Lateral Ego-Vehicle Control without Supervision using Point Clouds

Florian Miiller*, Qadeer Khan* and Daniel Cremers

Computer Vision and Artificial Intelligence Group
Technical University of Munich, Germany
{f.r.mueller, qadeer.khan, cremers} @tum.de

Abstract— Existing vision based supervised approaches to
lateral vehicle control are capable of directly mapping RGB
images to the appropriate steering commands. However, they
are prone to suffering from inadequate robustness in real
world scenarios due to a lack of failure cases in the training
data. In this paper, a framework for training a more robust
and scalable model for lateral vehicle control is proposed.
The framework only requires an unlabeled sequence of RGB
images. The trained model takes a point cloud as input and
predicts the lateral offset to a subsequent frame from which
the steering angle is inferred. The frame poses are in turn
obtained from visual odometry. The point cloud is conceived
by projecting dense depth maps into 3D. An arbitrary number
of additional trajectories from this point cloud can be generated
during training. This is to increase the robustness of the model.
Online experiments show that the performance of our method
is superior to that of the supervised model.

I. INTRODUCTION

In recent years, deep learning approaches have shown a
promising trend in the context of lateral sensorimotor control
[1], [2], [3]. The trained network can directly map input
data to the steering commands [4], [5]. Labeled training
data is usually acquired by recording the raw sensory input
and the corresponding steering commands executed by an
expert driver traversing a reference trajectory. One of the
main challenges of this approach is the lack of failure cases
in the training data, caused by the driver’s obligation to
follow traffic rules and to remain within its own driving
lane. Without failure cases in the training data, the model
has no way of learning to recover from a divergence from
the reference trajectory [6]. This is a common issue with
deep learning that models tend to fail at inference time
when encountering images that are out-of-distribution from
the training set [7]. Previous works have attempted to solve
this problem by generating training images with lateral dis-
placement and adjusted steering label [5], [8], [1]. However,
due to limitations in the maximum lateral offset they can
generate, the learned driving policy tends to be not robust
enough [9].

In contrast to supervised approaches, Reinforcement
Learning (RL) can be used to learn a driving policy for
lateral control [10], [11]. RL does not require explicit data-
label pairs for training. Rather, the model learns a suitable

This work was supported by the Munich Center for Machine Learning.
The final authenticated version is available online at https://doi.org/
10.1007/978-3-031-09037-0_39

* These authors contributed equally

policy by randomly exploring the environment in a hit
and trial method using a pre-defined reward function [12].
However, in the context of self-driving, random exploration
of the driving environment is not a feasible solution as it
may involve dangerous traffic violation, potentially causing
crashes. This is why [7], have an expert driver that assumes
control whenever the car starts to deviates off-course.

As depicted in Figure[l| we propose a scalable framework
that neither requires supervised labels nor needs data col-
lected in violation of traffic rules. The model learns to predict
the lateral offset to subsequent frames from an unlabeled
sequence of RGB images, captured with a single front facing
camera. Internally, the input images are converted to 3D point
clouds, which enables the generation of an arbitrary number
of realistic synthetic trajectories parallel to the reference
trajectory. The labels for each frame are generated from
reconstructed camera poses using visual odometry. This
removes the requirement of labeled training data.

The primary contributions of our work are summarized
below:

1) We demonstrate how a model for lateral vehicle control
can be trained from only an unlabeled sequence of
images.

2) We show how generating additional training data leads
to enhanced robustness of the model at inference time.

II. METHOD

In this section the individual components of our framework
depicted in Figure |l| are described in further detail. The
framework trains a deep learning model for the task of lateral
ego-vehicle control from an unlabeled sequence of RGB
images.

A high-level overview of the individual components is
summarized below

1) Point Cloud Generation: Using a self-supervised
training paradigm, depth maps are predicted from the
RGB images, which are then used to generate 3D point
clouds.

2) Camera Pose Estimation: Using a general-purpose
visual odometry pipeline, camera poses are estimated
for each frame.

