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Abstract

We propose a novel algorithmic solution for estimating
a three-dimensional model of an object observed in a sin-
gle image. Based on a minimal user input, the algorithm
interactively determines the objects’ silhouette and subse-
quently computes a silhouette-consistent 3D model which is
precisely the globally minimal surface with user-specified
volume. In contrast to a recently published approach to
single view reconstruction, the proposed algorithm does
not constrain the resolution in the depth-direction, it as-
sures the global optimum and is faster by about an order of
magnitude. Experiments demonstrate that plausible high-
resolution 3D models can be generated in fractions of a
second and compare favorably with other methods.

1. Introduction
1.1. 3D Reconstruction from a Single Image

The reconstruction of 3D shape from a single image is a
very attractive challenge as it serves as a basis for generat-
ing novel views of an object observed in one image – under
different viewpoint, different texture or illumination. More
than most other computer vision problems single-view re-
construction is a highly ill-posed problem. As a conse-
quence, one needs to make additional assumptions on the
object’s geometry (such as piecewise planarity [7],[10],[6]),
its albedo (shape from texture [11]), its reflectance proper-
ties (shape from shading [8]), or the image formation pro-
cess (shape from defocus [5]). Although such approaches
were demonstrated to generate plausible 3D models, they all
impose more or less strong limitations on the applicability
to objects in real-world images. Moreover, many of these
approaches give rise to hard computational challenges and
are therefore unlikely to work well in an interactive real-
time application.

A class of reconstruction algorithms that was shown to
work well on a fairly large set of objects and images are
silhouette-based reconstruction methods. Pioneering work
for the reconstruction of curved surfaces was done by Ter-
zopoulos et al. [16] although their reconstructions are re-
stricted to tube-like shaped objects with genus 0.

Figure 1. The proposed algorithm computes optimal silhouette-
consistent minimal surfaces of given volume in computation times
below 1s. From left to right: input image, reconstructed geometry
and textured geometry.

The work of Prasad et al. [14] made further significant
advances towards the reconstruction of arbitrary curved sur-
faces and generalized the class of reconstructable objects to
those of higher genus. In practice, however, only objects
with rather simple topology can be reconstructed due to the
use of a parametrized surface representation. Moreover, the
required amount of user input is considerably high.

Similar to this work, Zhang et al. [21] make use of a
depth map in order to calculate a smooth minimal surface
which is subject to user defined constraints. However, for
reasonable reconstructions the amount of necessary user in-
put is much larger compared to the proposed method.

Somewhat related to this work is the paper of Joshi et al.
[9]. There, a 2D surface generated from an input silhouette
is inflated which can then be used e.g. in the generation of
font effects. Inflation in their formulation is a non-intuitive
local parameter of the silhouette border and differs signifi-
cantly from the intuitive notion of specifying a global vol-
ume. Further, there are learning-based approaches like the
one of Hassner and Basri [17] who learn depth values of
image patches from a database.

1.2. The Cheeger Set Approach

Recently, Töppe et al. [18] introduced a single view re-
construction method based on Cheeger sets: It is aimed at
computing silhouette-consistent minimal surfaces of a user-
specified volume and provides plausible reconstructions for
a large number of real-world objects. While we agree that
the concept of fixed-volume minimal surfaces is an intu-
itive and useful paradigm for computing plausible single-
view reconstructions, the formulation in [18] has a number
of shortcomings:
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• The volumetric representation imposes strong con-
straints on memory and runtime. Even with an efficient
GPU-accelerated primal-dual algorithm the method re-
quires around a second of computation time for mod-
erate resolution reconstructions. As a consequence,
higher-resolution 3D models cannot be generated at in-
teractive speeds.

• Although the method in [18] was shown to provide
exactly volume-consistent solutions, the algorithm is
based on a convex relaxation and thresholding. In the
absence of a threshold theorem, the method is not guar-
anteed to provide the globally minimal surface of spec-
ified volume. Furthermore, it is not clear whether sub-
sequent thresholding of the relaxed solution actually
leads to a spatially coherent structure (rather than a
scattered set of voxels).

• Although the method is essentially computing a depth
map, the authors in [18] make use of a fully volumetric
representation. The required discretization of possible
depth values imposes a limitation on the possible res-
olution in the z-direction.

1.3. Contribution of this Work

In this paper, we revisit the Cheeger set approach to sin-
gle view reconstruction. In particular, we propose a novel
algorithm for computing single view reconstructions which
remedies the above shortcomings. More precisely:

• We propose to solve the above problem by means of a
height-field representation. As a consequence, we can
allow for a spatially continuous set of depth values.

