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Figure 1. Example result of our technique: The segmentation of the first frame (red) is used to learn the model of the specific object to
track, which is segmented in the rest of the frames independently (green). One every 20 frames shown of 90 in total.

Abstract

This paper tackles the task of semi-supervised video ob-
ject segmentation, i.e., the separation of an object from the
background in a video, given the mask of the first frame.
We present One-Shot Video Object Segmentation (OSVOS),
based on a fully-convolutional neural network architecture
that is able to successively transfer generic semantic infor-
mation, learned on ImageNet, to the task of foreground seg-
mentation, and finally to learning the appearance of a sin-
gle annotated object of the test sequence (hence one-shot).
Although all frames are processed independently, the re-
sults are temporally coherent and stable. We perform exper-
iments on three annotated video segmentation databases,
which show that OSVOS is fast and improves the state of
the art by a significant margin (79.8% vs 68.0%).

1. Introduction
From Pre-Trained Networks...

Convolutional Neural Networks (CNNs) are revolution-
izing many fields of computer vision. For instance, they
have dramatically boosted the performance for problems
like image classification [23, 47, 19] and object detec-
tion [15, 14, 26]. Image segmentation has also been taken
over by CNNs recently [29, 22, 53, 3, 4], with deep architec-
tures pre-trained on the weakly related task of image classi-
fication on ImageNet [44]. One of the major downsides of
deep network approaches is their hunger for training data.
Yet, with various pre-trained network architectures one may
ask how much training data do we really need for the spe-
cific problem at hand? This paper investigates segmenting
an object along an entire video, when we only have one sin-
gle labeled training example, e.g. the first frame.
∗First two authors contributed equally

...to One-Shot Video Object Segmentation

This paper presents One-Shot Video Object Segmenta-
tion (OSVOS), a CNN architecture to tackle the problem
of semi-supervised video object segmentation, that is, the
classification of all pixels of a video sequence into back-
ground and foreground, given the manual annotation of one
(or more) of its frames. Figure 1 shows an example result
of OSVOS, where the input is the segmentation of the first
frame (in red), and the output is the mask of the object in
the 90 frames of the sequence (in green).

The first contribution of the paper is to adapt the CNN to
a particular object instance given a single annotated image
(hence one-shot). To do so, we adapt a CNN pre-trained on
image recognition [44] to video object segmentation. This
is achieved by training it on a set of videos with manually
segmented objects. Finally, it is fine-tuned at test time on a
specific object that is manually segmented in a single frame.
Figure 2 shows the overview of the method. Our proposal
tallies with the observation that leveraging these different
levels of information to perform object segmentation would
stand to reason: from generic semantic information of a
large amount of categories, passing through the knowledge
of the usual shapes of objects, down to the specific proper-
ties of a particular object we are interested in to segment.

The second contribution of this paper is that OSVOS pro-
cesses each frame of a video independently, obtaining tem-
poral consistency as a by-product rather than as the result of
an explicitly imposed, expensive constraint. In other words,
we cast video object segmentation as a per-frame segmen-
tation problem given the model of the object from one (or
various) manually-segmented frames. This stands in con-
trast to the dominant approach where temporal consistency
plays the central role, assuming that objects do not change
too much between one frame and the next. Such meth-
ods adapt their single-frame models smoothly throughout
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Pre-trained on ImageNet
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Parent Network
Trained on DAVIS training set

2

Test Network
Fine-tuned on frame 1 of test sequence
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Figure 2. Overview of OSVOS: (1) We start with a pre-trained base CNN for image labeling on ImageNet; its results in terms of segmen-
tation, although conform with some image features, are not useful. (2) We then train a parent network on the training set of DAVIS; the
segmentation results improve but are not focused on an specific object yet. (3) By fine-tuning on a segmentation example for the specific
target object in a single frame, the network rapidly focuses on that target.

the video, looking for targets whose shape and appearance
vary gradually in consecutive frames, but fail when those
constraints do not apply, unable to recover from relatively
common situations such as occlusions and abrupt motion.

In this context, motion estimation has emerged as a
key ingredient for state-of-the-art video segmentation algo-
rithms [49, 42, 17]. Exploiting it is not a trivial task how-
ever, as one e.g. has to compute temporal matches in the
form of optical flow or dense trajectories [5], which can be
an even harder problem.

