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Abstract. State-of-the-art approaches in interactive image segmenta-
tion often fail for objects exhibiting complex color variability, similar
colors or difficult lighting conditions. The reason is that they treat the
given user information as independent and identically distributed in the
input space yielding a single color distribution per region. Due to their
strong overlap segmentation often fails. By statistically taking into ac-
count the local distribution of the scribbles we obtain spatially varying
color distributions, which are locally separable and allow for weaker reg-
ularization assumptions. Starting from a Bayesian formulation for im-
age segmentation, we derive a variational framework for multi-region
segmentation, which incorporates spatially adaptive probability density
functions. Minimization is done by three different optimization meth-
ods from the MRF and PDE community. We discuss advantages and
drawbacks of respective algorithms and compare them experimentally in
terms of segmentation accuracy, quantitative performance on the Graz
benchmark and speed.

1 Introduction

Segmentation denotes the task of dividing an image into meaningful, non-overlap-
ping regions. Meaningful, especially in complex images, depends on the user’s
intention of what he wants to extract from the image. This makes the problem
highly ill-posed, so user interaction is indispensable. Typically bounding boxes,
contours or scribbles are used to indicate the regions of interest. Such interactive
segmentation algorithms are widely used in image editing software packages, e.g.
for the identification of specific structures in medical images, for tracking or to
compose scenes from different images.

Previous interactive approaches use various methods to estimate color models
for each object to be segmented. In [21] the authors compute color histograms
and threshold histogram distances, in [17] Mixtures of Gaussians are employed
to estimate the color distributions, in [3] kernel density estimators are used to
estimate geodesic distances between each two pixels, and in [19] methods from
machine learning have been applied to the task.

All of these approaches derive a single, constant color model for each re-
gion. This policy does not adequately represent the given user information, since
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scribbles contain information on color and space. By disregarding the spatial in-
formation in kernel density estimation we assume that the color information is,
in a statistical sense, spatially independent and identically distributed (iid) over
the whole image. This is not correct and only leads to good results in case of
a strong, well-chosen prior and non-overlapping color distributions - which is,
clearly, not the case in natural images with changing light conditions, multicol-
ored objects and difficult textures. In fact, close to a scribble we have precise
information on the color of the object, at scribble pixels we even know the color
exactly. Only if we are far away from the scribbles spatial location becomes less
important, since we have no precise knowledge on the object color. This is not
reflected by previous data fidelity terms. In [13] we segmented optical flow fields
by means of spatially dependent flow vector distributions. The first contribution
of this paper is to show how non-iid assumptions can be handled in color density
estimation leading to strongly improved results.

The optimization of energies with respect to a set of variables which can take
one of multiple labels is among the central algorithmic challenges in computer
vision and image analysis. In the discrete MRF community the segmentation
problem is related to the classical Potts model [15], in the spatially continuous
setting it is typically referred to as the minimal partition problem. Over the years
a number of algorithms for multilabel optimization have been developed, both in
the MRF community and in the PDE community. As a result one may ask how
respective algorithms compare in practice. In [9] an experimental comparison of
discrete and continuous optimization approaches was presented for the specific
case of binary labeling problems. In recent years, the focus has shifted from
binary labeling problems to the more general multilabel problem. The second
contribution of this paper is to perform an experimental comparison of respective
algorithms for the minimal partition problem with more than two regions or
labels. Such comparions are invariably limited as they can only reflect the state
of the art for a given time whereas algorithms are continuously being improved.
In this paper, we will therefore focus on an experimental comparison of the
following algorithms, which minimize the same energy in a discrete and in a
continuous formulation:

– The discrete alpha expansion approach with 4 and 8 connectivity [5].

