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Abstract. We propose a spatially continuous formulation of Ishikawa’s
discrete multi-label problem. We show that the resulting non-convex vari-
ational problem can be reformulated as a convex variational problem via
embedding in a higher dimensional space. This variational problem can
be interpreted as a minimal surface problem in an anisotropic Rieman-
nian space. In several stereo experiments we show that the proposed
continuous formulation is superior to its discrete counterpart in terms of
computing time, memory efficiency and metrication errors.

1 Introduction

Many Computer Vision problems can be formulated as labeling problems. The
task is to assign a label to each pixel of the image such that the label configura-
tion is minimal with respect to a discrete energy.

A large class of binary labeling problems can be globally minimized using
graph cut algorithms [1, 2]. Applications of binary labeling problems include two-
region image segmentation, shape denoising and 3D reconstruction. On the other
hand, multi-label problems in general cannot be globally minimized. They can
only be solved approximately within a known error bound [3—6]. There exists one
exception where multi-label problems can be solved exactly. Ishikawa [7] showed
that, if the pairwise interactions are convex in terms of a linearly ordered label
set, one can compute the exact solution of the multi-label problem. Applications
of multi-label problems include image restoration, inpainting, multi-region image
segmentation, motion and stereo.

The continuous counterpart to discrete labeling problems is the variational
approach. Similar to the labeling problem, the aim of the variational approach is
to find the minimizer of an energy functional. The major difference between the
variational approach and the discrete labeling approach is that the energy func-
tional is defined in a spatially continuous setting and the unknown functions can
take continuous values. If the energy functional is convex and the minimization is
carried out over a convex set, the globally optimal solution can be computed. On
the other hand, it is generally hard to minimize non-convex energy functionals
globally.



In this paper we present a new variational method which allows to compute
the exact minimizer of an energy functional incorporating Total Variation reg-
ularization and a non-convex data term. Our method can solve problems of the
same complexity as the Ishikawa’s method. Hence, our method can be seen as
the continuous counterpart.

Our method comes along with several advantages compared to Ishikawa’s
approach. First, our method is largely independent from grid bias, also known as
metrication error. This leads to more accurate approximations of the continuous
solution. Second, our method is based on variational optimization techniques
which can be effectively accelerated on parallel architectures such as graphics
processing units (GPUs) and third, it requires less memory. Thourth, our method
allows to compute sub-pixel-accurate solutions.

The remainder of the paper is follows. In Section 2 we review the method of
Ishikawa. In Section 3 we give the definition of the energy functional which can be
solved with our method. We show how this non-convex energy functional can be
cast by an equivalent convex optimization problem. In Section 4 we show results
of our method applied to stereo. In the last Section we give some conclusions
and show directions for future investigations.

2 Ishikawa’s Discrete Approach

Ishikawa [7] presents a method to globally solve multi-label problems of a certain
class. A less general class was given independently by Veksler [4].

Given a graph with node set V and edge set £ and a label set L C Z, Ishikawa
considers the task to compute the optimal labeling [ € LY for an energy of form

min Y- P((u) =U(v)) + Y D(v)) (1)

(u,v)€E veV

Such a labeling problem combines a certain pairwise regularity term P(-) with an
(arbitrary) data term D(-). Many problems in Computer Vision can be stated
in this form, among them are stereo estimation, image restoration and image
segmentation.

Ishikawa shows that such problems can be solved in a globally optimal man-
ner as long as the function P(-) is convex in [(u) — [(v). This is achieved by
computing the minimal cut in an auxiliary graph with extended node set. For
each combination of node v € V and label I(v) € L a node in the auxiliary graph
is created. For details see [7].

While this approach is able to find global optimizers of a discrete energy, in
practice it suffers from several drawbacks:

— The algorithm requires a huge amount of memory. In part this is due to the
large set of nodes. The true bottleneck however lies in the algorithms to find
the minimal cut in the graph: All efficient solvers are based on computing
the maximal flow in the graph [8]. This requires the storage of a flow value
for each edge and hence an explicit storage of edges.



— Graph-based methods generally suffer from grid bias (also known as metrica-
tion errors). To remove this grid bias and get close to rotational invariance,
large neighborhood systems are required. The resulting huge number of edges
increases the memory consumption even further.

— Lastly the efficient parallelization of max-flow-based methods is still an open
issue. While current graphics cards offer highly parallel architectures, to date
this potential could not be exploited to speed up max-flow algorithms.