We argue that temporal consistency was needed in the
past, as one had to overcome major drawbacks of the then
inaccurate shape or appearance models. On the other hand,
in this paper deep learning will be shown to provide a suffi-
ciently accurate model of the target object to produce tem-
porally stable results even when processing each frame in-
dependently. This has some natural advantages: OSVOS
is able to segment objects through occlusions, it is not lim-
ited to certain ranges of motion, it does not need to process
frames sequentially, and errors are not temporally propa-
gated. In practice, this allows OSVOS to handle e.g. inter-
laced videos of surveillance scenarios, where cameras can
go blind for a while before coming back on again.

Our third contribution is that OSVOS can work at var-
ious points of the trade-off between speed and accuracy.
In this sense, it can be adapted in two ways. First, given
one annotated frame, the user can choose the level of fine-
tuning of OSVOS, giving him/her the freedom between a
faster method or more accurate results. Experimentally, we
show that OSVOS can run at 181 ms per frame and 71.5%
accuracy, and up to 79.7% when processing each frame in
7.83 s. Second, the user can annotate more frames, those
on which the current segmentation is less satisfying, upon
which OSVOS will refine the result. We show in the exper-
iments that the results indeed improve gradually with more
supervision, reaching an outstanding level of 84.6% with
two annotated frames per sequence, and 86.9% with four,
from 79.8% from one annotation.

Technically, we adopt the architecture of Fully Con-
volutional Networks (FCN) [12, 27], suitable for dense
predictions. FCNs have recently become popular due to
their performance both in terms of accuracy and compu-
tational efficiency [27, 8, 9]. Arguably, the Achilles’ heel
of FCNs when it comes to segmentation is the coarse scale
of the deeper layers, which leads to inaccurately localized
predictions. To overcome this, a large variety of works
from different fields use skip connections of larger feature
maps [27, 18, 53, 30], or learnable filters to improve upscal-
ing [34, 54]. To the best of our knowledge, this work is the
first to use FCNs for the task of video segmentation.

We perform experiments on three video object segmen-
tation datasets (DAVIS [37], Youtube-Objects [41, 20], and
SegTrack v2 [25]) and show that OSVOS significantly im-
proves the state of the art in the most challenging DAVIS
79.8% vs 68.0% when given a single annotated frame. Our
technique is able to process a frame of DAVIS (480×854
pixels) in 102 ms. By increasing the level of supervision,
OSVOS can further improve its results to 86.9% with just
four annotated frames per sequence. OSVOS thus provides
a vastly accelerated rotoscoping tool.

Our full code, training scripts, pre-trained models, and
pre-computed results will be made publicly available.

2. Related Work

Video Object Segmentation and Tracking: Most of the
current literature on semi-supervised video object segmen-
tation enforces temporal consistency in the video sequences
to propagate the initial mask into the following frames. First
of all, in order to reduce the computational complexity some
works make use of superpixels [6, 17], patches [42, 11],
or even object proposals [38]. Märki et al. [33] cast the
problem into a bilateral space in order to solve it more ef-
ficiently. After that, an optimization using one of the pre-
vious aggregations of pixels is usually performed; which
can consider the full video sequence [38, 33], a subset of



frames [17], or only the results in frame n to obtain the
mask in n + 1 [42, 6, 11]. A coeval work [21], also using
deep learning for video object segmentation, learns to refine
the mask frame by frame.

As part of their pipeline, some of the methods include the
computation of optical flow [17, 42], which considerably re-
duces their speed. As stated previously, our method differs
significantly from such previous work in that we segment
each frame independently, to push the limits of the CNN
without introducing temporal information.

In the case of visual tracking (bounding boxes instead
of segmentation) Nam and Han [32] use a CNN to learn a
representation of the object to be tracked, but only to look
for the most similar window in frame n+1 given the object
in frame n. In contrast, our CNN learns a single model from
frame 1 and segments the rest of the frames from this model.

FCNs for Segmentation: Segmentation research has
closely followed the innovative ideas of CNNs in the last
few years. The advances observed in image recogni-
tion [23, 47, 19] have been beneficial to segmentation in
many forms (semantic [27, 34], instance- level [14, 39, 8],
biomedical [43], generic [29], etc.). Many of the current
best performing methods have in common a deep architec-
ture, usually pre-trained on ImageNet, trainable end-to-end.
The idea of dense predictions with CNNs was pioneered
by [12] and formulated by [27] in the form of Fully Convo-
lutional Networks (FCNs) for semantic segmentation. The
authors noticed that by changing the last fully connected
layers to 1 × 1 convolutions it is possible to train on im-
ages of arbitrary size, by predicting correspondingly-sized
outputs. Their approach boosts efficiency over patch-based
approaches where one needs to perform redundant compu-
tations in overlapping patches. More importantly, by re-
moving the parameter-intensive fully connected layers, the
number of trainable parameters drops significantly, facili-
tating training with relatively few labeled data.

