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Abstract

We propose a convex relaxation approach to space-time
3D reconstruction from multiple videos. Generalizing the
works [16], [8] to the 4D setting, we cast the problem of
reconstruction over time as a binary labeling problem in
a 4D space. We propose a variational formulation which
combines a photoconsistency based data term with a spatio-
temporal total variation regularization. In particular, we
propose a novel data term that is both faster to compute and
better suited for wide-baseline camera setups when photo-
consistency measures are unreliable or missing. The pro-
posed functional can be globally minimized using convex re-
laxation techniques. Numerous experiments on a variety of
publically available data sets demonstrate that we can com-
pute detailed and temporally consistent reconstructions. In
particular, the temporal regularization allows to reduce jit-
tering of voxels over time.

1. Introduction

Estimating 3D geometry from a set of images is among
the central problems in computer vision. Especially for
static scenes significant advances have been made in the last
decade that allow for high quality 3D reconstructions. An
overview is found in [13]. Unfortunately, the generaliza-
tion of these techniques to the reconstruction from videos is
by no means straightforward. Firstly, there are usually far
fewer cameras, the synchronization and simultaneous ac-
quisition from many cameras still being a costly and cum-
bersome effort. With a wider average baseline, many ex-
isting schemes for photoconsistency estimation break down
because respective patches are no longer visible in the other
images or too distorted for reliable patch comparison. Sec-
ondly, accurate reconstructions over time pose huge de-
mands with respect to memory and computation time – in
particular if one wishes to exploit the temporal coherence
of the reconstruction over consecutive frames. In this work,
we tackle the problem of space-time 3D reconstruction by
means of a convex optimization approach.

∗This work was supported by the ERC Starting Grant ’Convex Vision’.

Figure 1. One of the input images and several times frames of a
space time surface evolution.

1.1. Contributions

• We generalize the works of Unger et al. [16] and Kolev
et al. [8] from the three-dimensional setup to a four di-
mensional one leading to a mathematically transparent
and globally optimal approach for space-time multi-
view 3D reconstruction.

• In order to make the 3D reconstruction approach by
Kolev et al. [8] work in wide-baseline camera setups
we propose a novel data term, which has several desir-
able properties and improves the one in [8] in several
aspects. Firstly, it better preserves surface edges and
concavities. Secondly, it has better hole filling abil-
ities when photoconsistency information is weak and
sparse. Finally, it does not have a global influence, that
is, it does not affect surface parts which are not visible
in the respective camera.

• Further, we reduce the computation time per frame
from several hours, as reported by [8], to appr. 1-2
minutes for equivalent volume sizes. This aspect is
important when processing longer sequences.

1.2. Related Work

Zhang et al. [18] extended the problem of classical
binocular stereo matching into the space time domain. Pi-
oneering work on the topic of space-time 3D reconstruc-
tion in a multi-view setup has been done by Goldluecke
et al. [3], [4]. They described the evolution of a space
time surface by means of level set functions which itera-
tively approach a local minimum of the respective energy.
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Figure 2. Outline of the proposed space time reconstruction framework. Two men are filmed synchronously by 16 cameras. The figure
shows (left to right) one input image, estimated photoconsistencies, a level set of the proposed data term, the final reconstructed mesh
shaded and textured.

Generally, these methods rely on a proper initialization to
converge to the desired solution. In [1], Aganj et al. pro-
posed to calculate a spatio-temporal coherent mesh from
silhouettes using 4D Delaunay meshing. Guillemaut and
Hilton [5] jointly solve the problem of multi-layer segmen-
tation and depth estimation within a graph-cut framework.
They enforce temporal coherence by means of optical flow
measures which are weighted according to their confidence
to account for unreliable flow estimates. Richardt et al.
[12] recently proposed a method for spatio-temporal filter-
ing and upsampling of RGB-Depth videos. Sharf et al. [14]
study the problem of space time reconstruction by means of
incompressible flow.

Our approach is related to the space-time 2D tracking
framework by Unger et al. [16]. They cast the problem of
tracking objects in images over time as a 3D segmentation
problem to model temporal smoothness or deal with tem-
porally short occlusions of the tracked object. Although the
task and several properties are quite different we use a sim-
ilar model, but in a 4D rather than a 3D setting.