• Due to the 2D representation we have substantially
reduced computation time and memory requirement
(quadratic rather than cubic). Experiments confirm
that the proposed method allows to compute solutions
about an order of magnitude faster, even for higher res-
olutions.

• In contrast to the algorithm in [18], the proposed
method does not require convex relaxation and thresh-
olding. As a consequence, the algorithm provably
computes silhouette-consistent minimal surfaces of a
specified volume.

2. Fixed Volume Minimal Surfaces: A Two-
Dimensional Formulation

For the following, we will assume that the user has inter-
actively extracted the object’s silhouette using an interactive
segmentation tool like the ones in [2, 19]. Let S ⊂ R2

be the object’s silhouette, i.e. those points of the image
plane corresponding to the interior of the object. In the fol-
lowing, we will recover a plausible estimate of the object’s

uy dy

dy

dx

ux dx

u(x, y)

dA

Figure 2. Area of an infinitesimal surface element dA and partial
derivatives of u.

3D geometry by determining silhouette consistent surfaces
of minimal area and a user-specified volume. Of course,
we do not know the true depth of the object at any given
point. Rather than specifying individual depth values, the
user simply provides the volume which is the product of
the silhouette area and the object’s average depth value. In-
tuitively, this approach to single-view reconstruction cor-
responds to a balloon being placed inside the silhouette-
constrained domain and being inflated to a given volume.

The objects surface will be represented by means of a
height map

u : S → R, S ⊂ Ω (1)

assigning a depth value u(x, y) to each point (x, y) ∈ S
of the silhouette which is embedded in the image plane Ω.
As shown in the schematic plot in Fig. 2, an infinitesimal
surface area element dA of the surface represented by the
function u is given by

dA =

∣∣∣∣∣∣
 dx

0
ux dx

×
 0

dy
uy dy

∣∣∣∣∣∣ =
√

1 + |∇u|2 dx dy (2)

The overall area of the surface denoted by u is given by

E(u) =

∫
dA =

∫
S

√
1 + |∇u|2 dx dy (3)

For brevity dx will denote a 2 dimensional integrand for the
rest of the paper. Reconstructing a minimal surface of vol-
ume V can therefore be done by solving the minimization
problem

min
u∈C

E(u), with C =

{
u

∣∣∣∣∣
∫
S

u dx = V

}
. (4)

Proposition 1. The two-dimensional fixed volume minimal
surface problem defined in (4) is convex.

Proof. The volume constraint on u is obviously a lin-
ear constraint, thus the domain of optimization is convex.
Moreover, the functional E is convex because for any func-
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tions u1 and u2 and any α ∈ (0, 1) we have:

E(αu1 + (1− α)u2)

=

∫ √
1 + |∇

(
αu1 + (1− α)u2

)
|2 dx

=

∫ √
1 + |

(
α∇u1 + (1− α)∇u2

)
|2 dx (5)

≤
∫
α
√

1 + |∇u1|2 + (1− α)
√

1 + |∇u2|2 dx

= αE(u1) + (1− α)E(u2).

In contrast to the volumetric formulation proposed in
[18], the two-dimensional formulation proposed here is
convex. As a consequence, we do not need to revert to
the generally suboptimal strategy of convex relaxation and
thresholding. Instead we can directly compute globally op-
timal solutions by solving (4).

3. Minimization of the Proposed Energy
Minimization of the convex problem (4) can be achieved

by solving the Euler-Lagrange extremality condition given
by the partial differential equation

dE

du
= −div

(
1√

1 + |∇u|2
∇u

)
= 0. (6)

This is a nonlinear diffusion equation which is similar to
the well-known model by Perona and Malik [12] for edge-
preserving image smoothing, but with a different diffusivity
g(x) = 1/

√
1 + |∇u|2 which was proposed by Charbon-

nier et al. [3].
Our derivation of Eq. (6) via Eq. (3) therefore provides a

geometric interpretation of the Perona-Malik diffusion with
the Charbonnier-diffusivity: In image diffusion the image
gray values can be interpreted as a height map whose sur-
face area is minimized as the diffusion process minimizes
energy (3) (see also [15] for more details).

However, we use Eq. (6) in a completely different set-
ting. Instead of using a data term we impose a global vol-
ume constraint and special boundary conditions which de-
pend on the input silhouette. In the following we describe
how these constraints are chosen and incorporated into the
numerical optimization of Eq. (6).