In most CNN architectures [23, 47, 19], activations of
the intermediate layers gradually decrease in size, because
of spatial pooling operations or convolutions with a stride.
Making dense predictions from downsampled activations
results in coarsely localized outputs [27]. Deconvolutional
layers that learn how to upsample are used in [34, 54].
In [39], activations from shallow layers are gradually in-
jected into the prediction to favor localization. However,
these architectures come with many more trainable param-
eters and their use is limited to cases with sufficient data.

Following the ideas of FCNs, Xie and Tu [53] separately
supervised the intermediate layers of a deep network for
contour detection. The duality between multiscale contours
and hierarchical segmentation [1, 40] was further studied by
Maninis et al. [29] by bringing CNNs to the field of generic
image segmentation. In this work we explore how to train
an FCN for accurately localized dense prediction based on

very limited annotation: a single segmented frame.

3. One-Shot Deep Learning
Let us assume that one would like to segment an object in

a video, for which the only available piece of information is
its foreground/background segmentation in one frame. In-
tuitively, one could analyze the entity, create a model, and
search for it in the rest of the frames. For humans, this very
limited amount of information is more than enough, and
changes in appearance, shape, occlusions, etc. do not pose
a significant challenge, because we leverage strong priors:
first “It is an object,” and then “It is this particular object.”
Our method is inspired by this gradual refinement.

We train a Fully Convolutional Neural Network (FCN)
for the binary classification task of separating the fore-
ground object from the background. We use two successive
training steps: First we train on a large variety of objects,
offline, to construct a model that is able to discriminate the
general notion of a foreground object, i.e., “It is an object.”
Then, at test time, we fine-tune the network for a small num-
ber of iterations on the particular instance that we aim to
segment, i.e., “It is this particular object.” The overview of
our method is illustrated in Figure 2.

3.1. End-to-end trainable foreground FCN

Ideally, we would like our CNN architecture to satisfy
the following criteria:

1. Accurately localized segmentation output, as dis-
cussed in Section 2.

2. Relatively small number of parameters to train from a
limited amount of annotation data.

3. Relatively fast testing times.
We draw inspiration from the CNN architecture of [30],
originally used for biomedical image segmentation. It is
based on the VGG [47] network, modified for accurately
localized dense prediction (Point 1). The fully-connected
layers needed for classification are removed (Point 2), and
efficient image-to-image inference is performed (Point 3).
The VGG architecture consists of groups of convolutional
plus Rectified Linear Units (ReLU) layers grouped into 5
stages. Between the stages, pooling operations downscale
the feature maps as we go deeper into the network. We con-
nect convolutional layers to form separate skip paths from
the last layer of each stage (before pooling). Upscaling op-
erations take place wherever necessary, and feature maps
from the separate paths are concatenated to construct a vol-
ume with information from different levels of detail. We
linearly fuse the feature maps to a single output which has
the same dimensions as the image, and we assign a loss
function to it. The proposed architecture is shown in Fig-
ure 4 (1), foreground branch.

The pixel-wise cross-entropy loss for binary classifica-
tion (we keep the notation of Xie and Tu [53]) is in this case



defined as:

L (W)=−
∑
j

yj logP (yj=1|X;W)+(1− yj)log (1−P (yj=1|X;W))

=−
∑

j∈Y+

logP (yj=1|X;W)−
∑

j∈Y−

logP (yj=0|X;W)

where W are the standard trainable parameters of a CNN,
X is the input image, yj ∈ 0, 1, j = 1, .., |X| is the pixel-
wise binary label of X , and Y+ and Y− are the positive
and negative labeled pixels. P (·) is obtained by applying a
sigmoid to the activation of the final layer.

In order to handle the imbalance between the two binary
classes, Xie and Tu [53] proposed a modified version of the
cost function, originally used for contour detection (we drop
W for the sake of readability):

Lmod=−β
∑

j∈Y+

logP (yj=1|X)− (1−β)
∑

j∈Y−

logP (yj=0|X) (1)

where β = |Y−|/|Y |. Equation 1 allows training for imbal-
anced binary tasks [22, 53, 29, 30].