In this paper we deal with all of these drawbacks. We propose a sub-pixel-
accurate continuous formulation which makes use of continuous optimization
techniques. As a direct consequence our method does not suffer from grid bias.
Moreover, it requires much less memory and is easy to parallelize.

3 A Continuous Approach

This work is devoted to the study of the variational problem

m&n{/ﬂVu(wﬂdaz—l—/gp(u(w),m) dw} : (2)

which can be seen as the continuous counterpart of (1), where we used P(-) = |-|.
Let u : £2 — I' be the unknown function, where £2 C R? is the image domain,
I' = [Ymin, Ymaz) is the range of v and & = (z,y)T € 2 is the pixel coordinate.
We may assume homogeneous Neumann boundary conditions for u on 042.

The left term of (2) is for regularization, i.e. to obtain smooth results. It
is based on minimizing the Total Variation (TV) of u. Note that the gradient
operator is understood in its distributional sense. Therefore, the TV energy is
also well-defined for discontinuous functions (e.g. characteristic functions).
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The main property of the TV term is that it allows for sharp discontinuities in
the solution while still being a convex function [9]. The discontinuity preserving
property is important for many Computer Vision problems, e.g. to preserve edges
in the solution.

The right term of (2) is the data term. It is based on a pixel-wise defined
non-negative function p(u(x),z) : 2 — RT, which directly relates to the data
term D(-) of Ishikawa’s discrete approach. Note that our model is able to handle
any pixel-wise defined data term, including non-convex ones. The type of data
term also defines the application domain of our variational model. For example,
if p(u, f) measures the fidelity of u to given noisy input image f, our model could
be used for image denoising. On the other hand, if u represents a disparity field
and p(u, I, Ir) measures the matching quality of a rectified stereo image pair
I, and IR, our model could be used for stereo matching.




Let us now discuss whether we can find an exact solution of (2). The regu-
larization term is convex in w. Therefore, this term can be globally minimized.
However, p(u) is per definition non-convex. Hence, we cannot expect that we are
able to compute the global minimizer in this setting.

3.1 A Convex Formulation via Functional Lifting

In this section, we will develop a convex formulation of the non-convex variational
model (2). The key idea is to lift the original problem formulation to a higher-
dimensional space by representing w in terms of its level sets. Consequently, this
will allow us to compute the exact solution of the original non-convex problem.
Let us first give some definitions.

Definition 1 Let the characteristic function 1y,~~y(z) : £ — {0,1} be the
indicator for the v - super-levels of u:

1 i u(x) >y
Liusqy () = {0 otherwise @

Next, we make use of the above defined characteristic functions to construct a
binary function ¢ which resembles the graph of w.

Definition 2 Let ¢ : [2 x I'] — {0,1} be a binary function defined as

O, 7) = Lusyy (@) - ()

As a direct consequence of (4) we see that ¢(x, Ymin) = 1 and (&, Yimaz) = 0.
Hence, the feasible set of functions ¢ is given by

D'={¢: 3 — {0,1} | ¢(, Ymin) = 1, (&, Ymaz) = 0}, (6)

where we used the short notation X' = [2 x I']. Note that the function u can be
recovered from ¢ using the following layer cake formula [10].

U(®) = Yin + /F o(@,7) dy (7)

Our intention is now to rewrite the variational problem (2) in terms of ¢. This
can be seen as lifting the variational problem (2) to a higher-dimensional space.
This is stated by the following the following Theorem which forms the basis of
our approach.

Theorem 1 The variational problem (2) is equivalent to the higher dimensional
variational problem

iy { [ [9o(@.)] + ole oot az} (®)

peD’

in the sense that the minimizer of (8) is related to the minimizer of (2) via the
layer cake formula (7).



Proof: First, the TV term of (2) can be easily rewritten in terms of ¢, making
use of the generalized co-area formula of Fleming and Rishel [11].

[Vu()| de = Vo(x,y)|dy ¢ de, (9)
J, [, { et i)

where |V¢(x,~)| denotes the Total Variation of the characteristic function of the
v - super-levels of u. The co-area formula essentially states that the TV norm
can be decomposed into a sum of the length of the level - sets of u.

Second, we have to rewrite the data term of (2) by means of ¢. From (5) we
observe that

|0+ (z,7)| = 6(u(z) —7) (10)

where (-) is the Dirac Delta function. As a direct consequence, the data term
can by rewritten as

| rtut@)@yae = [ { / p(%w)5(U(w)—7)d’v} iz
-/ { / p(%w)Iam(wm)ldv} iz (11)

By substitution of the terms (9) and (11) into (2), we arrive at the higher
dimensional variational model (8). O

Although (8) is convex in ¢, the variational problem is still non-convex since
the minimization is carried out over D’ which is a non-convex set. The idea is
now to relax the variational problem (8) by allowing ¢ to vary smoothly in the
interval [0, 1]. This leads to the following convex set of feasible solutions of ¢.