3.1. Numerical Optimization

We employed three optimization schemes and compared
their performance. We briefly sketch all three methods in
the following. In [4] Paul Concus proposed a numerical
scheme for solving the minimal surface problem (4) except
that he did not consider a volume constraint.

Gradient Descent. An iterative method for solving en-
ergy minimization problems is gradient descent. In each it-
eration we advance in the direction of the negative gradient
of the energy, finding a better solution with each step:

ut+1 = ut − τ ·
dE

du
(7)

where τ is the step size. Since the minimization problem
(4) is convex, the gradient descent method will converge to
the global optimum of the energy.

FISTA. The fast iterated shrinkage and thresholding al-
gorithm [1] can be considered as a generalized gradient de-
scent scheme for a certain class of functions. Applied to
our case it amounts to an ordinary gradient descent with
adaptive over-relaxation of the current solution every few
iteration steps:

τk+1 =
1

2
(1 +

√
1 + 4τ2

k ) (8)

uk+1 = uk +
τk − 1

τk+1
(uk − uk−1) (9)

Successive Over-Relaxation by Means of Lagged-
Diffusivity. The Lagged-diffusivity approach was first
employed by Vogel and Oman [20] for image deblurring
and denoising. By keeping the diffusivity g(x) fix over
a number of iterations one can solve the resulting sparse
linear equation system div(g(x)∇u) = 0 with numeri-
cal solvers like Jacobi, Gauss-Seidel or Successive Over-
Relaxation (SOR).

3.2. Implementation

In order to solve the optimization problem in Eq. (4) with
one of the three optimization methods from above we pro-
ceed as follows: We compute one or more iterations of our
optimization algorithm and then project the current solution
back to the convex set C of functions with a pre-described
volume.

Projection Scheme. The orthogonal projection of any
function u′ onto C can be described as the following op-
timization problem:

min
u

1

2

∫
S

‖u− u′‖2 dx s.t.
∫
S

u dx = V . (10)

By introducing the Lagrange multiplier λ ∈ R and calculat-
ing the partial derivatives of the corresponding Lagrangian
function we obtain the following extremality conditions:

0 = u− u′ + λ ∀x ∈ S (11)

0 =

∫
S

u dx− V (12)
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Inserting (11) into (12) yields

u = u′ +
(V − ∫

S
u′ dx∫

S
dx

)
· 1S (13)

as a simple update scheme for the volume projection in
which 1S is the one-function being 1 at every point x ∈ S.
Intuitively, this means that the residual volume is evenly dis-
tributed over all function values of u in S.

Boundary Conditions. In order to guarantee silhouette
consistency induced by the set S, we apply Dirichlet bound-
ary conditions at the silhouette boundary ∂S and Neumann
boundary conditions if the silhouette coincides with the im-
age boundary ∂Ω:

u(x) = 0 ∀x ∈ ∂S ;
du

dx
(x) = 0 ifx ∈ ∂Ω . (14)

In this way silhouette consistency is ensured and objects
touching the image boundary are cut orthogonal to the im-
age plane. Intuitively, this means that object surfaces con-
tinue uniformly at image boundaries rather than dropping to
zero.

Parallelization. All minimization methods described in
Sec. 3.1 have been parallelized on recent graphics hard-
ware. This includes the projection step since it can be ap-
plied to each pixel independently once the difference be-
tween target and current volume is known. For paralleliza-
tion of the SOR method a Red-Black scheme has been em-
ployed.

3.3. Weighted Minimal Surfaces

Without adding further constraints to the solution, the
problem in (4) tends to be smooth by definition. In order to
enable our method to reconstruct non-smooth objects, we
can add local weights to the energy functional. More for-
mally Eq. (3) extends to

E(u) =

∫
S

ρ(x)
√

1 + |∇u|2 dx . (15)

Fortunately, the introduction of the weighting function ρ :
S 7→ R+ does not affect the convexity of the energy.

Proposition 2. The two-dimensional fixed volume minimal
surface problem defined in (4) extended with the weighting
function as shown in Eq.(15) is convex.

Proof. The proof is a straight-forward extension of the one
from proposition 1.

Further, this extension is easily integrated into the op-
timization methods described above. Adding weights to

the surface considerably extents the class of possible recon-
structions. Setting all weights ρ(x) = 1 leads to the original
formulation in Eq. (3). In the implementation we use this
as a default setting, however, the user can locally adapt this
surface parameter.

4. Experimental Results
We tested our method on several real-world images,

compared the results with three other state of the art meth-
ods and evaluated visual appearance, runtime and amount
of user input.