3.2. Training details

Offline training: The base CNN of our architecture [47]
is pre-trained on ImageNet for image labeling, which has
proven to be a very good initialization to other tasks [27,
53, 22, 29, 18, 54]. Without further training, the network
is not capable of performing segmentation, as illustrated in
Figure 2 (1). We refer to this network as the “base network.”

We therefore further train the network on the binary
masks of the training set of DAVIS, to learn a generic no-
tion of how to segment objects from their background, their
usual shapes, etc. We use Stochastic Gradient Descent
(SGD) with momentum 0.9 for 50000 iterations. We aug-
ment the data by mirroring and zooming in. The learning
rate is set to 10−8, and is gradually decreased. After of-
fline training, the network learns to somehow segment fore-
ground objects from the background, as illustrated in Fig-
ure 2 (2). We refer to this network as the “parent network.”

Online training/testing: With the parent network avail-
able, we can proceed to our main task (“test network” in
Figure 2 (3)): Segment a particular entity in a video, given
the image and the segmentation of the first frame. We pro-
ceed by further training (fine-tuning) the parent network for
the particular image/ground-truth pair, and then testing on
the entire sequence, using the new weights. The timing of
our method is therefore affected by two times: the fine-
tuning time (once per annotated mask) and the segmenta-
tion of all frames (once per frame). In the former we have a
trade-off between quality and time: the more iterations we
allow the technique to learn, the better results but the longer

Figure 3. Qualitative evolution of the fine tuning: Results at 10
seconds and 1 minute per sequence.

the user will have to wait for results. The latter does not de-
pend on the training time: OSVOS is able to segment each
480p frame (480× 854) in 102 ms.

Regarding the fine-tuning time, we present two differ-
ent modes: One can either need to fine-tune online, by seg-
menting a frame and waiting for the results in the entire
sequence, or offline, having access to the object to segment
beforehand. Especially in the former mode, there is the need
to control the amount of time dedicated to training: the more
time allocated for fine-tuning, the more the user waits and
the better the results. In order to explore this trade off, in
our experiments we train for a period between 10 seconds
and 10 minutes per sequence. Figure 3 shows a qualitative
example of the evolution of the results’ quality depending
on the time allowed for fine-tuning.

In the experiments section, Figure 8 quantifies this evo-
lution. Ablation analysis shows that both offline and online
training are crucial for good performance: If we perform
our online training directly from the ImageNet model, the
performance drops significantly. Only dropping the online
training for a specific object also yields a significantly worse
performance, as already transpired from Figure 2 (2).

3.3. Contour snapping

In the field of image classification [23, 47, 19], where
our base network was designed and trained, spatial invari-
ance is a design choice: no matter where an object appears
in the image, the classification result should be the same.
This is in contrast to the accurate localization of the ob-
ject contours that we expect in (video) object segmentation.
Despite the use of skip connections [27, 18, 53, 30] to mini-
mize the loss of spatial accuracy, we observe that OSVOS’s
segmentations have some room for improvement in terms
of contour localization. We propose two different strategies
to improve the results in this regard.

First, we propose the use of the Fast Bilateral Solver
(FBS) [2] to snap the background prediction to the im-
age edges. It performs a Gaussian smoothing in the
five-dimensional color-location space, which results in a
smoothing of the input signal (foreground segmentation)
that preserves the edges of the image. It is useful in practice
because it is fast (≈60 ms per frame), and it is differentiable
so it can be included in an end-to-end trainable deep learn-
ing architecture. The drawback of this approach, though, is
that it preserves naive image gradients, i.e. pixels with high
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Snap the foreground mask to accurate contours
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Specific object - Less accurate contours
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Figure 4. Two-stream FCN architecture: The main foreground
branch (1) is complemented by a contour branch (2) which im-
proves the localization of the boundaries (3).

Euclidean differences in the color channels.

To overcome this limitation, our second approach snaps
the results to learned contours instead of simple image gra-
dients. To this end, we propose a complementary CNN in a
second branch, that is trained to detect object contours. The
proposed architecture is presented in Figure 4: (1) shows
the main foreground branch, where the foreground pixels
are estimated; (2) shows the contour branch, which detects
all contours in the scene (not only those of the foreground
object). This allows us to train offline, without the need
to fine-tune on a specific example online. We used the ex-
act same architecture in the two branches, but training for
different losses. We noticed that jointly training a network
with shared layers for both tasks rather degrades the ob-
tained results thus we kept the computations for the two ob-
jectives uncorrelated. This allows us to train the contour
branch only offline and thus it does not affect the online
timing. Since there is need for high recall in the contours,
we train on the PASCAL-Context [31] database, which pro-
vides contour annotations for the full scene of an image.
Finally, in the boundary snapping step (Figure 4 (3), we
compute superpixels that align to the computed contours (2)
by means of an Ultrametric Contour Map (UCM) [1, 40],
which we threshold at a low value. We then take a fore-
ground mask (1) and we select superpixels via majority vot-
ing (those that overlap with the foreground mask over 50%)
to form the final foreground segmentation.