3) Point Cloud Augmentation: By aligning, shifting
and cropping the point clouds, new point clouds are
synthesized, which simulate additional trajectories.

https://doi.org/10.1007/978-3-031-09037-0_39
https://doi.org/10.1007/978-3-031-09037-0_39

Camera Pose
Estimation (2)

R Y
s

Label
Generation (4)

Point Cloud
Creation (1)

Augmentation (3)

Point Cloud PointNet

Regression (5)

Fig. 1: This figure describes the high level overview of the proposed framework (1) Point clouds are generated from RGB
images (Figure [2] Section [[I-A). (2) The camera pose of each frame is estimated using visual odometry (Section [[I-B).(3)
New camera frames are generated by aligning, shifting and cropping point clouds from existing frames (Section [[I-C). (4)
Labels representing the offset of the next frame in lateral direction are generated from the reconstructed camera poses
(Section [[I=D). (5) The resulting point clouds and labels are used to train a deep learning model to predict the lateral offset

of the next frame given a point cloud (Section [II-E).

4) Label Generation: Using the camera poses, the lateral
offset to a subsequent frame is calculated for each
frame. This serves as a target label to train the model.

5) Model Training: A deep learning model is trained to
predict the lateral offset to the next frame given a point
cloud as input.

These components are described in detail in the following
subsections.

A. Point Cloud Generation

Note that the point cloud for a corresponding RGB image
is needed for 2 purposes:

1) As an input to the model for predicting the steering
angle for lateral vehicle control

2) It is used for synthesizing additional training trajecto-
ries. Hence, the data collection along trajectories which
would otherwise violate traffic rules can be avoided.

Figure [2]shows an example of a point cloud projected into 3D
using the dense depth map of a corresponding RGB image.
The depth map is obtained from a depth estimation network
which takes an RGB image as input and can be trained in
an entirely self-supervised manner [13]. The training only
requires a monocular sequence of RGB images. Note that the
depth produced is normalized. Hence, calibration needs to be
done to find the appropriate factor to scale the normalized
depth map to the world scale.

In the point clouds generated from dense depth maps, it
may be hard to recognize relevant high-level features like
road markings, traffic poles etc. These high level features
tend to be important for the model to take the appropriate
steering decisions [14]. Moreover, having redundant points

in the point cloud which do not yield useful information
for the vehicle control model would impose an unnecessary
computational burden. To counteract both issues, an edge
filter [15] is applied on the RGB image used to predict
the depth map. The resulting point cloud is then filtered to
only include points on the detected edges. The edges can
further be dilated by a small amount to prevent losing finer
details. Additionally, points beyond a certain distance from
the camera are discarded. This increases the concentration of
points in the relevant areas closer to the camera. Points closer
to the camera are more important for the control model for
immediate decision making.

B. Camera Pose Estimation:

The monocular sequence of RGB images contains no
explicit information about the camera poses. The poses serve
two purposes:

1) To determine the target labels when training the net-
work for lateral ego-vehicle control. The input to this
network is the filtered point cloud.

2) For aligning point clouds when additional trajectories
are generated.

The camera poses in the global frame of reference can be
obtained from the image sequence using a general-purpose
visual odometry pipeline such as [16], [17], [18]. They pro-
duce the 6DoF camera pose and a sparse 3D representation
of the scene as depicted in Figure 3] The camera pose can be
expressed as a transformation matrix belonging to the special
Euclidean group SE(3) representing a rigid body motion.
The path traversed by a sequence of these camera poses
is referred to as the reference trajectory. However, note that

Point Cloud Creation Pipeline

Depth Map
Prediction (1)

—>_—> 3D Projection (3.1)

Mask &
Max Distance (3.2)

