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Global Solutions of Variational Models
with Convex Regularization∗

Thomas Pock†, Daniel Cremers‡, Horst Bischof†, and Antonin Chambolle§

Abstract. We propose an algorithmic framework for computing global solutions of variational models with con-
vex regularity terms that permit quite arbitrary data terms. While the minimization of variational
problems with convex data and regularity terms is straightforward (using, for example, gradient
descent), this is no longer trivial for functionals with nonconvex data terms. Using the theoretical
framework of calibrations, the original variational problem can be written as the maximum flux of a
particular vector field going through the boundary of the subgraph of the unknown function. Upon
relaxation this formulation turns the problem into a convex problem, although in a higher dimen-
sion. In order to solve this problem, we propose a fast primal-dual algorithm which significantly
outperforms existing algorithms. In experimental results we show the application of our method to
outlier filtering of range images and disparity estimation in stereo images using a variety of convex
regularity terms.
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1. Introduction. Energy minimization methods have had great success for a number of
computer vision problems [22, 31, 39]. The basic idea of energy minimization methods is
that the solution of a problem corresponds to the minimizer of a so-called energy functional.
The success of energy minimization methods is therefore subject to two lines of research:
first, the design of appropriate objective functions to model the characteristics of the problem
and second, the development of efficient optimization algorithms to compute minimizers of
respective energy functionals.

Basically, energy minimization problems can be divided into two fundamentally different
classes: convex and nonconvex problems. The main advantage of convex problems is that a
global optimum can be computed, generally with good precision and in a reasonable time.
This means that the quality of the solution depends solely on the appropriateness of the
model which gives rise to the energy functional. On the other hand, for nonconvex problems,
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the quality of the solution is subject to both the model and the optimization algorithm: In
general only a local minimizer can be computed, the quality of which typically depends on
the initialization and choice of tuning parameters.

In computer vision there are two different philosophies in treating images. In the spatially
discrete approach, image pixels are assumed to be discrete entities, whereas in the continuous
approach, images are defined as functions on a continuous domain. While much work in
computer vision has been done in the discrete setting [16], one of the first advances in the
continuous setting was taken by Mumford and Shah [31].

1.1. Discrete setting. In the discrete approach, the theory of Markov random fields
(MRFs) provides a mathematically consistent way to describe the graph structure which
is used to represent the grid points and connections between the grid points [26]. In the MRF
approach image pixels can adopt a finite number of states, also called labels. Given a graph
with node set V and edge set E and a label set L ⊂ Z, the typical task is to find an optimal
labeling l ∈ LV for an energy of the form

(1.1) min
l

⎧⎨
⎩
∑

(u,v)∈E
P (l(u), l(v)) +

∑
v∈V

U(l(v))

⎫⎬
⎭ .

Such a labeling problem combines a pairwise regularity term P (·, ·) with a unary data term
U(·).

If the set of possible labels is binary, and the pairwise terms are submodular, combinatorial
algorithms such as graph cuts can be used to compute the global minimizer [20, 29]. On the
other hand, multilabel problems generally cannot be globally minimized. In general, they can
only be solved approximately, for example, by transforming the problem into a sequence of
binary labeling problems [7, 40], by linear programming (LP) relaxations [6, 41], or via roof
duality relaxation [21], which has recently attracted renewed interest in the MRF community
(cf. [37]).

A notable exception is the work of Ishikawa and Geiger [25, 24], who showed that exact
solutions for certain multilabel problems can be computed in polynomial time. Provided that
the pairwise interaction terms are convex functions of the differences l(u)− l(v) with respect
to a linearly ordered label set, respective problems can be solved globally as binary cuts of a
higher-dimensional graph.

If both the prior term and the data term are submodular, (1.1) reduces to the convex cost
tension problem [28], which can be solved in the original problem domain.

1.2. Spatially continuous setting. The continuous counterpart to discrete labeling prob-
lems is the variational approach. Similar to the discrete labeling problem, the aim of the
variational approach is to find minimizers for energy functionals F : L1(Ω) → [0,∞] of the
form

(1.2) min
u

{
F (u) =

∫
Ω
f(x, u(x),∇u(x)) dx

}
,

where Ω is a d-dimensional bounded open subset of Rd and u : Ω → R is an unknown scalar
function. For d = 2, Ω is usually assumed to be a rectangular image domain. The Lagrangian
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f(x, t, px) is the “core” of the energy functional and is used to model the characteristics of
the energy functional.

The calculus of variations provides a framework for finding the solution of a continuous
minimization problem such as (1.2). A local minimizer (if it exists) can be computed by solving
its associated Euler–Lagrange partial differential equation. However, a global minimizer can
be computed only if (1.2) is a convex function of u.

In this work we focus on a specific class F (u) of energy functionals (1.2) which are con-
tinuous in x, t and convex in px of f(x, t, px). This is the spatially continuous analogue of the
class addressed by Ishikawa and Geiger in the discrete setting. Typical applications for this
type of energy include disparity estimation and image restoration. In general, this class of
energy functionals cannot be solved globally due to the lack of convexity in t. Nevertheless,
we show that a global minimizer can be computed by representing the original variational
problem in higher dimensions. Our approach builds on works of Alberti, Bouchitté, and Dal
Maso [1] and Chambolle [8]. It extends our previous work [34] to a more general class of
convex regularity terms.

1.3. Contributions. Our work has strong connections to the works, in the discrete setting,
of Ishikawa and Geiger [25, 24] and of Roy and Cox [38]. It is based on the same idea of
increasing the dimensionality of the problem. Nevertheless, the proposed spatially continuous
formulation offers the following advantages:

• For general convex regularizers (e.g., quadratic), Ishikawa and Geiger’s approach re-
quires the introduction of additional long range edges in the graph structure. This
increases the density of the graph structure, reducing the efficiency of standard graph
cut algorithms. On the other hand, the proposed approach, which can be tackled us-
ing standard finite-difference methods, merely requires local couplings for any convex
regularizer.