In this second case, we trade accuracy for speed, since
the snapping process takes longer (400 ms instead of 60 ms
per frame), but we achieve more accurate results. Both re-
finement processes result in a further boost in performance,
and are fully modular, meaning that depending on the re-
quirements one can choose not to use them, sacrificing ac-
curacy for execution time, since both modules come with a
small, yet avoidable computational overhead.

4. Experimental Validation
Databases, state-of-the-art, and measures: The main
part of our experiments is done on the recently-released
DAVIS database [37], which consists of 50 full-HD video
sequences with all of their frames segmented with pixel-
level accuracy. We use three measures: region similarity in
terms of intersection over union (J ), contour accuracy (F),
and temporal instability of the masks (T ). All evaluation
results are computed on the validation set of DAVIS.

We compare to a large set of state-of-the-art meth-
ods, including two very recent semi-supervised techniques,
OFL [49], BVS [33], as well as the methods originally
compared on the DAVIS benchmark: FCP [38], JMP [11],
HVS [17], SEA [42], and TSP [6]. We also add the unsuper-
vised techniques: FST [36], SAL [46], KEY [24], MSG [5],
TRC [13], CVOS [48], and NLC [10]. We add two in-
formative bounds: the quality that an oracle would reach
by selecting the best segmented object proposal out of two
state-of-the-art techniques (COB [29] and MCG [40]), and
by selecting the best superpixels from COB (COB|SP).

For completeness, we also experiment on two legacy
databases: Youtube-objects [41], which was manually seg-
mented by Jain and Grauman [20]; and SegTrack v2 [25]. In
the former we compare to OFL [49], BVS [33], LTV [35],
HBT [16], AFS [50], SCF [20], and JFS [45]. In the latter
to JOTS [52], TMFG [25] KEY [24], HVS [17] HBT [16],
ST [51] and OFL [49]. In both cases we take the pre-
computed evaluation results from previous work.

Ablation Study on DAVIS: To analyze and quantify the
importance and need of each of the proposed blocks of
our algorithm, Table 1 shows the evaluation of OSVOS
compared to ablated versions without each of its building
blocks. Each column shows: the original method without

Measure Ours -BS -PN-BS -OS-BS -PN-OS-BS

MeanM ↑ 79.8 77.4 2.4 64.6 15.2 52.5 27.3 17.6 62.2

J RecallO ↑ 93.6 91.0 2.6 70.5 23.2 57.7 35.9 2.3 91.3

Decay D ↓ 14.9 17.4 2.5 27.8 13.0 −1.9 16.7 1.8 13.1

MeanM ↑ 80.6 78.1 2.5 66.7 13.9 47.7 32.9 20.3 60.4

F RecallO ↑ 92.6 92.0 0.6 74.4 18.3 47.9 44.7 2.4 90.2

Decay D ↓ 15.0 19.4 4.5 26.4 11.4 0.6 14.3 2.4 12.6

T MeanM ↓ 37.6 33.5 4.0 60.9 23.3 53.8 16.2 46.0 8.4

Table 1. Ablation study on DAVIS: Comparison of OSVOS
against downgraded versions without some of its components.

boundary snapping (-BS), without pre-training the parent
network on DAVIS (-PN), or without performing the one-
shot learning on the specific sequence (-OS). In smaller font
we show the loss (in green) or gain (in red) on each metric
with respect to our final approach.

We can see that both the pre-training of the parent net-
work and the one-shot learning play an important role (we



Semi-Supervised Unsupervised Bounds

Measure Ours OFL BVS FCP JMP HVS SEA TSP FST NLC MSG KEY CVOS TRC SAL COB|SP COB MCG

MeanM ↑ 79.8 68.0 60.0 58.4 57.0 54.6 50.4 31.9 55.8 55.1 53.3 49.8 48.2 47.3 39.3 86.5 79.3 70.7
J RecallO ↑ 93.6 75.6 66.9 71.5 62.6 61.4 53.1 30.0 64.9 55.8 61.6 59.1 54.0 49.3 30.0 96.5 94.4 91.7