In [8], Kolev et al. proposed to model the 3D surface as a
binary inside-outside labeling in 3D space to convexify the
surface reconstruction problem and hence obtain globally
optimal solutions for multi-view 3D reconstruction. A sim-
ilar model to the one in [8] has also recently been used by
Ummenhofer and Brox [15] for combined 3D reconstruc-
tion and camera pose estimation. We adopt their approach
because this model has several desirable properties. It easily
deals with topological changes and allows for global opti-
mization. Further, it provides a natural way for surface reg-
ularization in 3D which is perfectly suited for a multi-view
setup.

Although a variety of useful regularizers for depth maps
have been presented in the literature, intuitively they do not
provide a good regularization in a multi-view setup because
we are usually looking for a connected and locally smooth
surface rather than a smooth depth map. 3D reconstruction
based on depth maps is a popular approach to this problem
and many works exist on this topic e.g. [17],[7]. Inherently
these approaches split the overall problem into two sepa-
rate ones: depth reconstruction followed by surface recon-
struction based on these depth maps. As a result, important

information such as the consistency of an estimated depth
map value is usually not handed over into the following sur-
face reconstruction. In contrast, our goal is to carry as much
information as possible into the final global 3D surface op-
timization.

1.3. Paper Outline

In the following we introduce our space time reconstruc-
tion model and subsequently explain how to compute re-
spective terms. In Section 3 we explain the optimization
procedure and give some details on the implementation in
Section 4. Section 5 presents results on several data sets and
Section 6 concludes the paper.

2. Variational Space Time Reconstruction
Let V ⊂ R3 describe a volume in space and let T ⊂ R+

represent the temporal domain. We are looking for a smooth
hypersurface S in the space V × T which best explains the
series of input images with known projections {πi}Ni=1. For
ease of notation we will drop the temporal index whenever
the meaning is clear by context. Similar as in [8] we rep-
resent surface S by means of a binary labeling function
u : V × T 7→ {0, 1} which indicates surface interior (1) or
exterior (0). We follow the path of their work and define an
energy function which measures both the surface smooth-
ness and how well the surface fits to the input data.

E(u) =

∫
V×T

(
ρ|∇xu|+gt|∇tu|

)
dxdt+λ

∫
V×T

fu dxdt (1)

The second term in Eq. (1), data term f gives local pref-
erences for either an interior or an exterior label and will
be defined in Subsection 2.2. It is weighted by parameter
λ > 0 to favor either a smooth surface or a surface that
aligns with the potentially noisy data. The task of the first
term - the regularization term - is to reject outliers, deal with
locations of missing data and to favor a spatially and tempo-
rally smooth surface. To account for the inherent difference
between spatial and temporal dimensions this term is split
into a spatial and a temporal part which then regularizes
these dimensions in an anisotropic manner.
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The spatial regularization is weighted by function ρ :
V × T 7→ R which represents the photoconsistency mea-
sure being defined in the following section. Weighting
down the penalization of the gradient norm ρmakes the sur-
face boundary snap to probable surface locations which are
indicated by a low photoconsistency value ρ.

In Eq. (1) function gt : V × T 7→ R steers the temporal
smoothness. We choose it as a function that depends on the
gradient magnitude of the data term:

gt(x, t) = exp
(
− a|∇tf(x, t)|b

)
. (2)

This choice of gt(·) prevents locations with strong gradi-
ents from being over-smoothed which is a favorable prop-
erty in the presence of fast surface motions. The purpose
of the temporal regularization is mainly to suppress tempo-
ral noise in the surface reconstruction rather then penalizing
surface motion in a dynamic scene. The effects of parame-
ters a, b will be discussed in the experimental section.

2.1. Photoconsistency Estimation

For each camera i we define a cost function1 Ci : V ×
R 7→ R which calculates a matching cost at a location
defined by distance d from the camera center towards or
through point x based on the normalized cross correlation
(NCC)

Ci(x, d) =
∑
j∈C′\i

wji (x)·NCC
(
πi
(
ri(x, d)

)
, πj
(
ri(x, d)

))
.