Since one cannot obtain true depth values from a single
image we do not strive for a comparison with ground truth
data. We rather focus on plausibility and pleasantness of
the reconstructions. Moreover, as the backsides of objects
are naturally invisible in the input image, we assume the
reconstructions to be symmetric. This can be achieved by
simply mirroring the computed depth values along the im-
age plane. With this heuristic, we are able to obtain closed
object representations from depth maps.

4.1. Comparison to Related Methods

In Fig. 4 we visually compare our results to the ones
obtained with methods by Zhang et al. [21], Prasad et al.
[14] and Töppe et al. [18]. For comparison we used our
own implementation of [18] and the implementation from
[21]. We do not have an implementation of Prasad et al.
and therefore used the results presented in [13].

The method by Zhang et al. sticks out in this comparison
because it is restricted to depth map reconstruction while the
other methods focus on curved objects. Except for method
[18] all approaches are globally optimal and compute recon-
structions at interactive frame rates. The methods mostly
differ in the necessary amount of user input.

With the method of Zhang et al. the user has a variety
of choices for surface manipulations such as position and
normal constraints, discontinuity constraints, planar region
constraints and manual mesh-subdivision. Usually many of
these constraints are necessary for reasonable reconstruc-
tions leading to modeling times of several minutes to hours
even for experienced users. We, as moderately experienced
users, spent 20-40 minutes for each of the examples shown
in Fig. 4.

Similarly, the method by Prasad et al. needs concise
input and expert knowledge. The user has to assign parts
of contour lines to lines in the parameter space, which be-
comes harder for objects of higher genus. As a result, the
topology is restricted to genus two. Still, objects of higher
genus exhibit over-oscillation of the surface as seen in the
teapot example in Fig. 4. Moreover, for volume inflation
the user needs to define a set of interpolation constraints.
In subsequent steps the user may need to add further con-
straints for allowing surface creases. On the other hand and
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in contrast to our approach, Prasad et al. can cope better
with some images, in which the symmetry plane of the ob-
ject is not parallel to the image plane. An example for this
is represented by the donut.

Töppe et al. [18] minimize a similar energy and need
the same amount of user input as our method, which is con-
siderably less compared to the other reconstruction meth-
ods. Several examples in Figures 4 and 5 compare both
approaches. Since for our method less memory and compu-
tation time is needed, it is feasible to use input images with
considerably higher resolution. This results in higher de-
tailed silhouettes and reconstructions as can be seen in the
plane example in Fig. 7. Also, results of our method appear
smoother as we compute continuous depth values (see e.g.
the balloon). In contrast, in the approach of Töppe et al.
[18] memory and runtime scale poorly with the size of the
input image as they have to maintain a voxel field.

4.2. Experimental Evaluation of our Approach

Figures 5 and 4 show reconstruction results of our
method for various input images. The examples represent
objects of very different quality reaching from natural to
man-made objects. One can see that the reconstructions ap-
pear quite plausible.

In general, since we compute a minimal surface, recon-
structions will often exhibit a balloonish appearance. How-
ever, the final minimal surface strongly depends on the
shape of the input silhouette. With regard to this, a strength
of our approach is that volume is inflated naturally in cor-
respondence to silhouette compactness. Examples for this
favorable behavior are the bird, the stone arch and also the
teapot in Fig. 4. They show that parts of the silhouette that
are compact inflate more, whereas thinner structures are in-
flated less.

All the examples in Figures 5 and 4 come without
smoothness adaption (see Sec. 3.3). In these cases, the only
parameter of our approach is the volume of the reconstruc-
tion. Fig. 6 visualizes how changes of the target volume V
intuitively affect the shape of the reconstruction.

In the other cases the user changed the smoothness of
the surface locally. User scribbles define the locations for
which the weighting factor ρ(x) of Eq. (15) can be set to
a user defined value. Setting ρ(x) to less than 1 locally al-
lows for sharp edges and surface extrusions like the airplane
wings in Fig. 7, while values larger than 1 have the opposite
effect of creating indentations. We employed this mecha-
nism as part of an interactive feature in our single view re-
construction tool. Remember that ρ(x) = 1 everywhere the
user did not specify weighted regions.