Decay D ↓ 14.9 26.4 28.9 −2.0 39.4 23.6 36.4 38.1 0.0 12.6 2.4 14.1 10.5 8.3 6.9 2.8 3.2 1.3
MeanM ↑ 80.6 63.4 58.8 49.2 53.1 52.9 48.0 29.7 51.1 52.3 50.8 42.7 44.7 44.1 34.4 87.1 75.7 62.9

F RecallO ↑ 92.6 70.4 67.9 49.5 54.2 61.0 46.3 23.0 51.6 51.9 60.0 37.5 52.6 43.6 15.4 92.4 88.5 76.7
Decay D ↓ 15.0 27.2 21.3 −1.1 38.4 22.7 34.5 35.7 2.9 11.4 5.1 10.6 11.7 12.9 4.3 2.3 3.9 1.9

T MeanM ↓ 37.6 21.7 34.5 29.6 15.3 35.0 14.9 41.2 34.3 41.4 29.1 25.2 24.4 37.6 64.1 27.4 44.1 69.8

Table 2. DAVIS Validation: OSVOS versus the state of the art and practical bounds. Best for each measure and category in blue.

lose 15.2 and 27.3 points in J without them, respectively).
Removing both, i.e., using the Imagenet raw CNN, the
results in terms of segmentation (J = 17.6%) are com-
pletely random. The boundary snapping adds 2.4 points of
improvement, and is faster than conventional methods, as
adding a CRF on top of the segmentation [7].

Figure 5 further analyzes the type of errors that OSVOS
produces (with and without boundary snapping), by divid-
ing them into False Positives (FP) and False Negatives (FN).
FP are further divided into close and far, setting the division
at 20 pixels from the object. We can observe that the ma-
jority of the errors come from false negatives. Boundary
snapping mainly reduces the false positives, both the ones
close to the boundaries (more accurate contours) and the
spurious detections far from the object, because they do not
align with the trained generic contours.

0 20 40 60 80 100

Ours

-BS

FP-Close FP-Far FN

Figure 5. Error analysis of our method: Errors divided into False
Positives (FP-Close and FP-Far) and False Negatives (FN). Values
are total error pixels relative to the error in the -BS case.

Comparison to the State of the Art on DAVIS: Table 2
compares OSVOS to the rest of the state of the art. In terms
of region similarity J , OSVOS is 11.8 points above the sec-
ond technique and 19.8 above the third. In terms of contour
accuracy F , OSVOS is 17.2 and 21.8 points above them.
Our results are better than those obtained by an oracle se-
lecting the best object proposal from the state-of-the-art ob-
ject proposals COB. Even if the oracle would select the best
set of superpixels to form each mask (COB|SP), OSVOS
would be only 6.7 points below.

Table 3 shows an evaluation with respect to different at-
tributes annotated in the DAVIS dataset, by comparing the
performance of the methods on the sequences with a given
attribute (challenge) versus the performance on those with-

out it. OSVOS has the best performance on all attributes,
and it has a significant resilience to these challenges (small-
est decrease of performance when the attribute is present -
numbers in smaller font).

Attr Ours OFL BVS FCP JMP HVS SEA

AC 80.6 −1.2 56.6 17.6 48.6 17.6 52.8 8.6 52.4 7.0 41.4 20.4 43.2 11.1

DB 74.3 6.5 44.3 27.9 31.9 33.0 53.4 5.9 40.7 19.1 42.9 13.9 31.1 22.7

FM 76.5 5.1 49.6 28.2 44.8 23.3 50.7 11.9 45.2 18.0 34.5 31.0 30.9 30.1

MB 73.7 11.0 55.5 22.8 53.7 11.5 50.9 13.6 50.9 11.1 42.3 22.5 39.3 20.3

OCC 77.2 3.7 67.3 1.0 67.3 −10.4 49.2 13.2 45.1 16.9 48.7 8.5 38.2 17.5

Table 3. Attribute-based aggregate performance: Quality
of the techniques on sequences with a certain attribute and the
gain with respect to this quality in the sequences without the at-
tribute (in smaller font). See DAVIS [37] for the meaning of the
acronyms.

Figure 6 shows the results per sequence compared to the
state of the art. OSVOS has the best performance in the ma-
jority of sequences and is very close to the best in the ones in
the rest. The results are especially impressive in sequences
such as Drift-Chicane or Bmx-Trees, where the majority of
techniques fail. Figure 7 shows the qualitative results on
these two sequences. In the first row, the problem is espe-
cially challenging because of the smoke and the small initial
size of the car. In the second row, OSVOS’ worse sequence,
despite vastly outperforming the rest of techniques. In this
case, OSVOS loses track of the biker when he is occluded,
but recovers when he is visible again. The rest of techniques
lose the object because of the heavy occlusions.