• Our method is largely independent from grid bias, also known as metrication error.
This leads to more accurate approximations of the continuous solution and allows for
subpixel accurate solutions. A quantitative and qualitative comparison between the
proposed method and Ishikawa’s method was already presented in [34] for the particu-
lar case of total variation regularization. An experimental comparison of discrete and
continuous shape optimization was presented in [27].

• Our method is based on simple and efficient primal-dual optimization techniques which
can be easily accelerated on parallel architectures such as graphics processing units
(GPUs). On the other hand, an efficient parallelization of max–flow-type algorithms is
still an open problem [19]. Furthermore, it requires considerably less memory. Thisalso
makes our method applicable for quite large practical problems.

The remainder of the paper is organized as follows. In section 2 we review the approach
of [34] and show connections to the work presented in this paper. In section 3 we present
the theoretical framework underlying the proposed approach. We show how the originally
nonconvex energy functional can be transformed into a convex optimization problem. In sec-
tion 4 we give details of the proposed framework for four different convex regularity terms.
In particular, we study quadratic, total variation, Huber, and Lipschitz regularization since
these are of particular interest in a number of computer vision applications. The algorithmic
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framework for computing minimizers to the convex problem is presented in section 5. Specif-
ically, we propose a provably convergent primal-dual algorithm which clearly outperforms
existing algorithms. In section 6 we show the application of our approach to outlier filtering
in industrial range images and stereo.

2. Related work. In [34], an approach is presented to solve minimization problems of the
form

(2.1) min
u

{∫
Ω
|∇u|dx+

∫
Ω
g(x, u(x))dx

}
,

on a domain Ω ⊂ R
2, where u : Ω → Δ takes on values in a range Δ = [t0, t1] ⊂ R. The left

term denotes the total variation of u, which is a popular regularizer in a number of imaging
problems. The right term is a pointwise generally nonconvex data term. In this sense (2.1)
is a special case of the more general class of problems (1.2) that we consider in this paper.

The idea of [34] is then to rewrite (2.1) by means of the upper level sets of the function
u, which results in an anisotropic minimal surface problem of the form

(2.2) min
v̂∈C

{∫
Ω×Δ

|∇xv̂|+ g(x, t)|∇tv̂| dxdt
}
,

where

(2.3) C = {v̂(x, t) : Ω×Δ → {0, 1}, v̂(· , t0) = 1, v̂(· , t1) = 0} .

Using duality, (2.2) is then transformed to a problem of the form

(2.4) min
v̂∈C

{
sup
φ∈K

∫
Ω×Δ

φ · ∇v̂ dxdt

}
,

with the dual variable φ constrained to the convex set

(2.5) K = {φ(x, t) = (φx(x, t), φt(x, t)) : Ω×Δ → R
3, |φx(x, t)| ≤ 1, |φt(x, t)| ≤ g(x, t)} .

After relaxation of the binary functions v̂ to continuous functions (i.e., the convex hull of the
set C), the resulting convex problem is solved using an Arrow–Hurwicz-type algorithm [3].

In the next section, we will describe the theoretical framework for the convex representa-
tion of functionals of the form (1.2). It builds upon the same basic idea of [34]—rewriting the
functional by means of its upper level sets—but while the approach of [34] can be applied only
to total variation regularization, the theoretical framework proposed in this paper extends to
the general case of arbitrary convex regularizers.

3. Convex representation. Our approach is based on a general theoretical framework
which is quite classical in the calculus of variations, yet less known in the optimization com-
munity. The basic concept is the idea of Cartesian currents [17, 18], which consists of taking
the whole graph (x, u(x)) of a function as the object to optimize upon, rather than the function
u itself. It is related to the so-called theory of calibrations, which was recently brought back
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Figure 1. The central idea of the proposed approach is to determine functions u(x) implicitly by means
of their higher-dimensional subgraph 1u, which is equal to 1 in the shaded area and 0 otherwise. To this
end, respective functionals on u are expressed as the flux of a vector field φ(x, t) through the membrane Γu

representing the graph of u, where different functionals are encoded by corresponding convex constraints on
φ(x, t). Subsequent relaxation gives rise to a convex optimization problem.

to light by Alberti, Bouchitté, and Dal Maso in [1] as an approach to characterizing the mini-
mizers of the Mumford–Shah functional [31] by an implicit (and novel) convex representation.
Their approach allows one to actually characterize (some) minimizers of the Mumford–Shah
functional by means of divergence-free vector fields in higher dimensions. A similar general
framework was introduced in [8], where it was observed that, roughly speaking, many func-
tionals of a scalar function in L1 could be minimized by finding the solution of a convex
functional in higher dimension. We summarize in this section some known results that lead
to an interesting representation which allows us to tackle numerically a class of nonconvex
problems of the form (1.2).

Let us start by considering the subgraph of the function u(x), which is the collection of all
points lying below the function value u(x). (Figure 1 shows an example for a one-dimensional
function u(x), where the subgraph is represented as the gray area.) We also introduce the
function 1u(x, t) : Ω×R → {0, 1} which is the characteristic function of the subgraph of u(x):

(3.1) 1u(x, t) =

{
1 if u(x) > t,
0 otherwise.

Furthermore, let us denote by Γu the boundary of 1u(x, t). For the sake of simplicity, we
assume first that u is smooth: In this case, Γu is nothing but the graph {(x, u(x)) : x ∈ Ω}.
The key idea is that the energy in (1.2) can be seen as an interfacial energy of the boundary
Γu. Let νΓu denote the inner unit normal to Γu, which is given by

(3.2) νΓu =
1√

1 + |∇u(x)|2
( ∇u(x)

−1

)
.

