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Abstract

We show that surface normal information allows to significantly improve the accu-
racy of a spatio-temporal multi-view reconstruction. On one hand, normal information
can improve the quality of photometric matching scores. On the other hand, the same
normal information can be employed to drive an adaptive anisotropic surface regulariza-
tion process which better preserves fine details and elongated structures than its isotropic
counterpart. We demonstrate how normal information can be used and estimated and ex-
plain crucial steps for an efficient implementation. Experiments on several challenging
multi-view video data sets show clear improvements over state-of-the-art methods.

1 Introduction

The extension of multi-view 3D reconstruction approaches to the spatio-temporal domain is
far from straightforward: Firstly, with the processing of huge amounts of data computational
speed becomes more important. Algorithms which take around an hour for the reconstruction
of a single frame are hardly scalable to multi-view videos taken at 30 frames per second.
Secondly, integrating temporal regularization gives rise to a substantial increase in memory
requirements because the reconstructions for multiple time steps need to be computed jointly.
Thirdly, the acquisition of actions over time brings about substantial motion blur of fast
moving structures – see the rope in Figure 1. And lastly, one typically uses far fewer cameras

Figure 1: Frame 17 from the ’jumping rope sequence’ [9] and corresponding reconstructions of this
and the following time frames computed with the proposed method. By minimizing a single convex
functional, we obtain a family of reconstructions over time. By integrating normal information into the
photoconsistency estimation and into an anisotropic space-time regularization, we are able to preserve
fine scale details such as the (substantially motion-blurred) rope.
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with lower resolution (the synchronization and joint acquisition being tedious) such that
classical photoconsistency approaches often break down.

1.1 Related Work
Multi-view stereo reconstruction for static scenes has been a focus of many works and there
exists a vast amount of different approaches. In the following we mainly mention works
which relate to normal integration and spatio-temporal reconstruction. We refer to [20] and
its related website for an overview of 3D reconstruction methods.

An early work considering surface normals while estimating a 3D surface is by Zab-
ulis and Daniilidis [24]. They estimate voxel occupancy at the surface and corresponding
normals in a voxel grid by locally maximizing corresponding surface patch correlation val-
ues. The optimization is spatially local and results in rather noisy and disconnected surfaces.
Furukawa et al. [4] propose to jointly estimate depth and orientation of surface patches by
means of an oriented point cloud which can then be transformed into a mesh e.g. via Poisson
surface reconstruction [11]. Goesele et al. [5] built a system for reconstructing 3D scenes
from internet photo collections. They show that optimizing surface normal information with
respect to the photoconsistency measure significantly improves the reconstruction quality.
Both methods [4, 5] are based on an oriented point cloud which is grown and filtered it-
eratively around existing matches by starting from sparse feature matches. Generally, an
extension of such models into a spatio-temporal domain is by no means straightforward be-
cause the correspondence of points over time needs to be identified first.

Ladikos et al. [14] used a narrow band graph-cut approach for multi-view reconstruction.
They jointly maximized a normalized cross-correlation (NCC) photoconsistency measure
and computed the best normal by discretely sampling a dense set of normals in the cone
around an initial normal estimate. Kolev et al. [13] improved the results of multi-view 3D
reconstruction with an anisotropic regularizer and a given normal field. We use a similar
regularizer, but additionally discuss how to compute such a normal field and how it can be
used to improve photometric measures.

Goldluecke et al. [6, 7] pioneered spatio-temporal reconstruction in a continuous setting,
albeit in a locally optimal level-set formulation. Starck and Hilton [21] extract visual hull
volumes and sparse features on the surface and finally merge them via volumetric minimal
graph-cuts. Tung et al. [22] fuse feature points and optical flow with a Markov random field.
Guillemaut and Hilton [8] jointly solve for a multi-layer segmentation and a depth estimation
within a graph-cut framework. Pons et al. [18] jointly estimate scene geometry and scene
flow by minimizing the reprojection error in a locally optimal coarse-to-fine approach.