– The continuous approach by Chambolle et al. [6]

– The continuous approach by Lellmann et al. [12]

Yet, we should point out that even at this moment, there exist further accel-
erations of algorithms such as primal-dual algorithms [10] and dynamic hybrid
algorithms [2] for speeding up MRF optimization and Douglas-Rachford split-
ting which reportedly speeds up the Chambolle relaxation by a factor of 4-20
[11]. We qualitatively and quantitatively compare results on the specific problem
of multilabel image segmentation based on a known segmentation benchmark.
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2 A Statistical Framework for Segmentation

Let I : Ω → Rd denote the input image defined on the domain Ω ⊂ R2 (in the
discrete case Ω = {1..N} × {1..M}). The task of segmenting the image plane
into a set of n pairwise disjoint regions Ωi

Ω =
n⋃
i=1

Ωi, Ωi ∩Ωj = ∅ ∀i 6= j (1)

can be solved by computing a labeling l :Ω→ {1, .., n} indicating which of the n
regions each pixel belongs to: Ωi = {x

∣∣l(x) = i}.
For multilabel segmentation the energies to be minimized usually contain two
terms: a dataterm ρi : Ω → R indicating how well the observed data fits to
region i ∈ {1, ..., n}, and a length regularization term.

2.1 Segmentation as Bayesian Inference

In the framework of Bayesian inference, one can compute a segmentation by
maximizing the conditional probability

arg max
l

P(l | I) = arg max
l

P(I | l) P(l). (2)

Assuming that the colors of all pixels are independent of each other, but – in
contrast to previous interactive segmentation approaches – not independent of
space, we obtain

P(I | l) =

(∏
x∈Ω

(
P(I(x) |x, l)

)dx)
, (3)

where the exponent dx denotes an infinitesimal volume in R2 and assures the
correct continuum limit. Note how the space-dependency of color likelihoods
arises naturally in this formulation. It has commonly been neglected, yet we
shall show in this paper that taking into account this spatial variation of color
distributions based on scribble locations leads to drastic improvements of the
resulting interactive segmentation process. Assuming furthermore that the color
probability at location x does not depend on the labeling of other pixels y 6= x,
the product in (3) can be written as

P(I | l) =
n∏
i=1

∏
x∈Ωi

(
P(I(x) |x, l(x) = i)

)dx
. (4)

2.2 Inferring Space-Variant Color Distributions

The expression P(I(x) |x, l(x) = i) in (4) denotes the conditional probability for
observing a color value I at location x given that x is part of region Ωi. It can
be estimated from the user scribbles as follows. Let

Si :=
{(

xij
Iij

)
, j = 1, ..,mi

}
(5)
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Fig. 1. Schematic plot of a kernel density estimate in the joint space of location x
and color I computed for a set of sample points. If space is disregarded we obtain
the same density function P (I) at each pixel showing several peaks for colors, which
are predominant in different object parts. Normalizing the joint distribution gives the
conditional probability P(I|x) for observing a color I at a location x. At each location
x we obtain a separate color distribution showing only a single color peak for the locally
predominant color. This distribution is used as a data term for image segmentation.

denote the set of user scribbles Si for region i consisting of pixel locations xij
with corresponding color values Iij . The probability of a given color value I at
location x within region i is computed by a Parzen density estimator [1, 16] of
the form:

P̂(I, x | l(x) = i) =
1
mi

mi∑
j=1

k

(
x− xij
I − Iij

)
, (6)

i.e. a sum of normalized kernel functions k centered at each sample point in the
product space of location and color.
Figure 1 shows a schematic drawing of this distribution in the joint space of
color and spatial coordinate estimated from a set of sample points. Commonly
in interactive segmentation the location of the scribbles is not taken into account
and the space-independent color distribution, the marginal

P̂(I | l(x) = i) =
∫
P̂(I, x | l(x) = i) dx, (7)

is used to estimate color likelihoods. The marginal is plotted on the left and
contains four peaks, each one for a different predominant color of the foreground
object. At each location in the image, the likelihood for each of these colors
follows the same marginal distribution, no matter if we are very close to a scribble
or far away. In this paper, instead of the marginal the joint distribution of color
and space is estimated to account for color changes in segmentation regions.
Typically, the color is not independent of space. In this way, one obtains a
separate color distribution at each location in the image.
Unfortunately, in the considered scenario the Parzen density estimator (6) is not
guaranteed to converge to the true density since the samples are not independent
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and identically distributed (iid), but rather user-placed in locations which are
by no means independent. To account for this dependency we employ spatially
adaptive kernels. In practice, we choose isotropic Gaussian kernels with variance
σ and ρ in color and space dimension. Due to the separability of the Gaussian
kernel we can write:

k

(
x
I

)
= kρ(x)(x) kσ(I). (8)

