is the quality of its segmentation results.
Based on the Kolmogorov-Smirnov test we could not find any significant quality differences.

the empirical cumulative distribution function of the Disce-score values for all
methods. The plot confirms that the overall quality of the results does not
depend on the optimization method.

7.1.2 Visual Evaluation

To visually assess the quality of the compared optimization schemes we show
results on a few benchmark images in Figure 4. When inspecting the results
of the algorithms we notice only slight quality differences, which confirm the
result of the statistical test.

Visual differences between results of continuous and discrete methods are
often due to metrication errors, which occur in discrete optimization (Figure
5 ¢) ). Region boundaries tend to run either horizontally, vertically or diag-
onally, since the boundary length is either measured with respect to the L;
norm (4-connectivity) or an approximated Ly norm (larger connectivity). This
is especially true for regions with uncertain data fidelity.

7.2 Ambiguities of the Segmentation Results

For more than two labels, none of the introduced algorithms yield globally
optimal results in general. Hence, ambiguities can appear in the results.

For the two graph cut algorithms, ambiguities arise due to the order in which
labels o are visited in each outer iteration. The order of traversal influences
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a) PdeZGFN b) PdeCCP c) Alpha8 c) FastPD8

Fig. 4 Results for the compared algorithms on selected images from the Graz benchmark.
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(c) (d) (e) () ()

Fig. 5 Ambiguities and metrication errors in optimization results on given input images a)
and b) from the Graz benchmark. ¢) Metrication errors for Alpha4 (top), Alpha8 (center)
in contrast to a smooth boundary for the PDE result (bottom), d) Ambiguous MRF results
depending on the traversed label order, e) Ambiguous PdeCCP results due to binarization,
f,g) Ambiguous MRF results due to different initializations.

both the quality and the runtime of the algorithm. For four regions we reg-
istered a runtime difference of up to five seconds depending on whether we
iterated over labels 1,..., N or N,...,1. Segmentation results can also vary
locally for different iteration orders, see Figure 5 d). Results also depend on
the initialization, which can lead to the flipping of small regions or even whole
labels. In Figures 5 f) and g) the first run was initialized with a constant label,
the second with random values in the lower half of the image.

In contrast, with PDEs the order in which the label indicator functions w;
are updated has no impact on the result. This is because each u; is updated
separately, whereas the constraints are enforced at the end of each iteration by
projection. Furthermore, since the relaxed problems 4.3.1 and 4.3.2 are convex,
their global minimum will always be attained independent of the initialization.
However, ambiguities also occur for PDE-based approaches for more than two
labels when the relaxed solution is binarized (13), see Figure 5e).

7.3 Experimental Optimality Bounds

For both the continuous and the discrete approaches, a priori and a posteriori
optimality bounds were given in (15), (22), (14) and (23).

To compute the a posteriori bounds, we use the benchmark results. Let u
indicate the integer solution of the respective algorithm and w the result of
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PdeCCP | PdeZGFN Alpha4 FastPD4

0.18% 0.25% 0.0002% 0.001%

Table 3 Experimental optimality bounds which indicate how far the computed multilabel
solutions are from the global minima of the segmentation energies, i.e. the relative gap given
in (30). The continuous approaches are not comparable to the discrete approaches, but the
PdeCCP approach is tighter than the ZGFN approach, and the Alpha4 approach is tighter
than the FastPD4 approach.

the solution of the corresponding relaxed optimization problem. Then we can
compute the following relative optimality bound

E(u) — E(u)
E(u)
For computing the relaxed energy of the discrete appoaches we optimized

the linear program (18). Table 3 shows the average bounds on the Graz bench-
mark for the considered continuous and discrete approaches. The results sug-
gest that only very small numbers of pixels are not optimal after optimization
terminates. Thus, even though the algorithms do not yield the global optimum
for more than two labels, they are very close to it with negligible error. Figure
6 shows results of the relaxed optimization problems for the continuous algo-
rithms. The number of non-binary grey pixels without clear label assignment
is very small, e.g. the elephant’s tooth and the top of the church tower.
Table 3 suggests that the discrete approaches yield even smaller gaps than
the continuous approaches. Concluding a higher accuracy of the discrete ap-
proaches from these results would, however, be misleading for two reasons:
1) Since the original optimization problems are different (i.e. the discrete ap-
proaches only approximate the Ls-norm), the energy relation between the
original problems and their respective relaxations differs as well. Thus the
measured bounds are not comparable between continuous and discrete ap-
proaches. 2) The error bounds are only upper bounds - there is no indication
on how far the optimal binary solution actually is from the computed solu-
tion. The results for the continuous approaches confirm that the relaxation
proposed by Chambolle et al. is tighter than that by Zach et al. They also
suggest that a-expansion results are closer to optimality than Fast-PD results
due to different label orders and initializations.

G(u, i) = (30)

7.4 Runtimes

For interactive image segmentation runtimes close to real-time are indispens-
able. One of the advantages of PDE based methods is that they can be par-
allelized and run on graphics hardware. In contrast, computing the maximum
flow on a graph in parallel is difficult leading only to limited speedups.

The average runtime for each method on the whole database is indicated in
Table 2. The continuous approaches yield lower runtimes on average per image
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a) Chambolle et al. b) Zach et al.