D= {¢ P [07 1] | QS("B”YMM) =1, (b(m?')/mam) = 0} : (12)

The associated variational problem is now given by

iy { [ V0@ )|+ ot 0,60l d2 ) (13)

¢eD

Since (13) is convex in ¢ and minimization is carried over D, which is a convex
set, the overall variational problem is convex. This means that we are able to
compute its global minimizer.

Our intention, however, is still to solve the binary problem (8). Fortunately,
minimizers of the relaxed problem can be transformed to minimizers of the binary
problem. Based on [10] we state the following thresholding theorem.

Theorem 2 Let ¢* € D be the solution of the relazed variational problem (13).
Then for almost any threshold pu € [0, 1] the characteristic function 1{4+>,y € D’
is also a minimizer of the binary variational problem (8).



Proof: (Proof by Contradiction.) Since (13) is homogeneous of degree one,
we can make use of the generalized co-area formula to decompose (13) by means
of the level sets of ¢.

E(9) = /,g IV (@, 7)| + pl, )]0y ()| 5
1

= /O E(1{p>py)du (14)

Assume to the contrary that 1;4->,) € D' is not a global minimizer of the binary
problem, i.e. there exists a binary function ¢’ € D" with E(¢’) < E(1{g+>,;) for
a measurable set of u € [0,1]. This directly implies that

1

1
E(¢) = / E(¢)dp < / E(Ligeom)di = E(6") | (15)

which means that ¢* is not a global minimizer of E(-), contradicting our as-
sumption. [

We have seen that solving the non-convex variational problem (2) amounts
to solving the convex variational problem (13). In the following section we will
develop a simple but efficient numerical algorithm to compute the solution of
(13).

3.2 Computing the Solution of the Relaxed Functional

The fundamental approach to minimize (13) is to solve its associated Euler-
Lagrange differential equation.

(o 0,0 )
' <v¢|> " (”w 0o st 0eD (16)

It is easy to see that these equations are not defined either as |V¢| — 0 or
|0y¢| — 0. In order to resolve these discontinuities, one could use regularized
variants of these terms, e.g. |V@|. = /|V|? +¢? and |0,0]: = /]0,¢]% + €2,
for some small constant . See [12] for more details. However, for small values of
¢ the equations are still nearly degenerate and for larger values the properties of
the model get lost.

To overcome the non-differentiability of the term |V¢| + p|0,¢| we employ
its dual formulation [13-16]:

Vol +pl0,6| = max {p- Vas} st \p+p3<l, Iml<p,  (7)

where p = (p', p?,p®)7 is the dual variable and V3 is the full (three dimensional)
gradient operator. This, in turn, leads us to the following primal-dual formulation



of the functional (13).

gélg {r;leaé({/z V3¢~pd2}} , (18)
where

C={p: X —RVp1(2,7)2 +pa(x,7)? < 1, Ips(x,7)| < plz,y)} . (19)

Note that the primal-dual formulation is now continuously differentiable in
both ¢ and p. In order to solve (18) we exploit a primal-dual proximal point
method [17]. The idea of the proximal point method is to generate a sequence
of approximate solutions by augmenting the functional by quadratic proximal
terms for both the primal and dual variables. We first minimize the functional
with respect to the primal variable and then maximize the functional with re-
spect to the dual variable.

1. Primal Step: For fixed p, compute a proximal primal step for ¢.

B+l _ - ok i _ 45?2
¢+ _gleHDl{/EV?’(b P d2+27_p/2(¢ ¢) dZ} (20)

2. Dual Step: For fixed ¢, compute a proximal dual step for p.

phtl = max{/ Vst pdy — L/ (p_Pk)2 dZ} . (21)
) 274 Js

peC

The parameters 7, and 74 denote the stepsizes of the primal and dual updates.
We will now characterize the solutions of the alternating minimization scheme
by the following two Propositions.

Proposition 1 The solution of (20) is given by
o™ =Pp (¢* + mdivs p*) (22)

where Pp denotes the projection onto the set D.
Proof: We compute the Euler-Lagrange equation of (20) which provides a

necessary optimality condition for ¢.