To account for the non-uniform spatial distribution, the spatial kernel variance
ρ(x) depends on the image location x and is chosen proportional to the distance
from the k-th nearest scribble point xvk

∈ Si: ρ(x) = α|x− xvk
|2.

3 Discrete versus Continuous Energies

There are two basic approaches for the optimization of multilabel problems:
MRF approaches and PDE approaches. In the following we will review both
paradigms and point out practical advantages and drawbacks.

3.1 MRF approaches

For solving multilabel segmentation in the case of a discrete image domain we
seek to minimize the following energy

E(l) =
∑
i∈Ω

Di(l(i)) +
∑

(i,j)∈N

Sij(l(i), l(j)) (9)

where Di : {1, .., n} → R measures the data fidelity (see section 2) and Sij :
{1, .., n}×{1, .., n} → R the smoothness between pixels i and j. The smoothness
is summed over all pixel pairs in the neighborhood N . In the simplest case, N
consists of the upper, lower, left and right neighbor of each pixel. This is called
4-connectivity. If the diagonal neighbors belong to N as well, this is called 8-
connectivity. In discrete approaches, the image is represented by a graph contain-
ing one node for each pixel and links between neighboring nodes, whose weight is
associated with the smoothness term. This constitutes a Markov Random Field
interpretation of the problem (9).

In [20] different algorithms for the minimization of Markov Random Field ap-
proaches are compared: iterated conditional modes, graph cuts (alpha expansion
and alpha-beta-swaps) and message passing algorithms such as belief propaga-
tion. Of those algorithms, alpha expansion yields the best performance results
for the Pott’s model, which is a suitable model for the multiregion segmentation
problem. Hence, in this paper we use the graph cut alpha-expansion approach
[5] for optimization in the discrete case.

The basic idea of graph cuts is to compute a binary partition (‘cut‘) of the
nodes in a graph that separates a source from a sink node. The sum of the edge
weights which are crossed by the partition interface should be minimal of all
possible separations. One can show that this problem is equivalent to computing
a maximum flow which can be done in polynomial time.
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In computer vision, graph cuts were applied for the first time by Greig,
Porteous and Seheult [8]. They showed that for the problem of denoising a binary
image a global optimum of the corresponding MAP formulation can be found
by computing the maximum flow through a certain graph construction. Later
Boykov et al. revisited the idea exploring to a greater extend which energies can
be minimized by graph cuts [5].

If the smoothness penalty constitutes a metric on the label space, an iterative
method called alpha expansion can be applied. It was shown in [5] that the
computed result is energetically within a factor of two of the global optimum. In
the alpha expansion algorithm the multilabel problem is reduced to a number of
binary labeling problems which are iterated. The basic idea is that in each step
for a selected label α pixels can either keep their current label or take the label
α. To this end, a special graph is constructed and the min cut is computed. The
steps are executed for each label α in the label set until convergence. The binary
labeling problem of each step is solved globally optimal, the solution to the
multilabel segmentation problem, however, is only locally optimal. In this paper
we refer to the alpha expansion algorithm based on the interactive segmentation
dataterm with 4-connectivity as Gc4, with 8-connectivity as Gc8. It is based on
the max-flow implementation by Boykov and Kolmogorov [4].

3.2 PDE Approaches

In the continuous setting the optimization problem is formulated as a set of par-
tial differential equations (PDE) based on region indicator functions. The energy
in the continuous setting also consists of the dataterm and a length regulariza-
tion term. In case of convex energies or relaxations the resulting problem can be
solved by fast primal-dual optimization schemes.