By interfacial energy, we mean an energy of the form

(3.3)

∫
Γu

h(x, t, νΓu(x))dHd(x),
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where we integrate over the graph of u a Lagrangian h that may depend on the point (x, t),
with t = u(x) and the normal νΓu . Here Hd denotes the d-dimensional Hausdorff measure.
It can be shown that (3.3) defines a lower semicontinuous (l.s.c.) energy (with respect to
L1 convergence of the characteristics 1u) as soon as h is continuous in (x, t) and convex,
one-homogeneous with respect to the last argument (the normal vector).

Let us for the moment assume that u is sufficiently smooth; i.e., u is in the Sobolev
space W 1,1(Ω;R)—the space of functions whose weak derivatives up to order 1 have finite L1

norm [4]. Then, by a simple change of variable, one can express the integral on Γu in (3.3) as
an integral over Ω, and the Jacobian of the mapping Γu � (x, t) 	→ x is precisely

√
1 + |∇u|2

so that ∫
Γu

h(x, t, νΓu(x))dHd(x) =

∫
Ω
h(x, u(x), (∇u(x),−1)) dx,

where we have used (3.2) and the one-homogeneity of h with respect to its last argument.
Hence, the representation holds as soon as h(x, t, (px,−1)) = f(x, t, px). This leads us to
introduce the Lagrangian h(x, t, p), defined for (x, t, p) ∈ Ω × R × R

d+1, with p = (px, pt) ∈
R
d × R, as

(3.4) h(x, t, p) =

⎧⎪⎨
⎪⎩
|pt|f(x, t, px/|pt|) if pt < 0,

f∞(x, t, px) if pt = 0,

+∞ if pt > 0 ,

where f∞(x, t, px) := limλ→+∞ f(x, t, λpx)/λ is the recession function of f . This function h is
shown to be l.s.c., convex, and one-homogeneous with respect to its last argument p = (px, pt);
see, for instance, [12, 18].

In general, when f has superlinear growth in px, energy (1.2) is (weakly) coercive and
l.s.c. on W 1,1(Ω), and hence we will have f∞(x, t, px) = +∞ (except at px = 0 where it is
always 0). However, many interesting cases include situations where f has linear growth in px.
For instance, the case of total variation regularization with some additional data term, where
f(x, t, px) = |px| + g(x, t). Then, (1.2) has to be properly extended to functions in BV (Ω),
the space of functions of bounded variation. In contrast to the Sobolev space W 1,1(Ω) we
considered above, the space BV (Ω) also allows for functions having sharp discontinuities [4].
In this case, we have f∞(x, t, px) = |px|, and it turns out that the equality∫

Γu

h(x, t, νΓu(x))dHd(x) =

∫
Ω
f(x, u(x),Du)

also holds when u ∈ BV (Ω) has jumps, which correspond to vertical parts in the graph
Γu. Here, Du denotes the distributional derivative of u, which in an integral sense is also
well defined for discontinuous functions (e.g., characteristic functions). Since h is convex
and one-homogeneous with respect to its last argument p, we can introduce the convex, one-
homogeneous functional

(3.5) F(v) =

∫
Ω×R

h(x, t,Dv) ,
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defined for any v ∈ BVloc(Ω× R). Now, for v = 1u, one has

(3.6) D1u = νΓu(x, t)Hd Γu(x, t) .

It follows that for any u ∈ W 1,1(Ω),

(3.7) F(1u) =

∫
Γu

h(x, t, νΓu(x))dHd(x) =

∫
Ω
f(x, u(x),∇u(x)) dx .

In summary, the solution of (1.2) is equivalent to the minimization of the convex functional
F ,

(3.8) min
u∈W 1,1(Ω)

F(1u) ,

however, over a nonconvex set of binary functions.

3.1. Convex relaxation. We now show that we can we replace the function 1u in (3.8) by
a more general function v ∈ C, where the convex set C is given by

(3.9) C =

{
v ∈ BV (Ω× R; [0, 1]) : lim

t→−∞ v(x, t) = 1, lim
t→+∞ v(x, t) = 0

}
.

This set is related to the convexification of {1u : u ∈ W 1,1(Ω)}; however, in the latter, the
functions are allowed to decrease only in the vertical direction t. In our problem, though, F
is easily seen to be +∞ for functions in C which increase in the vertical direction t in some
set with positive measure. We now consider the relaxed problem

(3.10) min
v∈C

F(v),

which is equivalent to minimizing F over the convex hull of the binary functions 1u. Note that
this is analogous to the concept of LP relaxation in discrete optimization. Our intention is
still to solve the binary problem. Hence, the question remains: In which sense the minimizers
of (3.10) and (3.8) are related? In fact, one checks that a simple thresholding of the solution
of the relaxed problem produces a solution of the binary problem, in analogy to what has
been observed in past years [11, 9].

Theorem 3.1. Let v∗ be a global minimizer of (3.10). Then for any s ∈ [0, 1) the character-
istic function 1{v∗>s} is also a global minimizer of (3.8). Furthermore, the function 1{v∗>s}
is the characteristic of the subgraph of a minimizer of (1.2).

Proof. As we shall show below, the functional F satisfies the generalized coarea formula:

(3.11) F(v) =

∫ +∞

−∞
F(1{v>s})ds.

Applying this to v∗ ∈ C, we have

F(v∗) =
∫ 1

0
F(1{v∗>s})ds;
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i.e., the energy of v∗ can be expressed in terms of the energies of its upper level sets. From the
minimality of v∗, F(1{v∗>s}) ≥ F(v∗) for any s, it follows that for a.e. s ∈ [0, 1], also 1{v∗>s}
is a minimizer of (3.10) or, equivalently, of (3.8). As a consequence, for any s ∈ [0, 1), one
can find a sequence (sn)n≥1 with sn > s, sn → s, and such that 1{v∗>sn} is a minimizer of
(3.8). Passing to the limit, we deduce that also 1{v∗>s} is a minimizer.