Fig. 7 shows some results for which the user altered the
smoothness locally. One can see that non-smooth recon-
structions can be achieved intuitively. Next to each recon-
struction the corresponding user scribbles are shown.
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Figure 3. Runtime comparison of different algorithms minimizing
Eq. (4) measured on the teapot example without user-scribbles.

example Töppe our method speedup
et al. [18]

teapot size 131x101x58 131x101
time 1.82s 0.14s 13.0

arch size 179x137x79 179x137
time 6.24s 0.99s 6.3

ladybug size 151x122x27 151x122
time 1.62s 0.15s 10.8

bird size 157x244x4 157x244
time 2.12s 0.2s 10.6

balloon size 82x97x44 82x97
time 2.65 0.15s 17.7

Table 1. Runtime comparison of the method in [18] with our
method for the examples depicted in Figures 5, 6.

Runtime Comparison As described in Sec. 3, we em-
ployed a gradient descent scheme, FISTA and SOR for solv-
ing problem (4). All experiments have been done on a PC
with a 2.27GHz Intel Xeon CPU, 12GB RAM equipped
with a NVIDIA GeForce GTX480 graphics card running
a recent Linux distribution. For comparing run-times of the
respective optimization algorithms, we ran each on a recon-
struction example until convergence. We then plotted for
each time step t the distance d(ut, u

∗) of the intermediate
result ut to the precomputed converged result u∗.

d(ut, u
∗) :=

∫
(x,y)∈Ω

(ut(x, y)− u∗(x, y))2dxdy (16)

The convergence criterion for all experiments has been set
to

|(E(ut−1)− E(ut))/E(ut)| < θ (17)

with θ = 10−15. Fig. 3 shows the results for the three
optimization schemes. As can be clearly seen, the lagged
diffusivity SOR approach of section 3 is the most efficient
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input image Zhang et al. [21] Prasad et al. [13] Töppe et al. [18] our method

Figure 4. Comparison of reconstruction results for several single-view methods. Qualitatively our methods (right column) keeps up with
state-of-the-art methods and sometimes even compares favorable over them.

algorithm in terms of time to convergence. The FISTA al-
gorithm is only slightly faster than gradient descent. This
is due to the fact that for differentiable functionals the al-
gorithm degrades to a gradient descent. The performance
gain stems from the adaptive over-relaxation step. Note that
due to the constraints on the feasible set, we have no proof
that SOR converges to the global optimum (see Projection
Scheme). However, the results of SOR were almost equal to
results from methods attaining the global optimum.

In order to evaluate the overall computational efficiency
of our method we measured the computation times of the
fastest optimization scheme until convergence and com-
pared them with the method by Töppe et al. [18]. Table 1
shows detailed runtime comparisons for all experiments in
Fig. 5. Since both methods optimize a convex energy, the
results are independent of the initialization. The number of
iterations needed until convergence, however, is not.

For all experiments the empty surface, respectively the

empty volume, has been used for initialization. When the
user changes the target volume on a computed result, we
can initialize the recomputation cycle with the previously
computed solution. This will effectively result in a faster
convergence. For input silhouettes with large areas, like
the stone arch, the diffusion process has to propagate along
longer distances, which leads to the relatively high runtime.

Generally, Table 1 clearly shows that our method is sig-
nificantly faster than the one of Töppe et al. [18]. This
difference mainly stems from the additional dimension that
is used in the latter in order to discretize the depth values
while our approach directly computes continuous solutions.

5. Conclusion
We have presented a novel method for single view re-

construction based on surface area minimization for pre-
defined volumes. In contrast to a recently published vol-
umetric approach, the proposed 2D solution has three ad-
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input image geometry textured geometry
our method Töppe et al. [18] our method Töppe et al. [18]

Figure 5. Our method works well on a variety of input images. Reconstruction results are similar to Töppe et al. [18] but in contrast are
obtained for higher resolutions, less memory, lower computation times and higher precision.

reconstruction +10% +20% +30%
Figure 6. Influence of the volume parameter on the reconstruction for our method. The volume distributes naturally, with more volume on
compact silhouette parts and less on thin silhouette structures. The input image for this reconstruction is the arch depicted in Fig. 5

vantages: First, the resolution in the third dimensions has
double-valued precision, secondly, the computed solution
is provably optimal (rather than suboptimal). Thirdly, the
2D formulation drastically reduces memory and computa-
tion time (by about an order of magnitude). For a large
variety of objects and good image resolutions, plausible re-

constructions are computed in fractions of a second making
this method well suited for interactive 3D modeling from
images. Since the target volume is the only free parameter
in our model the proposed method also outperforms many
previous approaches with respect to the necessary amount
of user input.
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Figure 7. Reconstruction results with user input altering the local smoothness of the surface. Next to the reconstructions the input images
are shown with the respective user scribbles. User scribbles (yellow) decrease the surface smoothness locally.
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