(3)
The function ri : V ×R 7→ V returns points on the ray from
camera i through point x according to a given distance d
from the camera. To calculate Ci(·) we select a subset of
front-facing cameras C′ ⊂ C for which the angle between
the viewing directions is below γmax=85◦. The contribu-
tion of each camera is weighted by a normalized Gaussian
weight wji (x) of the angle between view directions of cam-
eras i and j. Further, we discard unreliable correlation val-
ues by means of a threshold τncc = 0.3 and truncate Ci to
zero by setting

C̄i(x, d) =

{
0, if Ci(x, d) < τncc

Ci(x, d), otherwise
(4)

This prevents Ci(·) from being negative and the truncation
to zero will lead to a neutral behavior for its use in the regu-
larizer as well as in the data term. For the photoconsistency
measure ρ we employ the voting scheme of Hernández and
Schmitt [2]

ρ(x, t) = exp
[
−µ
∑
i∈C′

δ
(
dmax
i =depthi(x)

)
· C̄i(x, dmax

i )︸ ︷︷ ︸
VOTEi(x)

]
(5)

1The temporal dependency is omitted for better readability.

which accumulates votes from different cameras only in
locations x ∈ V if the maximum quality along the ray
through the center of camera i and x is found at distance
dmax
i = arg maxd C̄i(x, d). Thus, every camera ray has ex-

actly one measurement if the corresponding matching score
exceeds the threshold. Function depthi : V 7→ R returns
the Euclidean distance of x to the center of camera i. We
set scaling parameter to µ = 0.15. Function ρ(·) represents
a matching score of how well a small surface patch in x
matches both corresponding camera images. It thus indi-
cates probable surface locations with a low value. In the
next section we explain how this information can be used
for a proper modeling of the data term.

2.2. Data Term for Multi-View Reconstruction

The data term is necessary to avoid trivial solutions when
minimizing Eq. (1) and replicates photoconsistency infor-
mation in form of local labeling preferences. In a multi-
view setup, each label of u(x) depends on the labels of all
points along all the camera rays passing through x. Consid-
ering these dependencies accurately generally leads to an
involved non-convex optimization problem. We argue that
these dependencies can be approximated by means of unary
potentials f . Negative values of f favor an interior label,
while positive ones an exterior label of u. The photoconsis-
tency measure defined in the last section gives hints about
probable surface locations. However, it is not directly us-
able to express regional affinity. Our goal is to carry the
uncertainties about the surface location indicated by quality
functions Ci(·) into the unaries f and thus into the global
optimization of energy (1). We assume that the maximum-
filtered NCC score at point x has the following relation to
the probability that surface S passes through this point:

Pi(x ∈ S) = 1− 1

Z
exp

[
− η · VOTEi(x)

]
(6)

where Z is a normalization constant. Parameter η steers
the exponential relationship between the number of cam-
eras giving a vote, their corresponding voting qualities
VOTEi(x) and the probability that the point x is part of
the surface. Each camera ray may give a single vote for a
probable surface location. Starting from this location and
walking towards the respective camera i we follow the idea
that each time we pass another probable surface location,
the probability of being in the surface interior further de-
creases. This idea is expressed in the following equation
which defines the probability of point x being in the sur-
face interior for a reference camera i:

Pi
(
x ∈ int(S)

)
=

N∏
j=1

∏
depthi(x)<d≤dmax

i

[
1− Pj

(
ri(x, d) ∈ S

)]
(7)
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The inner product integrates the surface probability votes
along the ray between depthi(x) and dmax

i and the outer
product accounts for the fact that these probabilities come
from other cameras. We assume independence of individ-
ual cameras and obtain the overall probability that x is an
interior point:

P
(
x ∈ int(S)

)
=

N∏
i=1

Pi
(
x ∈ int(S)

)
(8)

Finally we define data term f in Eq. (1) as the log-
probability ratio:

f(x, t) = − ln

(
1− P

(
x ∈ int(S)

)
P
(
x ∈ int(S)

) )
. (9)

Equation (7) is related to the probabilistic visibility model
used by Pollard and Mundy [11, Eq.(4)]. They define the
visibility visi(x) of a point x as the probability that x is
not occluded by any other point between x and the camera
center:

visi(x) =
∏

0<d<depthi(x)

[
1− Pi

(
ri(x, d)∈S

)]
(10)

One could argue that 1 − visi(x) is also a good indica-
tor for being in the surface interior. However, as long as
none of the Pi