It remains to show (3.11). In fact, it follows from the standard coarea formula for BV
functions [15, 14, 43, 2]. For any v, let νv = Dv/|Dv| be the Besicovitch derivative of the
measure Dv with respect to its variation |Dv|. We then have

F(v) =

∫
Ω×R

h(x, t, νv(x, t))|Dv| =
∫ +∞

−∞

∫
Ω×R

h(x, t, νv(x, t))|D1{v>s}| ds

=

∫ +∞

−∞

∫
Ω×R

h(x, t,D1{v>s}/|D1{v>s}|)|D1{v>s}| ds =

∫ +∞

−∞
F(1{v>s}) ds,

where we have used the fact that Hd−1-a.e. on the boundary of {v > s}, νv = ν{v>s} =
D1{v>s}/|D1{v>s}|; that is, the gradient of v is normal to its level lines.

3.2. Duality. Our approach to tackling problem (3.10) is through duality. Indeed, the
Lagrangian h is in general very singular, while it turns out that its dual expression involves
the projection on a rather simple set, which can often be performed with good precision by
simple algorithms.

The key idea is now to consider the flux of a dual vector field φ = (φx, φt) : Ω×R → R
d×R

through the boundary Γu:

(3.12) Φ =

∫
Γu

φ · νΓudHd;

see Figure 1. Using (3.6), the flux can also be written as

(3.13) Φ =

∫
Γu

φ · νΓudHd =

∫
Ω×R

φ ·D1u.

The following states that F (u) = F(1u) can be expressed as the maximal flux of φ through
Γu for φ in some class depending on the Lagrangian f .

Theorem 3.2. For any function u ∈ W 1,1(Ω;R), we have

(3.14) F (u) = F(1u) = sup
φ∈K

∫
Ω×R

φ ·D1u,

where the convex set K is given by

(3.15) K =
{
φ = (φx, φt) ∈ C0

(
Ω× R;Rd × R

)
:

φt(x, t) ≥ f∗(x, t, φx(x, t)), ∀x, t ∈ Ω× R
}
.
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Here, f∗(x, t, φx) denotes the Legendre–Fenchel conjugate (or convex conjugate) of f(x, t, px)
with respect to px. It is defined as

(3.16) f∗(x, t, φx) = sup
px

{φx · px − f(x, t, px)} .

In analogy, the biconjugate (the convex conjugate of the convex conjugate) is defined as

(3.17) f∗∗(x, t, px) = sup
φx

{φx · px − f∗(x, t, φx)} .

It follows from classical arguments based on the convex separation theorem that for any (x, t),
f∗∗(x, t, · ) is the convex, l.s.c. envelope of f(x, t, · ). In particular, when f(x, t, px) is convex
and l.s.c. in px, as is always assumed in this work,

(3.18) f∗∗(x, t, px) = f(x, t, px).

For more details on convex analysis we refer the reader to [36]. We now sketch the proof of
Theorem 3.2 which is based on [1].

Proof. We first check that for any φ ∈ K, we have

(3.19) F (u) ≥
∫
Ω×R

φ ·D1u.

Indeed, using (3.13) and the definition of the inner unit normal (3.2), the flux can be rewritten
as

(3.20)

∫
Ω×R

φ ·D1u =

∫
Γu

φ(x, t) ·
( ∇u(x)

−1

)
dHd(x, t)√
1 + |∇u(x)|2

=

∫
Ω
φx(x, u(x)) · ∇u(x)− φt(x, u(x)) dx,

where we have used as before that
√
1 + |∇u(x)|2 is the Jacobian of the change of variable

Γu � (x, t) 	→ x ∈ Ω. Since φ ∈ K, it follows that∫
Ω×R

φ ·D1u ≤
∫
Ω
φx(x, u(x)) · ∇u(x)− f∗(x, t, φx(x, u(x))) dx,

which is less than or equal to F (u) by definition of the convex conjugate f∗. This shows
(3.19).

The proof that the supremum is actually F (u) = F(1u), that is, the proof of (3.14), is
more technical, and we just give the main lines. Essentially, at each point (x, u(x)) one needs
to choose φx(x, u(x)) = ∇pf(x, u(x),∇u(x)) and φt(x, u(x)) = f∗(x, t, φx(x, u(x))). If f, u
are sufficiently smooth (essentially, C1), then such a choice can be performed. In other cases,
it is shown that (thanks to the lower semicontinuity properties of f∗) one can construct a
continuous field φ ∈ K such that its flux (3.13) is arbitrarily close to F (u).

Remark 3.3. In fact, the result still holds for u ∈ BV (Ω), a bounded variation function,
and a Lagrangian f(x, t, px) with linear growth in p at ∞, with a similar proof. It can also be
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extended to Lagrangians which take the value +∞, such as illustrated in Figure 2(d), with
some additional regularity assumptions in (x, t).

Remark 3.4. An alternative way to show this result would be to show that for any (x, t) ∈
Ω× R, the function h(x, t, · ) is given by

(3.21) h(x, t, p) = sup
{
p · q : q = (qx, qt) ∈ R

d ×R , qt ≥ f∗(x, t, qx)
}
;

that is, it is the convex conjugate of the indicator function of the closed, convex set {qt ≥
f∗(x, t, qx)}, which has the value 0 on this set and +∞ elsewhere. Then, standard results of
convex analysis will imply that F is the convex conjugate of the indicator function of K.

From (3.14) and the coarea formula or, alternatively, from Remark 3.4, it follows that for
any v ∈ BVloc(Ω× R),

(3.22) F(v) = sup
φ∈K

∫
Ω×R

φ ·Dv.