1.2 Contribution
We propose a convex variational approach to space-time reconstruction which estimates sur-
face normal information and integrates it into the photoconsistency estimation as well as into
an anisotropic spatio-temporal total variation regularization. As such the proposed method
generalizes the works [13], [16]. Although [13] already studied anisotropic regularization
they did not estimate normals but used the normals from [4]. The combination of these
methods, [13] and [4], is more than 40 times slower than our method as [13] alone needs
about 1h to compute a single frame. In contrast, our method only takes about 3 minutes per
frame including normal estimation and temporal regularization due to the proposed efficient
implementation. Moreover, the method by Kolev et al. [13] does not work well on the 4D
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data sets we consider, as shown in [16, Fig. 5]. With the estimated normals at hand, we
further propose an improvement of the photoconsistency voting scheme by Hernández and
Schmitt [2] resulting in superior accuracy especially for sparse camera setups.

2 Variational Space-Time Reconstruction Model
We aim to find a smooth hypersurface S in the spatio-temporal space V×T in which V ⊂ R3

represents the spatial and T ⊂R+ the temporal domain. A non-static scene is observed from
N cameras with known projections {πi}N

i=1 and approximate silhouettes {Si(t)}N
i=1. Similar

to [16], we assume the silhouettes to fully enclose the object of interest and restrict the
solution space to the visual hull. We do not rely on exact silhouettes as they are difficult to
estimate in a general 4D setup. Hence, methods using exact silhoettes such as [1] are not
applicable. Note that we will drop temporal indices whenever possible for better readability.

First, we introduce a binary labeling function u : V×T 7→ {0,1} to represent the hy-
persurface S by means of an inside-outside labeling in each point. This implicit surface
representation easily deals with topology changes and allows to compute minimal surfaces
that align with locations of high photometric consistency in a globally optimal manner [12].
We compute a hypersurface as a minimum of the following energy.

E(u) =
∫

V×T

[
|∇xxxu|Dxxx +gt |∇tu|+λ f u

]
dxxxdt (1)

The parameter λ ≥ 0 steers the smoothness of the solution by balancing the costs of the
regularization term and the data term. The function f : V×T 7→ R represents unary poten-
tials which indicate local preferences for either an interior or an exterior label based on the
photoconsistency being defined in the next section. The task of the regularization term is to
reject outliers, to deal with locations of missing data and to favor a spatially and temporally
smooth surface. The regularization term consists of two terms, one for the anisotropic spatial
regularization with the norm defined as |yyy|Dxxx = 〈yyy,Dxxxyyy〉1/2 and the other term takes care of
the temporal regularization. Both terms are detailed in the following.

Spatial Regularization. Dxxx(xxx, t) = ρ(xxx, t)2nnnnnnT + nnn0nnnT
0 + nnn1nnnT

1 is a symmetric positive-
definite matrix which accounts for an anisotropic spatial regularization and is defined sim-
ilarly as in [19]. It lowers smoothing in the surface normal nnn ∈ R3 direction and favors
smoothness along the corresponding tangential directions nnn0 and nnn1 = nnn× nnn0. The photo-
consistency measure ρ : V×T 7→ [0,1] is detailed in the next section. Dxxx performs a change
of basis and aligns the local coordinate system along the favored surface normal nnn. As a
result, ∇u is more likely to be aligned to nnn. On the one hand the anisotropic regulariza-
tion better preserves small scale surface details [13], on the other hand it is important when
reconstructing fine elongated structures [19] like human arms, or parts of clothes and hair.

Temporal Regularization. In Eq. (1) function gt : V×T 7→ R≥0 regulates the temporal
smoothness. By setting gt(xxx, t) = exp

(
−a|∇ f (xxx, t)|

)
we make it dependent on the data term

in order to reduce temporal smoothing in regions with fast motion. Note that the purpose of
this regularization is to reduce surface jittering in scene parts with slow motion. The effect
of this term is studied in [16]. We used a between 0.2 and 1 in our setting.
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3 Surface Normal Integration
Normal information is used in all stages of our approach, namely during the photoconsis-
tency and data term estimation as well as during the global surface optimization.

3.1 Photoconsistency and Data Term Estimation
For every time step we estimate the photometric consistency of a point on the surface by
means of a cost function Ci : V ×R 7→ R based on the NCC score of corresponding small
image patches surrounding the projection of that point in each camera.