Fig. 2: The figure describes the high level overview of the point cloud creation pipeline. An (inverse) depth map is predicted
from an input RGB image, which in turn is projected to a 3D point cloud. Additionally an edge filter is applied to filter the
point cloud by removing points beyond a certain threshold distance

e T . PR

>l>DDDDDDDDDDDDDDDDDDDDDDDDDDDDDI>DI>DD_DDDDDD»DD%LA&A/MZAA

-

&
S
s
. s
04440449494 RS

Fig. 3: Using visual odometry, the camera poses and a sparse
3D representation is reconstructed simultaneously from the
sequence of RGB images. The figure shows a birds eye view
on the reconstructed trajectory for a small section of the
road. Each red triangle represents the reconstructed pose of
one camera frame in the image sequence. The dots represent
a sparse reconstruction of the 3D scene and are obtained
by matching features extracted from the images in multiple
frames.

the camera poses obtained from a monocular sequence of
images does not necessarily reflect the actual scale. As was
the case in Section [[[-A] calibration is done to determine the
appropriate scaling factor. Note that the 3D reconstruction of
the scene obtained by running visual odometry is too sparse
to be used as an input to the vehicle control model. This is
why we have used the approach described in Section [[I-A
that is capable of generating dense depth maps, while being

Ty

trained in a completely self-supervised manner.

C. Point Cloud Augmentation

After obtaining the camera poses and point clouds for
each camera frame, we finally have all prerequisites to
generate additional trajectories needed to train the vehicle
control model. Additional trajectories can be generated by
laterally translating the point clouds from the base frame in
the reference trajectory to a new frame position. Note that
the reference trajectory’s point cloud does not necessarily
contain all the points encompassed by the field of view
(FOV) of the new frame position. Those missing points are
included from frames in the reference trajectory preceding
the base frame. Conversely, points that do not fall within the
field of view of the new camera frame position are discarded.
The process is illustrated in Figure] wherein Camera B
is the base frame in the reference trajectory, while Camera
A is a preceding frame also in the reference trajectory. We
show how a point cloud at the new position represented by
Camera C' can be synthesized. The process can be split into
the following steps:

1) Align the point cloud of a preceding frame in the
reference trajectory with that of the base frame.

2) Shift the aligned point cloud from the base frame of
reference to the new frame position

3) Remove all points outside the field of view of the new
frame position.

Next, we discuss these steps in detail.
Aligning Point Clouds

Consider two camera frames A and B. The global trans-
forms of the frames relative to the world frame are repre-
sented by T4 and T’s. We have two local point clouds Py and

Fig. 4: Generation of a new camera frame. Top: Visu-
alization of the fields of view of different camera frames.
Camera C’s field of view contains points not included in
camera B’s field of view. These points are added by aligning
a previous camera frame A. Bottom: 1.) Point cloud of
camera B (blue). 2.) Aligning A’s point cloud (red) to add
missing points. We choose A to be far enough in the back
to cover the field of view of C. 3.) Changing the points’
reference frame from B to C. (The faded points represent
the points with reference frame B.) 4.) Finalizing the point
cloud creation by removing all points outside the field of
view of C.

Py, which were captured from camera A and B, respectively.
We call P and P, local point clouds, because the coordinates
of their points are given relative to their respective reference
frames A and B.

Aligning point cloud P, with point cloud P; is synony-
mous to representing the coordinates of F, relative to frame
B. The relative transform representing the rigid body motion
from camera B to camera A is the same transform that
changes the reference frame of the coordinates of point cloud
P, from A to B.

Applying the transform 7Ty to Py changes the reference
frame of the coordinates of Py from frame A to the world
frame. It moves P, to its global position. Let us call this
global point cloud F,, . Applying the inverse of Tz to F,,
changes the reference frame for the coordinates of I, from
the world frame to frame B. This new point cloud Fy, is

aligned with P, as the coordinates of both point clouds are
given relative to frame B.

In summary, the transform we need to apply to Py to align
it to P, is given by:

Tpa=Tg'Ta (1)
Applying Ts 4 to Py and concatenating the result with with
Py gives us a new point cloud F 1, containing all the points
of Py and P; with coodinates given relative to frame B:

Py1 = [TpaPo P (2)

If we choose A to be a camera frame earlier in the
sequence than B, then the scene represented by the
combined point cloud F; includes points from a wider
range than P;. This allows us to generate a new camera
frame by shifting and cropping the point cloud in the next
step.