We will actually use this form for minimizing (3.10) by a primal-dual algorithm which will be
introduced in section 5. The advantage of this technique is that we never need to compute
a subgradient of the singular Lagrangian h, but only need to perform orthogonal projections
onto the convex set K, which are often relatively easy to compute.

4. Convex regularity terms. In the last section we showed that the nonconvex problem
(1.2) can be solved by computing the minimizer of problem (3.22). In this section we will now
study explicit examples of (1.2) by concentrating on Lagrangians of the form

(4.1) f(x, t, px) = g(x, t) + h(px) ,

where g(x, t) is a general potential function which corresponds to a pointwise data term in the
energy formulation, and h(px) is a convex potential function which is used to realize different
types of regularizers. We will show the application of Theorem 3.2 to four different functions:
quadratic, linear (total variation), Huber, and a Lipschitz constraint, as these functions are
interesting for a number of different problems in computer vision and image analysis. See
also Figure 2 for an illustration of these functions. According to Theorem 3.2, the core of our
approach is to derive the convex set

(4.2) K = {φ = (φx, φt) : φt(x, t) ≥ f∗(x, t, φx(x, t))∀(x, t) ∈ Ω×R} .

By exploiting the local structure of the Lagrangian f(x, t, px), one has f∗(x, t, φx) = h∗(φx)−
g(x, t) so that the constraint on φ(x, t) in (4.2) boils down to φt(x, t) + g(x, t) ≥ h∗(φx(x, t)).
Hence, it will be sufficient to consider the pointwise constraints

(4.3) K(x, t) = {φ(x, t) ∈ R
d+1 : φt(x, t) + g(x, t) ≥ h∗(φx(x, t))} .

The substantial advantage of the resulting algorithm is the fact that we can efficiently compute
the projection of the (d+ 1)-dimensional vector φ(x, t) onto K(x, t).
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(a) Quadratic function (b) Linear function

−1 0 1
0

x

f(
x)

(c) Huber function (d) Lipschitz constraint

Figure 2. Several convex potential functions.

4.1. Quadratic regularization. Quadratic regularization can be realized by choosing

(4.4) h(px) =
|px|
2

2

.

It is well known that quadratic regularization leads to an oversmoothing of image edges.
Therefore, quadratic regularization is useful only in cases where the solution is expected to be
a smooth function. However, quadratic regularization is one of the most basic regularization
techniques and will later be utilized in Huber regularization. According to (3.16) the convex
conjugate of h is given by

(4.5) h∗ (φx) = sup
px

{
φx · px − |px|

2

2
}

=
|φx|
2

2

.

Hence the local convex Kq(x, t) which realizes quadratic regularization in (4.1) is given by

(4.6) Kq(x, t) =

{
φ(x, t) ∈ R

d+1 : φt(x, t) + g(x, t) ≥ |φx(x, t)|
2

2}
.
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(a) Convex set Kq (b) Convex set Kt

(c) Convex set Kh (d) Convex set Kl

Figure 3. Illustration of the convex sets for (a) quadratic, (b) total variation, (c) Huber, and (d) Lipschitz
regularization.

Figure 3(a) illustrates the convex set Kq(x, t). One can see that Kq(x, t) is a paraboloid with a
vertical offset of (−g(x, t)) from the origin. Note that the constraints obtained from quadratic
regularization also appear in the calibration method for the Mumford–Shah functional [1].

4.2. Total variation regularization. Total variation regularization is obtained by choosing
a linear potential function

(4.7) h(px) = |px| .

Unlike quadratic regularization, total variation regularization has the desirable property of
preserving sharp discontinuities in the solution. Total variation regularization was first applied
to computer vision by Rudin, Osher, and Fatemi in the seminal work on nonlinear image
denoising [39]. We again compute the convex conjugate of h with respect to px, yielding

(4.8) h∗ (φx) = sup
px

{
φx · px − |px|} = δ{|φx|≤1} ,
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where δΣ(σ) denotes the indicator function of the set Σ, that is,

(4.9) δΣ(σ) =

{
0 if σ ∈ Σ,
∞ else.

This leads to the following characterization of the local constraint:

(4.10) Kt(x, t) =
{
φ(x, t) ∈ R

d+1 : φt(x, t) + g(x, t) ≥ 0, |φx(x, t)| ≤ 1
}
.

Note that Kt(x, t) basically consists of two simple orthogonal constraints. From an implemen-
tation point of view this is especially appealing because it will make it very easy to compute
projections ontoKt(x, t). Figure 3(b) shows an illustration of the setKt(x, t) which is basically
a translated cylinder.

Note that the constraint (4.10) differs from the constraint used in [34]. As also seen
from (2.5), the basic difference is that in [34] it is not assumed that the function v is decreasing
in t. However, the equivalence of both approaches for the case of total variation regularization
is shown in [10].

4.3. Huber regularization. Besides the advantage of total variation regularization in al-
lowing for sharp discontinuities in the solution, it suffers from the so-called staircasing effect,
a phenomenon which stems from the fact that total variation regularization has a tendency
to produce piecewise constant solutions. A quite simple but effective method for reducing the
staircasing effect is to use quadratic penalization for small values of the image gradient and
to use linear penalization for larger values. This is essentially the Huber norm, which has its
origin in robust statistics [23]. In our framework we have

(4.11) h(px) = |px|α,
where

(4.12) |px|α =

⎧⎪⎨
⎪⎩

|px|
2α

2

if |px| ≤ α,

|px| − α

2
if |px| > α

defines the Huber function, which is quadratic for small values of t and linear for large values
of t, and α is a tuning parameter. Again we have to compute the convex conjugate of h with
respect to px which gives

(4.13) h∗ (φx) = sup
px

{
φx · px − |px|α

}
= δ{|φx|≤1} +

α

2
|φx|2.