Ci(xxx,d) = ∑
j∈C′\i

w j
i (xxx) ·NCC

(
πi
(
ri(xxx,d)

)
,π j
(
ri(xxx,d)

))
(2)

The value d is the Euclidean distance of xxx from camera center i along camera ray ri(xxx, ·)
through point xxx. C′ ⊂ C is a subset of front-facing cameras of which the angle between the
viewing directions is below γmax=85◦. The contribution of each camera is weighted by a
normalized Gaussian weight w j

i (xxx) of the angle between the voxel-to-camera directions of
cameras i and j. Furthermore, we discard unreliable correlation values by setting Ci(·) to zero
if it falls below a threshold τncc = 0.3. To account for image distortion between two cameras
during the NCC computation the image coordinates are mapped with the homography Hi j =
(nnnT xxx)RT

i j−RT
i jTi jnnnT , with nnn being the surface normal and Ri j,Ti j being the relative rotation

and translation between local coordinates of cameras i and j [3].
Since the correlation scores Ci(·) are usually noisy and contain many local maxima we

denoise them with the voting scheme by Hernández and Schmitt [2] and define the photo-
consistency measure ρ(xxx) for the regularizer as

ρ(xxx) = exp
[
−µ∑

i∈C′
δ
(
dmax

i =depthi(xxx)
)
·Ci(xxx,dmax

i )︸ ︷︷ ︸
VOTEi(xxx)

]
. (3)

This scheme accumulates only the best score along each camera ray. The point with max-
imum score is expressed by its distance to the camera center dmax

i = argmaxd Ci(xxx,d). In
comparison, for most 3D reconstruction approaches that first estimate depth maps before
fusing them into a single 3D model, e.g. [25], the matching scores of single depth estimates
are not considered in the depth fusion process. In contrast, the voting scheme accumulates
matching scores and we hand them over to the global surface estimation. Another significant
difference to such methods is the missing regularization of depth values in the image domain,
which often helps to avoid depth ambiguities and to suppress noise. We therefore propose to
introduce a dependency between neighboring camera rays by the following modification of
the voting scheme:

dmax
i = arg max

d

∫
Vxxx

Ci(xxx− yyy,d) G(yyy;Σnnn) dyyy , (4)

where Vxxx ⊂V is a small volume surrounding xxx. Each value of Ci(·) represents the matching
score of a small surface patch with location xxx and orientation nnn and should also influence
neighboring matching scores according to the patch size. We model this dependency by a
Gaussian convolution of the matching scores before the maximization. Again, the normal in-
formation comes in handy to better represent the shape of the surface patch by an anisotropic
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3D Gaussian G(·) with covariance matrix Σnnn = Rnnn diag(σ2
n ,σ

2
t ,σ

2
t )R

T
nnn . σn and σt are the

standard deviations for normal and tangential directions and rotation matrix Rnnn aligns the
x-axis of the coordinate system with the normal nnn. This scheme effectively denoises depth
hypotheses and improves the quality of matching scores for piecewise smooth surfaces as it
helps to avoid local maxima by integrating information from neighboring viewing rays.

In order to avoid trivial solutions of energy (1) the photoconsistency is further imposed
by means of an unary data term f , defined as the log-probability ratio

f (xxx, t) =− ln
(

1−P(xxx ∈ int(Σ))
P(xxx ∈ int(Σ))

)
. (5)

The probability P(xxx∈ int(Σ)) that point xxx belongs to the interior of surface S is defined based
on the voting locations and qualities of corresponding camera rays ri(xxx, ·) through point xxx

P(xxx ∈ int(Σ)) =
N

∏
i=1

N

∏
j=1

∏

depthi(xxx)<d≤dmax
i

1
Z j

exp
[
−η ·VOTE j

(
ri(xxx,d)

)]
(6)

Z j is a normalization constant and parameter η steers how many cameras and which match-
ing scores are necessary to favor an exterior label for all points from xxx towards the camera.
Intuitively, the data term represents a probabilistic space carving and due to the restriction
of the solution space to the visual hull, the visual hull is the fall back solution for all areas
where photometric information is insufficient (see [16] for more details).