Fig. 6 Results of the relaxed optimization problems before binarization a) by Chambolle
et al. and b) by Zach et al. The fact that the indicator functions are non-binary in very few
locations only (marked by red circles) indicates near-optimality of the computed solutions.

than the discrete methods, with PdeZGFN exhibiting 0.49 seconds. Among
the discrete approaches FastPD4 yields the lowest average runtime with 0.74
seconds. Note that when PdeCCP is implemented as originally proposed in [6]
no exact solution is computed due to the inexact Dykstra projections onto the
set (7). However, the results are very similar and the runtime is diminished by
a factor of three with strongly reduced memory consumption.

7.4.1 Statistical Evaluation

To statistically evaluate differences in the computational speed between all
methods, we used the Kolmogorov-Smirnov test in order to examine the fol-
lowing hypothesis for each two optimization methods

H : The runtimes follow the same distribution. (31)

For the runtimes, this hypothesis was rejected for any two optimization ap-
proaches on a significance level of 5% and even of 1%. Figure 7 shows the
empirical cumulative distribution functions of the runtimes for all methods.
Runtimes above five seconds were cut to the maximum value of five seconds
in this Figure to improve readability. The plot confirms that the runtimes
strongly differ.

In general, the continuous ZGFN-relaxation exhibits the lowest runtime.
Among the continuous methods, only the PdeCCP approach obtains runtimes
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Fig. 7 Statistical evaluation of the runtimes for all methods. The plot shows the cumulative
distribution functions of the runtimes (P(runtime < t)) over all benchmark images. The
closer to 1 the plotted function is the faster is the corresponding algorithm. The Komogorov-
Smirnov test shows that the runtime differences are significant, i.e. PdeZGFN is the fastest
algorithm. All runtimes above 5 seconds are cut to 5 seconds for better readability.

above five seconds in case of more than six labels, with up to 28.83 seconds
maximum for 13 labels. In contrast, the PdeZGFN approach does not take
more than 2.54 seconds and thus scales well with the number of labels. Com-
parable results to the PdeZGFN method among the discrete methods can only
be obtained by the FastPD4 method. Alphad4 and FastPD8 show similar run-
time distributions, whereas Alpha8 yields the longest runtimes on average,
however, with only 7.9 seconds maximum for 13 labels. The percentage of im-
ages requiring more than 5 seconds until convergence are 0% (PdeZGFN), 5%
(PdeCCP), 3% (Alphad), 12% (Alpha8), 0% (FastPD4) and 5% (FastPDS).

7.4.2 Runtimes per Label Number

Finally, we examine the runtimes with respect to the number of labels for all
approaches. Figure 8 and corresponding Table 4 show the average runtime
in seconds for each label computed over the whole benchmark. For the PDE
approaches the runtime increases with the number of constraints on the dual
variables: approximately linearly in the case of the PdeZGFN approach with
linearly increasing constraint set (6), approximately quadratically in the case
of the PdeCCP approach with quadratically increasing constraint set (7). The
runtimes of the MRF approaches are less predictable as they strongly depend
on the data term and thus the image content as discussed in Section 2. The
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Method 2 3 4 5 6 7 8 9 13 avg-std
PdeZGFN | 0.29 | 045 | 0.54 | 0.56 | 1.24 | 1.63 | 1.04 | 1.38 2.54 0.51
PdeCCP 0.68 | 1.33 | 1.85 | 2.24 | 5,50 | 879 | 7.34 | 12.03 | 28.83 2.16

Alpha4 0.56 | 1.19 | 1.61 | 1.63 | 2.80 | 4.88 | 2.70 | 3.35 4.74 1.03

Alpha8 1.33 | 2.54 | 3.03 | 3.53 | 5.06 | 872 | 5.75 | 4.55 7.93 1.85
FastPD4 0.42 | 0.67 | 091 | 0.94 | 1.35 | 2.05 | 2.13 1.54 2.44 0.46
FastPD8 0.77 | 1.40 | 1.86 | 2.14 | 2.67 | 4.25 | 5.22 | 2.46 3.92 1.22

Table 4 Average runtimes in seconds per label number on the Graz benchmark. For the
last column we computed the standard deviation of the runtime for each label number
(comprising more than a single image) and took the average.

Method Aopt /100 Aopt /10 Aopt Aopt - 10 Aopt - 100
FastPD4 0.37 0.43 0.74 2.10 8.18
PdeZGFN 0.13 0.23 0.49 0.96 1.41

Table 5 Average runtimes in seconds of the proposed multilabel segmentation algorithms
PdeZGFN and FastPD4 with respect to differently scaled smoothness values. Aop¢ is the
optimal smoothness parameter with respect to the benchmark.

computation times vary with the smoothness parameter A\ as shown exemplar-
ily for FastPD4 and PdeZGFN in Table 5.

8 Conclusion

In this paper we have reviewed and experimentally compared the most popular
recent multilabel relaxations and optimization methods for the Potts model
from the continuous PDE and discrete MRF domain. To evaluate their per-
formance with respect to the quality of the results and runtimes, we applied
them to the problem of interactive multilabel segmentation. We statistically
tested the hypotheses that the quality and runtime followed the same distri-
bution for each two of the optimization methods under consideration. The
quality hypothesis could not be rejected, whereas the runtime hypothesis was
rejected. We conclude that all optimization approaches yield results
of comparable quality, whereas the runtimes differ. The lowest run-
time could be achieved with the relaxation by Zach et al. with 0.49
seconds on average per image containing 2 to 13 labels.
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Fig. 8 Comparison of average runtimes for different numbers of labels for PDE optimiza-
tion schemes (PdeZGFN and PdeCCP) compared to MRF optimization (Alpha4, Alpha8,
FastPD4, FastPD8) for the problem of interactive image segmentation.
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