Shifting and Cropping Point Clouds

To generate a new trajectory, we have to generate point
clouds from the point of view of the camera frames in the
new trajectory. This paper focuses on trajectories parallel to
the base trajectory. Therefore, new camera frames are always
shifted in lateral direction from the base camera frames.

The field of view of a camera C shifted in lateral direction
from camera B contains points not included in the field of
view of camera B. In the previous step, we therefore aligned
previous point clouds to the point cloud of camera B to
obtain a combined point cloud Fp; including all points in
the field of view of camera C. The coordinates of Py, are
given relative to frame B and its global transform is given
by TB.

We want frame C' to be shifted by some value z in lateral
direction from frame B. We will refer to frame B as the base
frame. The transform representing a lateral shift by value x
is given by T}:

1 0 0 T
0 1 0 0

T, = 0 0 1 0 ,x€R 3)
0 0 0 1

The relative transform of frame C' to frame B is therefore
given by T. In general, T, could be any rigid body motion
but this paper focuses on trajectories parallel to the base
trajectory and therefore on lateral shifts. To obtain the global
transform T¢ of frame C relative to the world frame, we
have to change the reference frame of 7, from B to the
world frame. We do so by applying Tz to T}.

Te =TpT, @)

T, =T Tc 5

Now we want to change the reference frame of Py ; from
frame B to frame C. We can do so in two steps. First

we change the reference frame of Fy; from frame B to
the world frame by applying 75. Then we can change the
reference frame from the world frame to frame C by applying
To ! This two step transform is equal to applying Tt
directly to Py ;.

Poy, = T TPy
= (Tg'Te) ' Po (6)
15) _
T, 'Poa

Py,1,, is now at the position a local point cloud perspective
of camera C'. But it also contains points outside the field of
view of camera C. To get a realistic point cloud, we need to
discard the points whose projections lay outside the image
plane of camera C.

To obtain the 2D coordinates of the points’ projections, we
multiply the intrinsic camera matrix (A) with the point cloud
and divide each point by its depth to obtain its coordinates
on the 2D image plane.

Tim 1 X
1 Z

Finally we drop each point from the point cloud for whose
projection do not fulfill the following criteria:

0 <= i < width N0 <= y;m < height

where width and height denote the dimensions of the
image plane.

Counteracting Imperfect Camera Poses

The larger the distance of the new frame C' to its base
frame B, the more points in the field of view of camera C'
are not laying in the field of view of camera B. Therefore
the larger the distance, the more point clouds from camera
frames earlier in the sequence need to be aligned to include
their points in the generated point cloud of the new camera
frame C.
The camera poses predicted by visual odometry may deviate
slightly from the true poses and the further we go back in
the sequence, the more significant this deviation becomes.
If we just align the previous point clouds and add all their
points to the generated point cloud, the result looks quite
fuzzy (see Figure [5a).
To counteract this issue, we can remove all points from
previous, aligned point clouds that lay within the field of
view of our base frame. Consider camera frame A, which
is earlier in the camera sequence than camera frame B. Let
Py be the point cloud captured from camera A and P; the
point cloud captured from camera B. After aligning Py to
frame B, we obtain the 2D coordinates of the projections of
its points onto the image plane of camera B as described
in Equation [7] Then we drop each point from Py for whose
projection the following criteria does hold:

0 <= zjm < width A0 <= y;mm < height

(b)

Fig. 5: Counteracting Imperfect Camera Poses. a) Multi-
ple edge filtered point clouds are aligned to generate a new
camera frame. Due to imperfect predicted camera poses, the
resulting point cloud looks very fuzzy. b) By only adding
points outside the field of view of the original camera and
limiting the maximum distance, we can increases sharpness
of the point clouds. Moreover, the maximum distance is
limited to a threshold, as the depth prediction becomes less
accurate with greater distance and closer points are more
relevant for the prediction of the lateral offset of the next
frame.

where width and height denote the size of the image plane
of B. We only keep the points whose projection lies outside
the image plane of camera B. This ensures that missing
points are being added, but the existing point cloud is not
blurred (see Figure [5b).