For the multilabel minimal partition problem (the Pott’s model) three main
PDE based approaches have been proposed in parallel in recent years, e.g. the
approach by Chambolle et al. [6], Zach et al. [22] and by Lellmann et al. [12].
These approaches differ in their complexity and by the tightness of the energy
relaxation. None of these approaches is convex, but convex relaxations can be
formulated to tackle the optimization. However, as in the discrete case these
approaches only lead to locally optimal solutions.
Lellmann et al. [12] represent the n regions Ωi by the indicator function u ∈
BV(Ω, {0, 1})n.

ui(x) =

{
1, if x ∈ Ωi
0, else

∀i = 1, . . . , n. (10)

Here BV denotes the function space of bounded variation. Based on this defini-
tion they formulated the following energy given the dataterm ρi

E(u) =
n∑
i=1

∫
Ω

uiρi + λ

n∑
i=1

∫
Ω

g(x)|Dui| dx s.t.

n∑
i=1

ui(x) = 1, x ∈ Ω, (11)

which is minimized. The first term punishes incoherence with the observed data,
whereas the second term measures the length of the region boundaries. Here Dui
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denotes the distributional gradient of ui, λ balances the dataterm and the length
regularization and g(x) = exp(−γ|∇I(x)|) favors the coincidence of object and
image edges. To handle the non-differentiable indicator functions, the boundary
of the set indicated by ui, the perimeter, can be written as the total variation:

Per({x |ui(x) = 1}) =
∫
Ω

g(x)|Dui| = sup
ξ:|ξ(x)|≤g(x)

(
−
∫
Ω

ui div ξi dx
)
, (12)

where ξi ∈ C1
c (Ω,R2) denote the dual variables and C1

c the space of smooth
functions with compact support. With this notation, the original energy mini-
mization problem (11) can be relaxed to

min
u∈B

sup
ξ∈K1

{∫
Ω

uiρi dx− λ
n∑
i=1

∫
Ω

ui div ξi dx

}
(13)

B =

{
u ∈ BV(Ω, [0, 1])n

∣∣∣∣∣
n∑
i=1

ui = 1

}
,

K1 =

{
ξ ∈ C1

c (Ω,R2×n)

∣∣∣∣∣ ‖ξ(x)‖F ≤ g(x), x ∈ Ω

}
, (14)

where ‖.‖F denotes the Frobenius norm. For multilabel segmentation we compute
the interactive segmentation dataterm described in the previous section. We will
refer to the resulting approach based on the optimization scheme by Lellmann
et al. as PdeL.

Chambolle et al. [6] define the following region indicator function

ui(x) =

{
1, if l(x) ≥ i
0, else

∀i = 1, . . . , n. (15)

with 1 = u0 ≥ u1(x) ≥ ... ≥ un(x) ≥ un+1 = 0, where u0 = 1 and un+1 = 0
are added to simplify notation. Based on this indicator function the following
energy is proposed:

E(u) =
n∑
i=1

∫
Ω

(ui − ui+1)ρi + λ

n∑
i=1

∫
Ω

g(x)|Dui| dx (16)

1 = u0 ≥ u1(x) ≥ ... ≥ un(x) ≥ un+1 = 0. (17)

Since this energy is not convex due to the binary constraints on u Chambolle et
al. propose the following relaxation

min
u∈B

sup
ξ∈K2
η∈W

n∑
i=1

∫
Ω

(ui − ui+1)ηi − λ
n∑
i=1

ui div ξi dx (18)

K2 =

ξ : Ω → R2×n

∣∣∣∣∣ ∣∣ ∑
i1≤i≤i2

ξi
∣∣ ≤ g(x), 1 ≤ i1 ≤ i2 ≤ n

 (19)

W =

{
η : Ω → Rn

∣∣∣∣∣|ηi(x)| ≤ ρi(x), x ∈ Ω, 1 ≤ i ≤ n

}
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We will refer to this optimization method applied to the problem of multilabel
segmentation based on the interactive segmentation dataterm as PdeC.