(
x ∈ S

)
equals exactly one, visi(x) never

reaches zero and will influence the probability of x being
inside the surface far behind the camera vote. This model
propagates the uncertainty that a ray from the camera cen-
ter has passed a surface forward infinitely into the scene.
In contrast, we propose a more conservative approach: we
propagate the uncertainty of a ray-surface intersection from
the local camera vote only towards the respective camera
centers. This way the uncertainty is only distributed in be-
tween the camera and the location of its vote. Figure 3 illus-
trates the shape of these probability distributions schemati-
cally. Visually speaking, every camera vote carves its way
towards the camera with its corresponding probability mea-
sure and the multiplication of all such camera bundles gives
the probability of being in the surface interior. As a de-
sirable result, this approach does not influence areas where
photoconsistency information is missing. This way the data
term favors the photo hull wherever photoconsistency infor-
mation is missing or unreliable. Note that we do not need to
assume any minimal surface thickness as it is usually done
in approaches dealing with truncated signed distance func-
tions (e.g. [17]). In contrast to the data term proposed in
[8] our approach does not influence the estimates of other
surfaces behind the camera vote.

3. Global Optimization
To minimize energy (1) we relax the image of function

u to [0, 1] and employ the preconditioned primal-dual algo-

depth
i
(x)

P (x ∈ S)

1

visi(x)
Pi

�
x ∈ int(S)

�

depth
i
(x)

Figure 3. Schematic plots of probabilities along a camera ray. The
center of camera i is in the coordinate origin. Pi

(
x ∈ int(S)

)
and visi(x) multiplicatively integrate the probabilities P (x ∈ S)
along the ray before and behind location x respectively (when
looking from the camera).

rithm by Pock and Chambolle [10]. Eq.(1) can be rewritten
by introducing a dual variable p : V × T 7→ R4 that helps
to deal with the non-differentiability of the total variation
norm. The derivations follow the ones of Unger et al. [16]:

E(u) = max
‖p‖≤1

∫
V×T

〈u,−div(p)〉 dxdt+ λ

∫
V×T

fu dxdt

(11)
This saddle point problem is optimized by means of an it-
erative update scheme performing a gradient ascent in the
dual and a gradient descent in the primal variable:

pn+1 = ΠC [pn + σ∇ūn]

un+1 = Π[0,1]

[
un + τ(div(pn+1)− λf)

]
(12)

ūn+1 = 2un+1 − un

The projection Π of u onto the unit interval [0, 1] is done by
thresholding. Projection onto the set C = {q = (qx, qt)

T :
V × T 7→ R4

∣∣ ‖qx‖ ≤ 1, |qt| ≤ 1} is a projection on a 4D
hyperball and can be done as follows:

ΠC(q) =

(
qx

max(1, ‖qx‖ρ )
,max

(
− gt,min(gt, qt)

))T
(13)

The step sizes σ and τ are chosen adaptively by keeping
track of the corresponding operator norms as suggested in
[10]. For the primal variable u we assume von Neumann
boundary conditions for both spatial and temporal deriva-
tives and corresponding Dirichlet boundary conditions for
p, that is ∇u

∣∣∣
∂(V×T )

= 0 and p
∣∣∣
∂(V×T )

= 0. The up-

date scheme (12) provably converges to a global minimum
of relaxed energy (1). The corresponding optimal binary la-
beling can be found by simple thresholding of the relaxed
solution [10].
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4. Implementation
Both the photoconsistency estimation as well as the en-

ergy optimization have been implemented on the GPU using
the NVidia CUDA framework. The optimization scheme in
Eq. (12) lends itself to a parallel implementation. In the re-
sult section we also briefly detail the implementation of the
photoconsistency estimation.

A limiting factor of our method is memory requirement.
Overall, the method needs 8|V ||T | ·4 bytes, one volume for
the data term and photoconsistency each, two for the primal
and four volumes for the dual variable. The second pri-
mal variable is needed because of the over-relaxation step
in Eq. (12). In practice memory resources are limited and
smoothing over too many frames is usually not meaningful
in dynamic scenes. Therefore, we limit |T | to a fixed num-
ber of frames and process longer sequences with a sliding
window approach for which we take the center frame of the
window as the smooth solution.

5. Results
We applied our algorithm to several data sets provided

by the INRIA 4D repository [6] and the free viewpoint
video data sets from Tsinghua University provided by Liu
et al. [9]. Both data sets also provide silhouette information
which is quite useful in a sparse camera setup. We used the
silhouette information provided with the data sets to speed
up photoconsistency matching and optimization by restrict-
ing all computations to the interior of the visual hull. In
some frames the silhouettes are incorrect and lead to miss-
ing scene parts in some experiments. All experiments have
been computed on a Intel Xeon E5520 PC with 12GB RAM,
equipped with an NVidia Tesla C2070 card and running a
recent Linux distribution.