D. Label Generation

We have already discussed the process of preparing the
training data and generating additional trajectories. The next
step is to generate the target labels for this data in order
to be able to train a model for lateral vehicle control. Note
that the camera is rigidly attached to the car, therefore the
camera pose for any frame can also be used to determine the
pose of the car at the corresponding timestep. For each car
pose, we would like to find the appropriate steering angle to
be executed such that a subsequent car pose is attained. We
model the dynamics of front wheeled driven car using the

bicycle model [19]. We assume the no-slip condition between
the front and rear wheels [20]. This holds true when the car
is moving straight or making turns at low/moderate speeds.
Then the steering angle(d) of the car is described by the
equation [21]:

§ =tan ' (Az -) (8)

Where Ax is the lateral distance between 2 frames. This
can be determined from the camera poses. The 2 frames are
chosen such that they are approximately a fixed longitudinal
distance apart. This is to cater for the car moving at variable
speed or in case of dropped camera frames during data
collection. « is a constant that can be calibrated at inference
time depending on the car.

E. Model Architecture

Using the generated point clouds and labels, a deep
learning model is trained to predict the lateral deviation
(Ax) between the current frame and a subsequent frame.
The model can be considered as comprising of 2 main
components. The first takes raw point clouds of the current
frame as input and produces a global feature vector to furnish
a latent representation of the scene as seen by the ego-
vehicle. We adapt the PointNet architecture [22] prior to
the classification head for this. The next component consists
of multi-layer perceptions which map this global features
vector to furnish the output. A hyperbolic tangent function
forms the last layer. It is scaled by an arbitrary fixed value
a to allow predictions in the range of -a and a. The loss
function chosen to train the model is mean squared error
of the lateral deviation (Ax) between the 2 frames and that
predicted by the model. Figure [6] shows a visualization of
the model architecture.

PointNet

" mlp
1024 (512,256,1)

global feature

output

input points

Fig. 6: Shows the architecture of the model which takes a
point cloud as input and predicts the lateral deviation (Ax)
to a subsequent frame. [22] is used as the base architecture
to produce a feature vector with length 1024 from the point
cloud with n points. Meanwhile, “mlp” represents a multi-
layer-perceptron, with the numbers in brackets representing
layer sizes. “tanh” is a hyperbolic tangent function. It is
scaled by a fixed value a to allow predictions in the range
of -a to a.

III. EXPERIMENTS

We use the CARLA (CAR Learning to Act) [23] simulator
(stable version 0.8.2) for our experiments. It allows for an
online evaluation to assess the true driving quality. This is
as opposed to offline evaluation where 2 models with the
same offline metrics can have drastically different driving
performance [24].

The unit of measurement we use for online evaluation is
the ratio on lane metric adapted from [14]. It gives the ratio
of frames the ego-vehicle remains within its own driving lane
to the total number of frames. The ego-vehicle is considered
driving within its own lane if no part of the bounding box
of the car is on the other lane or off the road and the car is
not stopped due to a collision with other traffic.

Data Collection:

Image data is collected at a fixed frame rate by traversing the
ego-vehicle in auto-pilot mode in Town 01 of the CARLA
simulator. Images of size 640 x 192 (90°FOV) are used to
train the depth estimation network using [13]. Meanwhile,
[17] determines the camera poses. The depth is used to
generate a 3D point cloud which in turn produce additional
shifted point clouds at off course trajectories. We generate ten
additional point cloud trajectories at uniform lateral distances
in the range of [-2,2] meters from the single reference
trajectory. The missing points at shifted point clouds can be
compensated for by aligning preceding point clouds using the
camera poses. Only the missing points from the preceding
frames are added. This is because imperfect camera poses
may result in duplication of objects, thereby confusing the
model. The camera poses additionally allow to determine the
target labels to train the network. The number of points input
to the network are fixed to 4096. This is done by filtering
the point cloud to retain only the high level edge features,
while points beyond 20m are discarded.