Both energy formulations are relaxed to obtain convex approaches, which
can be globally minimized by primal-dual optimization schemes. In case of two
regions the thresholding theorem applies saying that the thresholded globally
optimal solution of the relaxed problem yields the globally optimal solution of the
original binary problem independent of the chosen threshold. In the multilabel
case the threshold theorem does not hold. However, the binarized solution of the
relaxed approach has been experimentally shown to lie within very tight bounds
from the optimal binary solution. Hence, the proposed relaxations lead to very
near optimal solutions of the original problem.

The approach by Lellmann et al. is simpler than the one by Chambolle et al.
since its relaxation leads to simpler constraints on the dual variables ξ. Besides
it is faster because the number of constraints on the dual variables increases only
linearly with the number of labels. In contrast, the approach by Chambolle et al.
demands quadratically many constraints on the dual variables yielding higher
computation times. However, in [14] the relaxation proposed by Chambolle et al.
has been shown to yield tighter bounds meaning that the solution of the relaxed
problem is closer to the global optimum of the binary problem than the relaxed
result of the approach by Lellmann et al..

3.3 Advantages and Disadvantages

In applications of MRF approaches and PDEs we encountered several advantages
and short-comings many of which are known to researchers working on these
topics. In particular:

Graph cuts do not require numerical tuning parameters, so they can eas-
ily be applied as a blackbox algorithm without further need to understand the
underlying optimization process. Instead, PDE approaches typically require the
choice of appropriate step size parameters and termination criterion. While ap-
propriate parameters can be determined automatically by convergence analysis
and the primal-dual gap, the latter is often not straight-forward to compute.

The commonly used alpha expansion for solving general multilabel MRFs is
based on iteratively solving binary problems. As we show in Figure 3 results may
therefore depend on the order of the labels. Furthermore graph cut approaches
exhibit metrication errors due to a rather crude approximation of the Euclidean
boundary length – see Section 4.4. Instead the PDE approaches for multilabel
optimization are based on minimizing a single convex functional. They provide
smooth object boundaries that do not exhibit a prominent grid bias. Further-
more, graph cuts cannot be parallelized in a straight forward manner, since the
max-flow problem lies in the P-complete complexity class of problems, which
are probably not efficiently parallelizable [7]. Instead, the considered PDE ap-
proaches are easily parallelizable yielding drastic speedups over CPU algorithms.
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a) Santner b) PdeC c) PdeL d) Gc4

Fig. 2. Results for the 4 compared algorithms on selected images from the Graz bench-
mark. a) Santner’s result with indicated user scribbles, b) PdeC, c) PdeL, d) Gc4.

4 Comparison of Segmentation Accuracy

In this section we compare results of the proposed multilabel segmentation ap-
proaches PdeL, PdeC and Gc4. To compute the interactive dataterm from user
scribbles the following parameters were used: σ = 1.2, α = 0.7, γ = 5.

For the PDE approaches we set λ = 67 and the step size τ = 0.28. We used a
GTX 580 for the parallel computations. For the alpha expansion we used λ = 6.
Computations were carried out on an Intel Core i7 CPU 860, 2.80GHz.

4.1 Results on the Graz Benchmark

For automatic segmentation several benchmarks are available, e.g. the Berkeley
database, the GrabCut database or the Pascal VOC Database. As extensively
discussed in [18], these benchmarks are not suited for testing interactive segmen-
tation. Hence, Santner et al. recently published the first benchmark for inter-
active scribble based multilabel segmentation containing 262 seed-groundtruth
pairs from 158 natural images containing between 2 and 13 user labeled segments.
The label frequencies are not uniformly distributed. Instead, small numbers such
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Labels 2 3 4 5 6 7 8 9 13

Frequency 66 104 58 18 11 2 2 1 1

Table 1. Appearance frequency for different label numbers in Santner’s database.