Then we can define the feasible set of vectors φ(x, t) which realize the Huber regularization
in our convex framework:

(4.14) Kh(x, t) =
{
φ(x, t) ∈ R

d+1 : φt(x, t) + g(x, t) ≥ α

2
|φx(x, t)|2, |φx(x, t)| ≤ 1

}
.

Figure 3(c) shows the shape of the convex set Kh(x, t). It is interesting to note that Kh(x, t)
is the intersection of the set Kq(x, t) scaled by parameter α and the set Kt(x, t).
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4.4. Lipschitz regularization. In some computer vision tasks one has precise a priori
information about the object to be reconstructed. For example, one knows that the local
surface slope is limited by some maximal value. In such cases it is useful to enforce a so-called
Lipschitz constraint, which means that no regularization is performed as long as |∇u| ≤ β,
where β is the Lipschitz bound, while higher gradients are penalized with the value +∞, and
hence forbidden. A Lipschitz constraint on ∇u is obtained by choosing

(4.15) h(px) = δB(0,β)(p
x) ,

where δB(0,β) denotes the indicator function of a d-dimensional ball centered around 0 and
radius β. This situation is exactly dual to the total variation regularization, and the convex
conjugate of h with respect to px is simply

(4.16) h∗ (φx) = sup
|px|≤β

{
φx · px} = β|φx|.

The feasible set of vectors φ(x, t) is then

(4.17) Kl(x, t) =
{
φ(x, t) ∈ R

d+1 : φt(x, t) + g(x, t) ≥ β|φx(x, t)|} .

Note that Kl(x, t) is essentially—pointwise—a translated cone, and the projection onto it will
be straightforward to implement. Figure 3(d) shows an illustration of the set Kl(x, t).

5. Numerical algorithms. In this section we present numerical algorithms in order to
compute the solution of the convex problem (3.22). Before detailing the algorithms, we will
introduce the discrete setting.

5.1. Discretization. We consider only the case of two-dimensional images; i.e., d = 2.
Hence, we consider a three-dimensional (3D) Cartesian grid Gh of size Nx ×Ny ×Nt,

(5.1) Gh =
{
(ihx, jhy , kht) : (0, 0, 0) ≤ (i, j, k) < (Nx, Ny, Nt)

}
,

where hx, hy, and ht denote the discretization widths and (i, j, k) denotes the discrete locations
on the grid. In the following we will use the superscript h to indicate the discrete setting.
Next, let us introduce vh ∈ Ch, where

(5.2) Ch =
{
vh ∈ [0, 1]NxNyNt : vhi,j,0 = 1, vhi,j,Nt−1 = 0

}
,

and φh ∈ Kh, where

(5.3) Kh =
{
φh =

(
φh
x, φ

h
y , φ

h
t

)
∈ (R3

)NxNyNt
: (φh)i,j,k ∈ K

}
,

where K is the pointwise defined convex set which reflects the type of regularization.
In the following, we will treat vh as the primal and φh as the respective dual variable. The

discrete version of (3.22) is the following convex-concave saddle-point problem

(5.4) min
vh∈Ch

max
φh∈Kh

〈
∇hvh, φh

〉
,
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where the linear operator ∇h : RNxNyNt → (
R
3
)NxNyNt is a discrete version of the gradient

operator in (3.22). We approximate the gradient using simple finite differences and impose
Neumann boundary conditions on the boundary of our grid Gh. More specifically, at a certain
point (i, j, k) the evaluation of the linear operator ∇h yields

(5.5) (∇hvh)i,j,k =

⎛
⎜⎝

(δhxv
h)i,j,k

(δhy v
h)i,j,k

(δht v
h)i,j,k

⎞
⎟⎠ ,

where the finite differences are given by

(5.6) (δhxv
h)i,j,k =

{
(vhi+1,j,k − vhi,j,k)/hx if i < Nx − 1,

0 else,

(5.7) (δhy v
h)i,j,k =

{
(vhi,j+1,k − vhi,j,k)/hy if j < Ny − 1,

0 else,

(5.8) (δht v
h)i,j,k =

{
(vhi,j,k+1 − vhi,j,k)/ht if k < Nt − 1.

0 else.

5.2. Primal-dual algorithm. The optimization problem (5.4) poses a classical saddle-
point problem [3]. We use the primal-dual algorithm that we recently proposed in [33]. This
algorithm is related to the algorithms proposed by Korpelevich [30] and Popov [35]. While
these algorithms requires the computation of two leading points, the algorithm of [33] require
only one leading point. This leads to a reduction in the number of projections and needs
less memory. Our algorithm also shares connections to the simple primal-dual projected
subgradient scheme [42], but which requires more restrictive assumptions on the step widths
in order to ensure convergence [13].

Our algorithm is as follows: We choose ((vh)0, (φh)0) ∈ Ch × Kh and let (v̄h)0 = (vh)0.
We choose two time-steps τ, σ > 0. Then, for each n ≥ 0 we let

(5.9)

⎧⎪⎪⎨
⎪⎪⎩
(φh)n+1 = projKh((φh)n + σ(∇hv̄n)),

(vh)n+1 = projCh((vh)n − τ(divh(φh)n+1)),

(v̄h)n+1 = 2(vh)n+1 − (vh)n,

where the operator divh is chosen to be adjoint to∇h. Then, we have the following convergence
result.

Theorem 5.1. Choose τ , σ such that τσL2 < 1, with norm L = ‖∇h‖. Then, as n → ∞,
((vh)n, (φh)n) → ((vh)∗, (φh)∗), which solves (5.4).

Proof. The general proof of convergence of the algorithm is presented in [33]. However,
in order to ensure convergence of our algorithm we have to compute L. The operator norm is
defined as

(5.10) L = ‖∇h‖ = sup
‖∇hvh‖
‖vh‖ .
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Figure 4. Comparison of the convergence of the proposed primal-dual algorithm with the algorithm of
Popov [35] using a total variation prior.