Quantitative Evaluation:

The evaluation at inference time is done at different starting
positions in the town that are unseen during training. Each
episode is executed for 135 frames at fixed throttle and
the mean ratio on lane metric is reported across all unseen
episodes. Results of our method are reported in Figure

No

No
Edge Distance
Filtering Threshold

Fig. 7: Average ratio of frames the ego-vehicle remains
within its driving lane for different model configurations
across different starting positions unseen during training.
Higher value is better. Note that our method is better than
the supervised and at par with the supervised approach
with noise injection [9]. However, in contrast to this noise
injection strategy, our method does not run the risk of traffic
violations during the data collection phase. This is further
explained in Section

Moreover, comparison with different point cloud con-
figurations is also done to see the impact of the various
components of our framework on the overall driving perfor-

mance. Configurations explored are: training with a single
trajectory rather than with multiple generated trajectories,
aligning preceding point clouds to generate a new trajectory
versus only shifting, limiting the maximum depth distance,
using an edge filter to filter the point cloud and dealing
with imperfect camera poses. We additionally compare with
supervised RGB model baselines. Therein, we demonstrate
that the performance of our framework is superior to the
supervised model and at par with the supervised model
trained with noise injection [9] which we explain in Section

vl

IV. DISCUSSION

In this section, an explanation of the various configurations
given in Figure [7] are described. The consequence of these
configurations on the online driving performance are also
discussed.

Single Trajectory v. Multiple Generated Trajectories:

The core of our proposed method revolves around the
capability of generating additional trajectories from a single
reference trajectory, as described in Section [[I-C] We
therefore evaluate the impact of this by comparing with
the single trajectory model trained only on the reference
trajectory. It can be seen that the ratio on lane metric
for the single trajectory is far inferior in comparison to
our multi trajectory model. One plausible explanation is
that when the model deviates off course, it cannot make
the appropriate correction, since the reference trajectory
data does not capture such scenarios during training.
Figure |§| shows a birds eye view (BEV) visualization
of the models’ paths at one of the starting positions in
the training set. While our model is able to follow the
road, single trajectory model crashed straight into the barrier.

Aligning Point Clouds when Generating new Trajecto-
ries:

Section [[I-C| described the process of generating point clouds
in new trajectories by aligning point clouds from a pre-
ceding frame and then shifting. To examine the necessity
of aligning previous point clouds, we train another model
whose point clouds were generated without aligning previous
point clouds but instead only shifting and cropping the
reference trajectory. Shifting the point cloud will yield empty
regions that cannot be captured within the FOV of the
source camera in the reference trajectory. This is particularly
true of trajectories that are generated at farther distances
away from the reference. It is further exacerbated for source
images captured when the car is executing turns. As can
be observed, the performance of such a model trained with
partially observable point clouds drops dramatically.

Edge Filtered v. Full Point Cloud:

The authors of [14] alluded to high level features such as lane
markings, sidewalk/road intersections, barriers etc. being
important for the vehicle control model to hold its driving
lane. However, in uncolored point clouds those features are
clearly less visible than in RGB images. This is why it
is important to make them more prominent to the model

1§

Fig. 8: Path visualization. The red dot marks the starting
position. Out method (blue) was trained using multiple gen-
erated trajectories and is able to follow the curve. Meanwhile,
the Single Trajectory (orange) model was trained using only
the single reference trajectory and drives straight into the
barrier.

and increase the density of relevant information in the point
cloud. This is done by filtering seemingly irrelevant points
from the point cloud by applying an edge filter as described
in Section [[I-A] To evaluate the benefit of edge filtering,
another model was trained on the full, unfiltered point clouds.
The ratio on lane performance of this model drops, thereby
advocating in favor of our edge filtering approach.