as 2, 3 or 4 labels appear frequently, whereas large numbers are rare (see Table
1). This influences the average quality and runtime values we compute later. To
evaluate the segmentation accuracy Santner et al. compute the arithmetic mean
of the Dice-score over all segments. It relates the overlap area of the groundtruth
Ω̄i and the computed segment Ωi to the sum of their areas

dice(Ω̄i, Ωi) =
2|Ω̄i ∩Ωi|
|Ω̄i|+ |Ωi|

. (20)

The closer to 1 the Dice-score the more accurate is the segmentation. To evaluate
the proposed spatially varying dataterm and the quality of the three different
optimization schemes we compute the average Dice-score on the benchmark,
which is given in Table 4.1, and compare the results to Santner’s approach.

Santner et al. [19] show impressive results for different combinations of color
and texture features in a random forest approach: RGB, HSV and CIELab col-
ors combined with image patches, Haralick features and Local Binary Patterns
(LBP). However, they neglect the locality of the scribbles by estimating a single,
invariant color model for each region. In our experiments we tested the pro-
posed approach with spatially constant and spatially varying color models on
their benchmark. If we use the spatially constant model the results are com-
parable to those obtained by Santner et al. (RGB color information without
texture). They obtain the best results combining CIELab and LBP features in
a 21 dimensional vector based on a scribble brush of radius 13. We obtain bet-
ter results on the benchmark by allowing for spatially varying color models. To
obtain the spatially constant approach we set α to a very large value, for the
space-variant approach we use α = 0.7 to obtain locally adaptive color distribu-
tions. The results summarized in Table 4.1 indicate that merely regarding the
spatial location of scribbles provides stronger performance improvements than a
multitude of sophisticated features. The proposed approach outperforms Sant-
ner’s spatially invariant dataterm with all four optimization schemes. The graph
cut approaches (Gc4 and Gc8) yield qualitatively better results than Santner’s
approach, especially in case of 8-connectivity. The PDE-based approaches yield
results comparable to the graph cuts or slightly better. The relaxation proposed
by Lellmann et al. (PdeL) is less tight than that by Chambolle et al. (PdeC)
leading to results slightly inferior to those by Chambolle et al.

4.2 Visual Results

To visually assess the quality of the three compared optimization schemes we
show results on a few benchmark images in Figure 2. When inspecting the results
of the three algorithms we notice only slight quality differences, e.g. in the foot
of the elephant.
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Method Dim Brush Optim. Dice-Score

[19], RGB 3 - RF 0.877
our approach, spatially constant 3 3 PdeL 0.872

[19], CIELab + LBP 21 5 RF 0.917
our approach, space-variant 3 5 PdeL 0.923

[19], CIELab + LBP 21 13 RF 0.927
our approach, space-variant 3 13 Gc4 0.929
our approach, space-variant 3 13 Gc8 0.931
our approach, space-variant 3 13 PdeL 0.931
our approach, space-variant 3 13 PdeC 0.934

Table 2. Comparison of the proposed spatially varying color model with four different
optimization schemes based on random forest (RF), graph cuts (Gc4, Gc8) and PDEs
(PdeL, PdeC) to spatially constant color models on the Graz Benchmark. For each
approach the dimension of the scribble brush and the average Dice-score is indicated.

4.3 Ambiguities

The alpha expansion algorithm as well as the PDE-based approaches do not
lead to globally optimal solutions. Hence, ambiguities can appear in the results.
The alpha expansion algorithm iterates over all possible labels α and each time
solves a binary graph cut problem. This process is repeated until convergence.
The order of traversal influences both the quality and the runtime of the algo-
rithm. For four regions we registered a runtime difference of up to five seconds
depending on whether we iterated over labels in order 1..N or N..1 in each step
of the algorithm. Results can differ locally depending on the iteration order as
well. An example is shown in Figure 3 b).
In contrast, when solving PDEs each indicator function ui is updated separately
and the variable constraints are only enforced at the end of each iteration, so
the iteration order has no impact on the result. Furthermore, since the relaxed
problems (13) and (18) are convex, we will always reach their global minimum
independent of the label order.
However, ambiguities also occur for PDE-based approaches in the multilabel
case. The relaxed problems are convex and thus lead to globally optimal so-
lutions. But to obtain a segmentation the solution must be transformed into
a binary result. In case of more than two regions this transformation is not
uniquely defined and can be carried out e.g. by thresholding or maximization
over the indicator functions. This leads to ambiguous results depending on the
chosen method (see Figure 3).