Hence, in order to compute L, we need to find an estimate on ‖∇hvh‖. First, we have the
following estimate on ‖∇hvh‖2:

(5.11) ‖∇hvh‖2 =
∑
i,j,k

(vhi+1,j,k − vhi,j,k)
2

(hx)2
+

(vhi,j+1,k − vhi,j,k)
2

(hy)2
+

(vhi,j,k+1 − vhi,j,k)
2

(ht)2

≤
∑
i,j,k

2{(vhi+1,j,k)
2 + (vhi,j,k)

2}
(hx)2

+
2{(vhi,j+1,k)

2 + (vhi,j,k)
2}

(hy)2
+

2{(vhi,j,k+1)
2 + (vhi,j,k)

2}
(ht)2

≤
(

4

(hx)2
+

4

(hy)2
+

4

(ht)2

)
‖vh‖2 .

Then, by taking the square root on both sides of (5.11) and substituting into (5.10) we get

(5.12) L =

√
4

(hx)2
+

4

(hy)2
+

4

(ht)2
.

Note that this bound becomes sharp as Nx, Ny, Nt → ∞.
Figure 4 shows a comparison of the proposed primal-dual algorithm to the algorithm of

Popov [35]. The example was computed using total variation regularization of the input
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image of Figure 5. We assume that hx = hy = ht = 1, which implies L =
√
12, and hence

we set σ = τ =
√

1/12. The plot shows the convergence of the relative primal-dual gap
over the number of iterations. Both algorithms were computed on a Tesla C1060 GPU and
the iterations were stopped after the relative primal-dual gap dropped below a threshold of
10−3. Note that in our case, computing the relative gap makes sense, since it is invariant
to the absolute value of the energy. The primal-dual algorithm took 1900 iterations and 109
seconds, whereas Popov’s method needed 3290 iterations and 407 seconds. Hence the proposed
primal-dual algorithm is about four times faster than Popov’s algorithm. As mentioned above,
the proposed algorithm is also more efficient in terms of memory (more than a factor of two),
allowing our method to compute larger problems.

5.3. Computing the projections. In this section, we give details about how to compute
the projections used in the proposed primal-dual algorithm (5.9).

The projection of the primal variable vh onto the convex set Ch is very easy and can be
done by simple pointwise clamping operations of vh to the interval [0, 1].

Next, we detail the projections of the dual variable φh onto the convex sets Kh we have
introduced in order to realize quadratic, total variation, Huber, and Lipschitz regulariza-
tion. Recall that we have to consider only pointwise projections of the form projK(φh

i,j,k).
For notational simplicity we will make use of the following convention. We first compute
projections p̂ = projK(q) of a translated vector q = (φh

x, φ
h
t + gh)i,j,k, where gh is the dis-

crete version of the data term. Then the final projection is given by a back-translation, i.e.,
projK(φh

i,j,k) = (p̂x, p̂t − ghi,j,k).
For quadratic regularization, one has to ensure that the constraint q ∈ Kq is fulfilled. This

is achieved by projecting q onto the paraboloid illustrated in Figure 3(a). In other words, one
has to solve the following constraint optimization problem:

(5.13) p̂ = arg min
p∈Kq

{ |p − q|2
2

}
.

If the constraint q ∈ Kq is already fulfilled, then the solution is trivially p̂ = q. If q does not

satisfy the constraint, i.e., qt < |qx|2
2 , then q has to be projected onto the paraboloid qt = |qx|2

2 .
In this case, (5.13) can be expressed as the following unconstrained optimization problem:

(5.14) p̂ = argmin
p

{ |p − q|2
2

− λ

(
pt − |px|2

2

)}
,

where λ is a Lagrange multiplier for the equality constraint pt − |px|2
2 = 0. The optimality

conditions of (5.14) are given by

px − qx + λpx = 0,

pt − qt − λ = 0,

pt − |px|2
2

= 0.(5.15)

After eliminating pt and px, we arrive at the following cubic equation for the solution of λ:

(5.16) λ3 + λ2(qt + 2) + λ(2qt + 1) + qt − |qx|2
2

= 0.



18 T. POCK, D. CREMERS, H. BISCHOF, AND A. CHAMBOLLE

Instead of using a direct cubic solver for (5.16) we utilize Newton’s method. We choose a
starting point λ0 = max{0,−(2qt + 1)/3)} + 1 and let for each n ≥ 0

(5.17) λn+1 = λn − (λn)3 + (λn)2(qt + 2) + λn(2qt + 1) + qt − |qx|2
2

3(λn)2 + 2λn(qt + 2) + 2qt + 1
.

We stop the iterations of Newton’s method when the difference between two subsequent it-
erations is below a certain threshold. We found this scheme to have a quite fast convergence
(10–20 iterations). Then, after computing the solution of (5.16), the solution of the projection
is given by

(5.18) p̂ =

(
qx

1 + λ
, qt + λ

)
.

In case of total variation regularization, we need to compute the orthogonal projection
of q onto the cylinder Kt shown in Figure 3(b). This is very easy, since Kt consists of two
independent constraints in px and pt. The solution of this projection is given by

(5.19) p̂ =

(
qx

max{1, |qx|} , max{0, qt}
)

.