3.2 Normal Estimation
Similar to [14] we experimented with estimating the normal direction by global maximiza-
tion of the NCC score via discrete sampling around the camera-to-point direction. Generally,
pointwise optimization of the surface normal is prone to local minima and we merely got
noisy and unsatisfactory results with this approach. Similar results have also been reported
by [23]. We also tried estimating normals based on the data term f as done in [19] which also
yields defective normals due to the fact that f is very noisy and misses a lot of data for most
of our experiments. Kolev et al. [12] estimated normal directions for the photoconsistency
computation based on the visual hull. Especially in sparse camera setups we found that the
visual hull does not provide good normal estimates for recovering concavities.

Instead we use the camera-to-point direction as a first normal estimate for photoconsis-
tency estimation which is a common (inherent) assumption in most stereo-based methods.
We then compute a surface with isotropic spatial regularization and use the surface normals
of this solution for a second pass of photoconsistency, data term estimation and surface op-
timization with anisotropic spatial regularization. For that purpose the surface normals are
propagated in space by means of a signed distance function (Sec. 5). In sum, we make
use of surface normals at three places within our method: (a) NCC score, (b) voting scheme
regularization and (c) anisotropic surface regularization. We run our algorithm in two passes:

Pass 1: camera-to-point direction as normal for (a) and (b), isotropic surface regularization
with high λ for (c)

Pass 2: normals from the previous pass for (a),(b) and (c) with lower λ for surface smooth-
ness as desired

This scheme could be further iterated, but in our experience two passes achieve the best
trade-off between quality improvements and additional computation time.
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4 Global Optimization

The minimization problem in (1) becomes convex by relaxing the image of function u to
[0,1]. We globally minimize the energy with a preconditioned primal-dual algorithm [17]
which solves certain saddle-point problems efficiently. To this end, we introduce a dual
variable p : V×T 7→ R4 which tackles the non-differentiability of the total variation norm:

u∗ = arg min
u

E(u) = arg min
u

max
p∈P

∫
V×T

[
〈pxxx,D

1/2
xxx ∇xxxu〉+ 〈pt ,∇tu〉+λ f u

]
dxxxdt , (7)

with set P being defined below. The algorithm converges to the globally optimal solution by
iterating a projected gradient descent and gradient ascent for the primal and dual variables
respectively. The pointwise update equations are as follows.

pn+1 = ΠP

[
pn +σ

(
D1/2

xxx ∇xxxūn , ∇t ūn
)T
]

(8)

un+1 = Π[0,1]

[
un + τ

(
div
(
(D1/2

xxx pn+1
xxx , pn+1

t )T
)
−λ f

)]
(9)

ūn+1 = 2un+1−un (10)

Π[0,1] projects u onto the unit interval [0,1] via simple thresholding. The projection onto the
set P = {p = (pxxx, pt)

T : V×T 7→ R4
∣∣ ‖pxxx‖2 ≤ 1, |pt | ≤ gt} can be done as follows:

ΠP(p) =
(

pxxx

max(1,‖pxxx‖2)
,max

(
−gt ,min(gt , pt)

))T

(11)

Set P can be imagined like a “capsule pill”, i.e. a 3D ball shifted along the 4th dimension.
The step sizes σ and τ are chosen adaptively by keeping track of the corresponding operator
norms as suggested in [17]. Note that the linear operators that transform between primal and
dual space contain the discretized differential operators and the diffusion matrix Dxxx which
need to be considered for the preconditioning.

For the primal variable u we impose Neumann boundary conditions for both spatial and
temporal derivatives and accordingly Dirichlet boundary conditions for the dual variable p,
that is, ∇nnnu

∣∣∣
∂ (V×T )

= 0 and p
∣∣∣
∂ (V×T )

= 0. Finally, we extract an iso-surface of u∗ at 0.5 with

sub-voxel accuracy for every time step using the Marching Cubes algorithm [15].