Timing: Given the large amount of frames that a video
can contain, the computational efficiency of video object
segmentation is crucial for the algorithms to be usable in
practice. OSVOS can adapt to different timing require-
ments, providing progressively better results the more time
we can afford, by letting the fine-tuning algorithm at test
time do more or fewer iterations. To show this behavior,
Figure 8 shows the quality of the result with respect to the
time it takes to process each 480p frame. As introduced be-
fore, OSVOS’ time can be divided into the fine-tuning time
plus the time to process each frame independently. The
first mode we evaluate is -OS-BS ( ), in which we do not
fine-tune to the particular sequence, and thus use the parent
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D
ri

ft
-C

hi
ca

ne
B

m
x-

Tr
ee

s

Figure 7. Qualitative results: First row, an especially difficult sequence which OSVOS segments well. Second row, OSVOS’ worst result.

network directly. In this case, the quality is not very good
(although comparable to some previous techniques), but we
only need to do a forward pass of the CNN for each frame.
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Figure 8. Quality versus timing: Region similarity with respect
to the processing time per frame.

To take into account the fine-tuning time, we can con-
sider two scenarios. First, in Ours ( ) or -BS ( )
we average the fine-tuning time (done once per sequence)
over the length of that sequence. This way, the curves show
the gain in quality with respect to the fine-tuning time, plus
the forward pass on each frame. Using the same notation
than in the ablation study, the two different curves refer to
whether we do not perform boundary snapping (-BS) or we
snap to the learned contours (Ours). As we can observe, the
better results come at the price of adding the snapping cost
so depending on the needed speed, one of the two can be
chosen.

Since OSVOS processes frames independently, one
could also perform the fine-tuning offline, by training on a
picture of the object to be segmented beforehand (e.g. take

a picture of a racing horse before the race). In this scenario,
OSVOS can process each frame by one forward pass of the
CNN (Ours Pre , -BS Pre ), and so be considerably fast.

Compared to other techniques, OSVOS is significantly
faster and/or more accurate at all regimes, from fast modes:
74.7 versus 60.0 of BVS ( ) at 400 ms, and 79.8 versus 68.0
of OFL ( ) at lower speeds.

Refinement of results: Another advantage of our tech-
nique is that we can naturally incorporate more supervi-
sion in the form of more annotated frames. In a production
environment, for instance, one needs certain quality below
which the results are not usable. In this scenario, OSVOS
can provide the results with one annotated frame, and then
the operator can decide whether the quality is good enough,
and if not, segment another frame and OSVOS can incorpo-
rate that knowledge into further fine-tuning the result.

To model this scenario, we take the results with N man-
ual annotations, select the frame in which OSVOS per-
forms worse, similarly to what an operator would do, i.e.
select a frame where the result is not satisfactory; and add
the ground-truth annotation into the fine-tuning. Table 4
shows the evolution of the quality when more annotations
are added (0 means we test the parent network directly,
i.e. zero-shot). We can see that the quality significantly in-
creases from one to two annotations and saturates at around
five. As a measure of the upper bound of OSVOS, we fine-
tuned on all annotated frames and tested on the same ones
(last column), which indeed shows us that five annotated
frames almost get the most out of this architecture.

Figure 9 shows a qualitative example of this process,
where the user annotates frame 0, where only one camel



Annotations 0 1 2 3 4 5 All

Quality (J ) 58.5 79.8 84.6 85.9 86.9 87.5 88.7

Table 4. Progressive refinement: Quality achieved with respect
to the number of annotated frames OSVOS trains from.

(a) Annotated frame 0 (c) Annotated frame 88 (e) Annotated frame 46

(b) Result frame 35 (d) Result frame 35 (f) Result frame 35

Figure 9. Qualitative incremental results: The segmentation on
frame 35 improves after frames 0, 88, and 46 are annotated.

is visible (a). In frame 35, OSVOS also segments the sec-
ond camel that appears (b), which has almost the exact same
appearance. This can be solved (f) by annotating two more
frames, 88 (c) and 46 (e), which allows OSVOS to learn
the difference between these two extremely similar objects,
even without taking temporal consistency into account.