4.4 Metrication Errors

In discrete optimization metrication errors can occur (Figure 3 a). Region bound-
aries tend to run either horizontally, vertically or diagonally, since the boundary
length is not equally penalized in different directions, e.g. in the sea gull image
in Figure 2. This is especially true for regions with uncertain data fidelity. The
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input image (a) (b) (c)

Fig. 3. Metrication errors and ambiguities in optimization results on a given input
image. a) Metrication error for Gc4 (top), Gc8 (center) in contrast to a smooth bound-
ary for the PDE result (bottom), b) Ambiguous graph cut results depending on the
traversed label order, c) Ambiguous PdeC results due to thresholding.

rotationally invariant L2 norm which is optimized in the continuous case is ap-
proximated in the discrete case. With a 4-connectivity boundary the length is
penalized with respect to the L1 norm. The larger the neighborhood, the closer
comes the penalization to the L2 norm at the cost of very large graphs and
computation times as well as memory consumption.

5 Runtimes

Especially for interactive image segmentation runtimes close to real-time are
indispensable. One of the great advantages of PDE based methods is that they
can be parallelized and run on graphics hardware. In contrast, computing the
maximum flow on a graph with augmenting path algorithms is difficult and
only leads to limited speedups. For the PDE approaches the runtime increases
with the number of constraints on the dual variables: linearly in case of the
PdeL approach (14), quadratically in case of the PdeC approach (19). Figure 4
shows the average runtime in seconds for each label computed over the whole
database. The average runtime for the PdeL-method is 0.43 seconds in contrast
to 1.27 seconds for the PdeC-method, which is a factor of three higher.
For alpha expansion the runtimes seem to increase linearly in the number of
labels. However, the average runtime on the whole database is 1.24 seconds
for 4-connectivity and 2.54 seconds for 8-connectivity, which exceeds the PDE
approaches by a factor of 2.9 and 5.9 respectively. These computation times vary
with the smoothness λ as shown exemplarily for Gc4 and PdeL in Table 5.

Method λopt/100 λopt/10 λopt λopt · 10 λopt · 100

Gc4 0.47 0.84 1.24 4.06 17.13

PdeL 0.08 0.16 0.43 1.86 5.41

Table 3. Average runtimes in seconds of the proposed multilabel segmentation algo-
rithms with respect to differently scaled smoothness values. λopt is the optimal smooth-
ness parameter with respect to the benchmark.
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Fig. 4. Comparison of runtimes for different numbers of labels for PDE optimization
schemes (PdeL and PdeC) compared to the alpha expansion optimization (Gc4 and
Gc8) for the problem of interactive image segmentation.

6 Conclusion

In this paper we proposed an algorithm for interactive multi-region segmentation
which takes into account the spatial dimension of the user scribbles. In this
way, overlapping color distributions become locally separable allowing for weaker
regularization assumptions and correct segmentations in difficult images. We
provide an experimental comparison of discrete and continuous optimization
approaches. While all algorithms provide similarly good qualitative results on
a recently proposed benchmark, the PDE-based methods provide slightly more
accuracy, partly due to an absence of metrication errors and partly due to the
fact that the multilabel problem is solved by minimizing a single convex energy
rather than an iterative sequence of binary problems. Especially the approach
by Lellmann et al. is close to real-time on average and runs substantially faster.
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tions for variational problems in computer vision. In Proc. of ECCV, 2010.

12. J. Lellmann, J. Kappes, J. Yuan, F. Becker, and C. Schnörr. Convex multiclass
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