5 Implementation

Both the photoconsistency estimation and the surface optimization have been implemented
on the GPU using the NVidia CUDA framework. An efficient integration of the anisotropic
regularization is challenging because in every point the derivative of the spatially and tem-
porally varying diffusion tensor Dxxx needs to be evaluated based on the normal estimate nnn. A
straightforward implementation would easily double the overall memory consumption and
render the numerical problem infeasible for reasonable volume resolutions. To save mem-
ory we do not precompute or save the 3× 3 diffusion matrix Dxxx, but we recompute Dxxx and
its derivative as needed and make use of its symmetry. Further, instead of saving a dense
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input without normal pass 1 pass 2 comparison
integration [16] (proposed) column 2 & 4

Figure 2: Effects of the proposed normal integration. Column 2 shows the results without normal in-
tegration. The photoconsistency ρ(x) (top) is noisy and less discriminative leading to a reconstruction
(bottom) that misses details like the thumb and the hair due to low photometric information. In com-
parison the photoconsistency for the first pass was denoised with neighborhood information (Eq. (4)).
The corresponding reconstruction with isotropic regularization is used to estimate surface normals for
the second pass. These normals provide a better estimate than the typically assumed camera-aligned
direction used in classical stereo matching. The normals from the first pass further improve photomet-
ric scores and fine details (e.g. the thumb) are better preserved due to the anisotropic regularization.
The last column compares textured meshes of the results in column 2 and 4. (|V×T |= 2563 ·3)

normal field for every time step, we store a signed distance function of the previous sur-
face estimate which requires only one additional volume per frame and allows us to densely
compute normal estimates as its derivative everywhere in the volume.

As a result, the total amount of required memory per frame is 9 · |V×T | · 4 bytes. One
volume for the data term, photoconsistency and signed distance function each, two for the
primal and four volumes for the dual variable. The second primal variable is needed for the
over-relaxation step in Eq. (10). We used |T | = 3 and processed longer sequences with a
sliding time window approach considering also the frames before and after the current one
and took the center frame of the window as the temporally smoothed solution. Further sig-
nificant memory savings (factor 1/4 to 1/10) and speedups (factor 25 to 30) can be achieved
by restricting all computations and data structures to the visual hull using indexed lists.

6 Results
We tested our approach on several multi-view sequences with 16 cameras and 1624×1224
image resolution from the INRIA 4D repository [9]. We computed all experiments on a
Linux-based PC with a 2.27GHz Xeon CPU, 24GB RAM and an NVidia Titan 6GB graphics
card. For quality assessment we compared our method with several state-of-the-art 3D/4D
reconstruction methods: PMVS [4] + Poisson surface reconstruction [11], Jancosek and
Pajdla [10] and Oswald and Cremers [16]. For all methods we used default parameters, full
input image resolution and provided approximate silhouettes if possible (all except [10]).

Fig. 2 shows the influence of normal information on the reconstruction quality in every
step of the reconstruction process. For the first pass of our method we used higher standard
deviations (σn = 0.4,σt = 0.9) for the anisotropic Gaussian smoothing kernel in Eq. (4) to
achieve a higher denoising of NCC scores from potentially wrong initial normal estimates.
The anisotropic smoothing of the NCC scores makes them more discriminative in compari-
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close ups Jancosek PMVS+ Oswald and proposed
and Pajdla [10] Poisson [4] Cremers [16]

Figure 3: Comparison of our results to other methods. Two views (top/bottom row) of the ’kick one’
scene [9] (frame 1) next to an input image and close ups on details. The reconstructions by Jancosek
and Pajdla [10] miss many details like the belt and the hand of the left person and parts of both heads
(see close ups). Large triangles are generated at locations with low photometric information (bottom
row). In contrast, the Poisson reconstruction hallucinates balloonish structures at such locations. The
method in [16] yields similar results to the proposed one, but misses fine details like the belt or the
hair which is difficult to recover because of noisy photometric information. The proposed normal
integration yields superior results (|V×T |= 2563 ·3).

son to [16] and leads to more distinctive votes (top row). Fine details are only preserved for
low smoothness values (bottom row). In the second pass we reduced the Gaussian smoothing
(σn = 0.3,σt = 0.7) to better preserve fine details in the reconstruction. The normal estimates
from pass 1 further improve the photoconsistencies (e.g. the hair) and the anisotropic regu-
larization preserves fine details like the thumb also for a higher surface smoothness.