Limiting the Distance:

Section [lI-Al also mentioned limiting the distance of points to
the camera as part of an approach to increase concentration
of points in relevant areas closer to the camera. If a model is
trained without a maximum point distance, its performance
drops. One tenable explanation for this is that at larger
distances, the depth prediction is less certain. This imperfect
depth could result in object duplication at farther distances
when aligning point clouds. This can be observed in the top
right region of the 2" point cloud in FigureEl Hence, when
such anomalies at farther depths are removed from the point
cloud by limiting the maximum distance, the performance of
the model is enhanced. Moreover, points in the immediate
vicinity of the ego-vehicle are more important for executing
the appropriate steering command rather than the points
farther away that have imprecise depths.

Dealing with Imperfect Camera Poses When aligning
previous point clouds as part of the process of generating
a point cloud for a new trajectory, imperfect camera pose
estimations can cause blurriness if objects in the 3D space
do not align. Subsection [[I-C| described an approach of
counteracting this blurriness by only adding missing points
outside the base camera frame’s field of view instead of
all points. To evaluate the effectiveness of this approach,
we trained another model wherein all points are used for

training. As can be seen the performance of such a model
drops.

Supervised RGB model:

We additionally train a supervised convolutional model to
compare with our framework using point clouds. This new
model takes in an RGB image as input and directly predicts
the appropriate steering command for vehicle control. In
contrast to our method this RGB model is supervised and
uses the ground truth steering commands as labels during
training. The performance of this model is much lower than
our method. This is despite the fact that our model was not
trained with any ground truth steering labels. Therefore, the
superior performance of our method can be attributed to the
ability to generate additional off trajectory training data from
a single traversal of the ego-vehilce causing it to be more
robust.

Affect of Perturbations: To further compare the robustness of
our method with the supervised RGB model, we add pertur-
bation of varying degree into the steering command predicted
by the model at each time step. The amount of perturbation
is sampled from a uniform random distribution. Figure
shows that as magnitude of perturbation is enhanced, our
model maintains a fairly consistent performance. In contrast,
the supervised RGB model has a steep performance drop.
This is because when perturbations are introduced the ego-
vehilce may drive off-course for which the supervised model
is not capable of counteracting such situations. On the other
hand, our model is accustomed to handling such situations
as it was fed additional off trajectory point clouds during
training.

0.8
0.6 4 N
0.4 4

——

0.2 4

Ratio of time the car remains in driving lane
7/

=== Qur Method
== = Supervised Model

0.0

6 lID ZID 3‘0 4‘0
Intensity of Perturbation (in %)

Fig. 9: Avg. ratio on lane for different levels of pertur-

bation on the training trajectories. The performance of

both the supervised RGB model (orange) and Our method

(blue) decreases with higher intensity of perturbations, but

the descent is more dramatic for the supervised model.

Figure [I0] shows a BEV visualization of the paths of
Our (blue) and the supervised RGB (orange) models when
noise is added in one of the training trajectories. Despite the
perturbations, our model is able to keep the car on its lane.
Meanwhile, the supervised RGB model looses track shortly

after the start, is not able to correct its path and eventually
crashes.

Fig. 10: Path visualization on a trajectory in the training
set with noise level of 10%. The blue path belongs to
the model trained with Our Method, while the orange path
represents the Supervised RGB model. The red dot marks
the starting position. Our Method is able to keep the lane
despite added noise, while Supervised RGB leaves the lane
shortly after the start and is not able to recover.

Supervised model with noise injection:

We additionally compare our approach with the supervised
RGB model proposed by [9]. It is similar to the supervised
model described above except that during data collection
noise is injected into the steering command. This causes
the vehicle to diverge from its normal path. The corrective
steering maneuver taken by the expert driver to limit this
divergence and bring the vehicle back on course is recorded.
Performance of such a model is comparable to our approach.
This is because the data used in training such a model
contains off-trajectory images and corresponding labels.
However, executing such a strategy for data collection
with traffic participants may be extremely dangerous and
may even involve violation of traffic rules. Moreover,
it involves having an expert driver capable of handling
dramatic maneuvers resulting from this noise injection.
Most importantly, since our approach does not require any
noise injection, it does not run the risk of violating traffic
rules during data collection.