Huber regularization is achieved by projecting onto Kh, which essentially is a combination
of quadratic and total variation regularization. If q ∈ Kh, we trivially obtain p = q. Otherwise,
we have to compute the projection onto Kh. According to Figure 3(c), we can distinguish
three different cases. We have the paraboloidal part, the cylindrical part, and the interface
where the paraboloid intersects with the cylinder:

(5.20) p̂ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
qx

max{1,|qx|} , q
t
)

if α
2 ≤ qt,(

qx

max{1,|qx|} ,
α
2

)
if α

2 − 1
α (|qx| − 1) ≤ qt < α

2 ,(
qx

1+λ , q
t + λ

)
if qt < α

2 − 1
α(|qx| − 1),

where λ is the solution of the cubic equation (5.16).
The Lipschitz constraint is realized by projecting q onto the cone defined by Kl (see also

Figure 3(d)). The projection is straightforward and is given by

(5.21) p̂ =

(
μ
qx

|qx| , βμ
)

,

where μ is given by

(5.22) μ =
max{0, |qx|+ βqt}

1 + β2
.

6. Experimental results. In this section we first show experimental results of our convex
framework on two applications: outlier filtering of illustrative range images and disparity
estimation of stereo images. In both cases, we will show the application of quadratic, total
variation, Huber, and Lipschitz regularization.
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(a) Range image (b) 3D rendering

Figure 5. Range image and 3D rendering of an industrial part obtained by an optical measurement system.
Note the erroneous measurements (outliers) in the region of the steepest slope.

6.1. Range image filtering. In the first experiment, we apply our convex framework to
the task of outlier removal of range images. The range image has been obtained by an optical
measurement system used for industrial applications. The goal of the filtering is that the
outliers should be removed without modifying the right measurements. Figure 5 shows the
range image of an industrial part and the corresponding 3D rendering. The size of the range
image was Nx ×Ny = 443× 370, and the function u(x) was discretized using Nt = 256 levels.
Furthermore, we set hx = hy = ht = 1 and hence L =

√
12. The data term was computed

using truncated quadratic differences, i.e., ghi,j,k = μmin{(Ii,j−k)2, ν}, where Ii,j ∈ [0, 255] was
the input image, μ = 0.05 was a scaling parameter, and ν = 100 was the truncation threshold.
For Huber regularization we set α = 5, and for Lipschitz regularization the maximal slope
was set to β = 2

Figure 7 shows the result of outlier filtering of the range image depicted in Figure 5.
Clearly, quadratic regularization leads to an oversmoothing of the image, and, hence, the
small scale structures, which are quite important in this application, also are destroyed. Total
variation regularization shows the ability to preserve sharp discontinuities but leads to the
well-known staircasing effect. As one can see, Huber regularization does not suffer from
the staircasing effect, but, similar to quadratic regularization, the fine scale structures of
the surface are destroyed. Finally, Lipschitz regularization shows the best results for this
application, since it does not destroy the fine scale structures of the surface while outliers are
effectively removed.

6.2. Disparity estimation. In our second experiment we apply our convex framework to
disparity estimation of a stereo image pair taken from [5]. Figure 6 shows the rectified color
input images Il = (Irl , I

g
l , I

b
l ), Ir = (Irr , I

g
r , Ibr) and the ground truth disparity. The size of

the input images was Nx × Ny = 443 × 370 and the function u(x) was discretized using
Nt = 141 levels. Again we set hx = hy = ht = 1 and hence L =

√
12. The data term was

the pixelwise absolute differences of the RGB values of the input images, that is, ghi,j,k =



20 T. POCK, D. CREMERS, H. BISCHOF, AND A. CHAMBOLLE

(a) Left input image (b) Right input image (c) True disparity

Figure 6. Rectified stereo image pair and the ground truth disparity. Light gray pixels indicate structures
near to the camera, and black pixels correspond to unknown disparity values.

μ
∑

i∈{r,g,b} |(Iil )i,j − (Iir)i,j+k|, and μ is a scaling parameter. For quadratic regularization we
used μ = 100, for total variation and Huber regularization we used μ = 50. Note that in the
case of Lipschitz regularization, the result was independent of μ. The Huber parameter was
set to α = 5, and the maximum slope in Lipschitz regularization was set to β = 2.

Figure 8 shows the results of using different convex regularity terms. As expected,
quadratic regularization leads to an oversmoothing of depth discontinuities. Total varia-
tion regularization has the ability to preserve sharp depth discontinuities but exhibits some
staircasing in flat regions. Huber regularization gives the best result here, since it leads to
piecewise smooth disparities. Finally, one can see that Lipschitz regularization is (obviously)
not a good choice in this case. While the smooth surface parts still exhibit severe noise, large
depth discontinuities are oversmoothed due to the Lipschitz constraint.

7. Conclusion. In this work we have presented a theoretical framework for computing
global solutions of variational models with convex regularization but which can have quite
general data terms. Our approach builds upon the same idea as the MRF-based discrete
method of Ishikawa [24], namely, to increase the dimensionality of the problem. Unlike the
approach of Ishikawa, which requires long-range interactions in the graph structure in order
to implement general convex priors (e.g., quadratic), our approach can handle quite arbitrary
convex regularizers by just projecting onto different convex sets.

We also have given details on several different instances of convex regularity terms in-
cluding quadratic, total variation, Huber, and Lipschitz regularization. For solution of the
resulting convex optimization problem, we proposed a novel primal-dual algorithm which is
memory efficient and can be effectively accelerated on state-of-the-art graphics devices.

In experimental results we have demonstrated the applicability of the proposed method
using different convex regularizers to typical computer vision problems such as image filtering
and stereo.

While the framework developed in this paper allows one to compute globally optimal
solutions of functionals with convex regularizers, the same relaxation concept can be extended
to cases of nonconvex regularizers; see [32, 33].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Different convex regularity terms applied to outlier filtering of a range image. First row: quadratic
regularization; second row: total variation regularization; third row: Huber regularization, and fourth row:
Lipschitz regularization.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Application of different convex regularity terms applied to disparity estimation. First row:
quadratic regularization; second row: total variation regularization; third row: Huber regularization; and fourth
row: Lipschitz regularization.
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