In Fig. 3 we show reconstruction results on a martial art scene in comparison. The
method by Jancosek and Pajdla [10] tends to misconnect points which are close but not re-
lated to each other. The reconstruction of the left person shows many details on the front,
because the method found many inlier points. However, the backside of the left person and
most of the right person contains only few triangles which heavily degrade the visual per-
ception of the reconstruction. Generally, this method fails to reconstruct small details and
regions with low texture information like the hair or the over-bright cloth section on the
shoulders. PMVS [4] performs mostly well in recovering fine details. Since PMVS is a
point cloud-based method, point connectivity information is not available for the subsequent
Poisson surface reconstruction [11]. This leads to misconnected points and even balloonish
surface parts in regions with low photometric information. Moreover, the iterative filtering
and expansion approach of [4] in combination with [11] makes the method temporally un-
stable in sparse camera setups. The method in [16] performs better but cannot fully recover
the belt due to bad photometric scores as well as the isotropic regularization scheme which
penalizes the surface area and tends to remove thin structures (shrinking bias).

Fig. 4 depicts results of challenging scenes with strong motion blur such as the rope
jumping girl or the man with the stick. Our method does not always recover the full geom-
etry, but generally yields better results over full video sequences. Mostly, fine or elongated
structures are better preserved such as the fingers of the boy in the cartwheel sequence.
Especially, the proposed normal-driven Gaussian smoothing in Eq. (4) yields superior re-
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input Jancosek and PMVS+ Oswald and proposed
Pajdla [10] Poisson [4] Cremers [16]

Figure 4: Reconstruction results on different scenes (rope jump, boy cartwheel, stick) from [9]. Al-
though the voxel resolution limits the quality of the rope reconstruction, normal information improves
the photometric consistency and helps to better recover fine details in the matching phase and to pre-
serve them during the surface optimization, e.g. the boys thumb or the fast moving stick or rope.
Both methods [4, 10] reconstruct frames independently and show severe surface jittering. Enforcing
temporal coherence visibly reduces the jittering (|V×T |= 3843 ·3).

sults in regions with noisy photoconsistency. In particular, the hair is consistently better
reconstructed in all sequences we have evaluated. However, in areas where the photomet-
ric information is very sparse, the Gaussian smoothing can also degrade the matching score
and lead to slightly worse results, e.g. the back of the person in Fig. 3. Essentially, the
reconstruction with the isotropic regularization in the first pass only serves as a smoothing
of the estimated normal field. Due to the smoothing the recovered normals encode rather
low-frequency details of the surface. This is in contrast to the related works mentioned in
Sec. 1.1 which estimate normals to better recover the high-frequency details of the surface.
However, experiments show that the estimated normals from the first pass can be estimated
with moderate effort and improve the photometric matching scores in many surface regions.
Runtime. Depending on the scene, the photoconsistency and data term estimation needed
about 15-30s per frame. For a volume size |V | = 3843, the isotropic reconstruction in the
first pass needed about 1s for |T | = 1 and 2-3s for |T | = 3. The anisotropic surface estima-
tion in the second pass needed 5s for |T | = 1 and 30s for |T | = 3. These timings exclude
loading and storing from disk and filling data structures. In comparison our method is con-
siderably faster than PMVS+Poisson [4] which needed about 20min/frame for the ’kick one’
scene and 6-7min/frame for the ’cartwheel’ scene. The method by Jancosek and Pajdla [10]
needed about 7-10min/frame. Note that the runtime comparison is only for qualitative in-
formation, because all evaluated methods utilize CPU and GPU parallelism in a different
manner and have different runtime and memory complexities. Especially the runtime of
PMVS [4] is highly data-dependent because of the iterative filtering approach.
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7 Conclusion
We showed how surface normal information can be estimated and effectively used within
a spatio-temporal multi-view reconstruction setup. Proper estimates of normal information
firstly help to improve the accuracy of photometric measures and secondly improve recon-
struction results by reducing the shrinking bias of common regularizers. Further, we demon-
strated that a modification of the photoconsistency voting scheme [2] improves robustness
and quality of the estimated photoconsistencies, making it more similar to methods that
determine a regularized fusion of precomputed depths maps. By harnessing the power of
consumer graphics cards we showed that an efficient implementation leads to low computa-
tion times despite the large amount of data being processed. Numerous experiments showed
the improvements of the proposed approach over competitive reconstruction methods.
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