V. CONCLUSION

In this paper, we put forth a framework to train a point
cloud based deep learning model on the task of lateral
control of an autonomous vehicle. The model is capable of
learning a robust driving policy from merely an unlabeled
sequence of RGB images, captured with a single front
facing camera on a single reference trajectory. The efficacy
of our approach comes from the capability of generating
additional data from the same sequence. The additional

data appears as if it emerges from an off course trajectory.
This counteracts the limitations of imitation learning which
suffer from insufficient robustness in the real world due to a
lack of failure cases in the training data. Online experiments
on the driving simulator showed that its performance is
superior to a supervised baseline CNN trained on the same
initial data set. Given no labels are required for the training
data, the approach is scalable to large quantities of data.
This makes it a more robust alternative to current supervised
end-to-end lateral control methods.

Acknowledgement:
This work was supported by the Munich Center for Machine
Learning.

[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

REFERENCES

M. Toromanoff, E. Wirbel, F. Wilhelm, C. Vejarano, X. Perrotton, and
F. Moutarde, “End to end vehicle lateral control using a single fisheye
camera,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 3613-3619.

C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722-
2730.

D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in NIPS, 1988.

Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-
driving cars,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017,
pp. 1856-1860.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to End Learning for Self-Driving Cars,”
arXiv e-prints, p. arXiv:1604.07316, Apr. 2016.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627-635.

A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 8248-8254.

C. Hubschneider, A. Bauer, M. Weber, and J. M. Zollner, “Adding
navigation to the equation: Turning decisions for end-to-end vehicle
control,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 1-8.

F. Codevilla, M. Miiller, A. Lépez, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 4693-4700.

Q. Zhang, R. Luo, D. Zhao, C. Luo, and D. Qian, “Model-free
reinforcement learning based lateral control for lane keeping,” in 2019
International Joint Conference on Neural Networks (IJCNN), 2019, pp.
1-7.

D. Li, D. Zhao, Q. Zhang, and Y. Chen, “Reinforcement learning and
deep learning based lateral control for autonomous driving [application
notes],” IEEE Computational Intelligence Magazine, vol. 14, no. 2, pp.
83-98, 2019.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

C. Godard, O. M. Aodha, M. Firman, and G. Brostow, “Digging
into self-supervised monocular depth estimation,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 3827—
3837.

Q. Khan, P. Wenzel, D. Cremers, and L. Leal-Taixé, “Towards gen-
eralizing sensorimotor control across weather conditions,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 4497-4503.

J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679-698, 1986.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

J. M. M. Mur-Artal, Radl Montiel and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

J. L. Schonberger and J.-M. Frahm, “Structure-from-Motion Revis-
ited,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

J. L. Schonberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixel-
wise View Selection for Unstructured Multi-View Stereo,” in European
Conference on Computer Vision (ECCV), 2016.

D. Wang and F. Q, “Trajectory planning for a four-wheel-steering ve-
hicle,” in IEEE International Conference on Robotics and Automation
(ICRA), 2001.

R. Rajamani, “Vehicle dynamics and control,” in Second Edition,
Publisher: Springer, 2012.

Q. Khan, P. Wenzel, and D. Cremers, “Self-supervised steering
angle prediction for vehicle control using visual odometry,” in
Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, A. Banerjee and K. Fukumizu, Eds., vol. 130. PMLR,
13-15 Apr 2021, pp. 3781-3789. [Online]. Available: http:
/Iproceedings.mlr.press/v130/khan21a.html

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet:
Deep learning on point sets for 3d classification and segmentation,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 77-85.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1-16.

F. Codevilla, A. M. Lépez, V. Koltun, and A. Dosovitskiy, “On offline
evaluation of vision-based driving models,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 236—
251.

http://proceedings.mlr.press/v130/khan21a.html
http://proceedings.mlr.press/v130/khan21a.html

	Introduction
	Method
	Point Cloud Generation
	Camera Pose Estimation:
	Point Cloud Augmentation
	Label Generation
	Model Architecture

	Experiments
	Discussion
	Conclusion
	References