Given the relaxed solution of energy (1) we extracted an
isosurface at u = 0.5 with the Marching Cubes algorithm.
To better see the jittering reduction all experiments show
pure results of our algorithm after Marching Cubes without
any mesh smoothing, filtering or remeshing. The following
section details the photoconsistency and data term compu-
tation to explain differences and compare to previous work.

5.1. Photoconsistency and Data Term Evaluation

As explained in Section 2.2 the data term is built based
on the photoconsistency measure ρ. The quality of this mea-
sure directly influences the quality of the data term. Kolev
et al. [8] iteratively improved the quality of the photocon-
sistency by calculating the NCC scores based on a surface
normal estimate which they first take from the visual hull
and later update with the solution of the surface reconstruc-
tion in an iterative manner. In the photoconsistency voting
scheme as described in [8] each point x defines a ray to each
camera. Point x only gets a vote if the normal correspond-

input (a) (b) (c) (d)
Figure 4. Comparison of data term from [8] (a) and the proposed
one (b) for a lower cross section of the skirt. Shown are the vox-
els’ probability of being inside (white) and outside (black) the sur-
face. Corresponding photoconsistencies are respectively displayed
in (c) and (d). Dark pixels represent higher matching scores. Al-
though the photoconsistency is slightly worse, the proposed data
term yields sharper contours and better carves out concavities be-
cause only front facing cameras determine their shape, rather than
all cameras. The volume resolution was 128x256x192.

ing to x maximizes the NCC along the whole ray in point x.
This means that for every point x the photoconsistency has
to be calculated for all points on the corresponding camera
rays with respect to the same normal. This makes the pho-
toconsistency estimation inherently slow and explains the
long (up to 10 hours for one scene) computation times re-
ported in [8]. In our 4D setup we dropped this dependency
by maximizing the photoconsistencies along rays indepen-
dent of the normal direction. This way the photoconsis-
tency calculations can be done independently and thus eas-
ily be parallelized to speed up computations. We simply use
the viewing direction of the reference camera towards x as
the surface normal estimate. We compared the results with
our reimplementation of the normal dependent maximiza-
tion and experienced fairly similar results. Figure 4 shows
exemplarily results for these different photoconsistency es-
timation schemes. As result, we experienced speedups of
one or several orders of magnitude (depending on the vol-
ume resolution) for getting comparable results.

On the left part of Fig. 4 we compare the proposed data
term with the one in [8]. We briefly repeat its definition to
clarify the differences. They also define a quality measure
for each camera ray defined by point x and camera j:

ρjint(x) =H(dmax
i − d) · (1− f(C̄i(x, d))) (14)

+ (1−H(dmax
i − d)) · f(C̄i(x, d))

H is the Heavyside step function switching between two
different costs depending on whether d is larger or smaller
than dmax

i , i.e. if the point x is either before or behind the
voting location. The data term is then defined as an aver-
age of ρjint(·) over all cameras. The key difference to our
proposed approach is the fact that this model influences the
data term before and behind the camera vote while the pro-
posed approach only influences the data term in between
the camera and the camera vote. This global influence de-
grades the quality of back faces and other object parts which
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1/16 input images Kolev et al. [8] Jancosek and Pajdla [7] proposed
Figure 5. Comparison of the reconstruction results using the data term by Kolev et al. [8] and the proposed one. Further we show the
result of the method by Jancosek and Pajdla [7]. The ball has low texture information and further exhibits strong reflections which makes
it difficult to reconstruct.

Figure 6. Comparison of the proposed method for |T | = 1 with other 3D reconstruction methods. Respectively from left to right (twice):
Jancosek and Pajdla [7], Liu et al. [9] and the proposed method. The approach by Jancosek and Pajdla wrongly connects points at the hand
and the armpits. Our approach method better preserves several details like the hand.

are unrelated to the camera vote. This is visible in Fig. 4
showing the differences in the data term, as well as in Fig. 5
which depicts a resulting surface reconstruction. For com-
parison we also show the reconstruction result of Jancosek
and Pajdla [7]. The scenes with the gymnastic ball are espe-
cially challenging because the ball surface has low texture
information and a shiny surface. In Fig. 6 we compared
the output of our method with the methods by Jancosek and
Pajdla [7] and to the ones of Liu et al. [9] who provided
the data. Both methods yield much smoother surface re-
constructions, but also blur fine scale details like the hand.
Table 1 lists average computation times for the experiments
depicted in Fig. 9.