Evaluation as a tracker: Video object segmentation
could also be evaluated as a Visual Object Tracking
(VOT) [28] algorithm, by computing the bounding box
around each of the segmentations. We compare to the win-
ner of the VOT Challenge 2015 [28]: MDNET [32]. Since
we cannot compare in the original dataset of the VOT Chal-
lenge (the ground-truth objects are not segmented so we
cannot fine-tune on it), we run MDNET on DAVIS. Ta-
ble 5 shows the percentage of bounding boxes coming from
each technique that have an intersection over union with the
ground-truth bounding box above different thresholds. The
higher the threshold, the more alignment with the ground
truth is required. We can see that OSVOS has significant
better results as tracker than MDNET at all regimes, with
more margin at higher thresholds.

Overlap 0.5 0.6 0.7 0.8 0.9

Ours 78.2 72.2 65.8 59.4 49.6
MDNET [32] 66.4 57.8 43.4 29.5 14.7

Table 5. Evaluation as a tracker: Percentage of bounding boxes
that match with the ground truth at different levels of overlap.

Results on Youtube-Objects and SegTrack v2: For
completeness, we also do experiments on two legacy
databases. In both cases, we take the pre-computed eval-
uation from other papers. Table 6 shows the comparison
in Youtube-objects [41, 20]. We perform slightly better to
the state of the art OFL, which is significantly slower, and

Category Ours OFL JFS BVS SCF AFS FST HBT LTV

Aeroplane 88.2 89.9 89.0 86.8 86.3 79.9 70.9 73.6 13.7
Bird 85.7 84.2 81.6 80.9 81.0 78.4 70.6 56.1 12.2
Boat 77.5 74.0 74.2 65.1 68.6 60.1 42.5 57.8 10.8
Car 79.6 80.9 70.9 68.7 69.4 64.4 65.2 33.9 23.7
Cat 70.8 68.3 67.7 55.9 58.9 50.4 52.1 30.5 18.6
Cow 77.8 79.8 79.1 69.9 68.6 65.7 44.5 41.8 16.3
Dog 81.3 76.6 70.3 68.5 61.8 54.2 65.3 36.8 18.0
Horse 72.8 72.6 67.8 58.9 54.0 50.8 53.5 44.3 11.5
Motorbike 73.5 73.7 61.5 60.5 60.9 58.3 44.2 48.9 10.6
Train 75.7 76.3 78.2 65.2 66.3 62.4 29.6 39.2 19.6

Mean 78.3 77.6 74.0 68.0 67.6 62.5 53.8 46.3 15.5

Table 6. Youtube-Objects evaluation: Per-category mean inter-
section over union (J ).

despite the fact that the sequences in this database have sig-
nificant less occlusions and motion than in DAVIS, which
favors techniques that enforce temporal consistency.

Table 7 shows the comparison in SegTrack v2 [25]. The
frames in this dataset have very low resolution and notice-
able compression artifacts, which makes learning an appear-
ance model very complicated. Also, many of the compared
techniques use per sequence optimized hyper-pameters,
whereas we directly employ the hyper-parameters from op-
timization on DAVIS. Despite this, we are placed in the
middle range of the performance. Again, the workaround to
handle these sequences is to enforce temporal consistency,
but we believe that the quality and resolution are not realis-
tic for current standards anymore.

Category Ours OFL JOTS TMFG KEY HVS HBT ST

Mean per Object 65.4 74.1 71.8 65.9 45.3 51.8 40.1 30.7

Mean per Sequence 68.3 75.3 72.2 71.2 57.3 50.8 41.0 37.0

Table 7. SegTrack v2 evaluation: Per-object and per-sequence
mean intersection over union (J ).

5. Conclusions
Deep learning approaches often require a huge amount

of training data in order to solve a specific problem such
as segmenting an object in a video. Quite in contrast, hu-
man observers can solve similar challenges with only a sin-
gle training example. In this paper, we demonstrate that
one can reproduce this capacity of one-shot learning in a
machine: Based on a network architecture pre-trained on
generic datasets, we propose One-Shot Video Object Seg-
mentation (OSVOS) as a method which fine-tunes it on
merely one training sample and subsequently outperforms
the state-of-the-art on DAVIS by 11.8 points. Interestingly,
our approach does not require explicit modeling of tempo-
ral consistency using optical flow algorithms or temporal
smoothing and thus does not suffer from error propagation
over time (drift). Instead, OSVOS processes each frame
of the video independently and gives rise to highly accu-



rate and temporally consistent segmentations in challenging
real-world environments.
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