data set volume size pc+d opt
kick one 3843 89 28/93/-
cartwheel 384× 384× 256 21 18/59/-
playing 384× 384× 256 18 18/60/-
adult child 3843 43 31/91/-
red skirt 2563 90 10/31/88

Table 1. Average runtimes per frame for our method on differ-
ent data sets for the photoconsistency and data term estimation
(pc+d) and the surface optimization (opt) for different sizes of
|T | ∈ {1, 3, 5}. Timings are in seconds. In comparison the
method by Jancosek and Pajdla [7] computed 10-20 min/frame.

5.2. Temporal Regularization

For evaluation we studied the influence of the temporal
window size |T | and weighting gt = exp(−a|∇tf |b) in Eq.
(2). Fig. 7 gives an overview for |T | ∈ {3, 5, 7} (hori-
zontal) and different a ∈ {0.001, 1} (left, vertical). The

effect of gt on the solution is mainly governed by parame-
ter a. When a approaches zero the temporal regularization
gets maximal and the reconstructed surface tends towards
the intersection with neighboring time slices (see the dis-
appearance of the lower leg part in Fig. 7, top row). We
could not experience significant visible differences for vary-
ing values of b and set b= 1 in all experiments. The differ-
ences are largest between window sizes |T |=1 and |T |=3.
Choosing larger window sizes only led to subtle differences
which do not pay off the increase in computation time and
memory resources. Since no other 4D reconstruction imple-
mentations are publicly available and it is difficult to obtain
ground truth geometry, we visually compare our method
with (a) time-independent reconstruction by Jancosek and
Pajdla [7], (b) time-independent reconstruction as proposed
with |T | = 1, (c) temporal Gaussian smoothing of (b) as
post processing for temporal smoothness, and (d) the pro-
posed method with |T | = 3. In particular, we compute a
smoothed occupancy labeling ū from the time-independent
result û as follows:

ū(x, t) =
1

Z

|T |−1∑
i=0

exp
[
− (i− |T |/2)2

2σ2

]
û(x, t+i−|T |/2)

(15)
Fig. 8 shows a representative frame for each method. Gen-
erally, the Gaussian filtering cannot reach the same level
of smoothness as (d) while preserving fast moving object
parts. For preserving fast movements σ needs to be chosen
very small such that voxel jittering is barely reduced. The
proposed method balances these issues much better.
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|T | = 1 |T | = 3 |T | = 5 |T | = 7 |T | = 1 |T | = 3, a = 0.5
Figure 7. Effect of the temporal regularization. The approach allows to impose temporal regularity over multiple time steps |T |. For a
small weight of temporal smoothness (a = 1, left bottom row) the regularity reduces the jittering of voxels over time (see supplementary
video), where as for strong temporal smoothness (a = 0.001, left top row) the regularization starts to deteriorate fast moving structures
like the right foot. Temporal coherence also improves reconstructions with weak photoconsistencies in single time frames (right).

(a) Jancosek and Pajdla [7] (b) time-indep. (|T | = 1) (c) temp. filtering (|T | = 3) (d) proposed (|T | = 3)
Figure 8. Comparison of different reconstruction techniques. (a) produces strong surface jittering, wrongly connects the leg and hand and
misses parts of the head. (b) Voxel jittering is visible. (c) Voxel jittering can be reduced, but fast moving object parts start disappearing,
e.g. the foot. The edge on the lower leg is an artifact of the averaging of consecutive time frames. (d) Due to the weighting and the
TV-regularization the problems of (c) can be balanced much better (see also supplementary video).

6. Conclusion
We presented a novel approach to space time multi-view

3D reconstruction that generalizes several previous works
into a 4D setting. In order to get competitive reconstruc-
tions on wide-baseline camera setups we further proposed a
novel data term that better preserves concavities and fine de-
tails. 3D reconstruction results compare favorably to other
works. Our approach directly accounts for temporal surface
coherence within the reconstruction process. In compari-
son to single frame-by-frame reconstruction our approach
clearly reduces the amount of noise on the estimated sur-
face. In several experiments we showed the viability of the
proposed framework. To our knowledge, this is the first
time that space-time 3D reconstruction was formulated as a
convex variational problem. The solutions are provably op-
timal, independent of initialization and recover fine details.
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