—divs p* + Tlp (p—¢")=0. (23)

Solving this equation for ¢ directly leads to the presented scheme. Note, that
the scheme does not ensure that ¢**1 € D. Therefore we have to reproject ¢F+1
onto D using the following Euclidean projector.

Po(¢"*1) = min || ¢! — | , (24)

which can be computed by a simple truncation of ¢**! to the interval [0,1] and
setting ¢(x, Yimin) = 1 and ¢(x, Yimaz) = 0. O



Proposition 2 The solution of (21) is given by
Pt =Pc (P + TVt | (25)
where Po denotes the projection onto the set C.

Proof: The optimality condition for p is given by

V3¢k+1 _ 1

T—d(p—p’f)zo. (26)

We solve this equation for p which results in the presented scheme. Since we
need to ensure that p**! € C we reproject p**! onto C using the Euclidean

projector
Pe(p™*) = min||p**! —y]| | (27)
which can be computed via
k
k+1 _ p1+1
pl - ’
max {1, p% +p§}
k+1
pk+1 _ p2+
2 - )
max{l, \/p% —&—p%}
k41
k+1 p3 (28)

D3 = .
max{l, %}

O

3.3 Discretization

In our numerical implementation we are using a three-dimensional regular Carte-
sian grid

{Gimit<i<sM 1<j<N1<k<0}, (29)
where (i, 7, k) is used to index the discrete locations on the grid, M, N and O

denote the size of the grid. We use standard forward differences to approximate
the gradient operator

((biv1k — Pigk Pigaik — Pigk Digkel — Pigk T
(Vahsg = (P4 i, Phanrh = s, P . 60)

and suitable backward differences to approximate the divergence operator

1 1 2 2 3 3
Pijk " Pic14k | Pigk “Pij-1k | Pijk ~ Pijk-1
+ + ,
Ax Ay A~y

(diva p)ijx = (31)

where Az, Ay denote the width of spatial discretization and A~ denotes the
width of the disparity discretization.



3.4 Convergence of the Algorithm

Currently we cannot prove explicit values for 7, and 74 which ensure convergence
of the proposed algorithm. Empirically we observed that the algorithm converges
as long as the product 7,74 < 1/3. We therefore choose 7, = 74 = 1/ V3.

3.5 Interpretation as Anisotropic Minimal Surfaces

In Section 3.1 we showed that the non-convex continuous multi-label problem
(2) can be cast as a convex problem (13) by rewriting it in a higher dimen-
sional space. We will now show that this higher-dimensional problem is that of
a minimal surface problem in an anisotropic Riemannian space. Specifically, if
we replace the anisotropic TV-like term |V¢| + p|0,¢| by a weighted TV term
p|V3é| we obtain a variational model whose minimizer is the minimal surface
with respect to an isotropic Riemannian metric p.

min {/Zplvwﬁldﬂ} : (32)

This problem has been studied in the context of Total Variation minimization
by Bresson et al. in [18] and in the context of Continuous Maximal Flows by
Appleton and Talbot in [19]. Note that the isotropic Riemannian problem does
not allow for discontinuities in the solution whereas the anisotropic does.

3.6 Implementation

Numerical methods working on regular grids, can be effectively accelerated by
state-of-the-art graphics processing units (GPUs). We employ the huge com-
putational power and the parallel processing capabilities of GPUs to obtain a
parallel implementation of our algorithm. The algorithm was implemented on a
standard desktop PC equipped with a recent Quadcore 2.66 GHz CPU, 4 GB of
main memory and a NVidia GeForce GTX 280 graphics card. The computer is
running a 64-bit Linux system. With this GPU implementation we achieved a
speedup factor of approximately 33 compared to an optimized C++ implemen-
tation executed on the same computer.

4 Experimental Results

In this section we provide experimental results of our algorithm applied to stan-
dard stereo benchmark problems. First, we compare our continuous formulation
to the discrete approach of Ishikawa. Second we evaluate our method on the
standard Middlebury stereo database [20]. Finally, we show results from a real
world stereo example.

For stereo computation we need a data term measuring the matching quality
of a rectified stereo image pair I;, and Ir for a certain disparity value v. We
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use the absolute differences summed over the three color channels of the input
images.

pe) =2 Y |iP@ 1@+ 6,07 . (33)
i€{r,g,b}

4.1 Comparison to Ishikawa’s approach

In our first experiment, we do a comparison of our continuous method to the
discrete approach of Ishikawa using the Tsukuba data set [20]. According to [20],
we used Ymin = 0, Ymaee = 16 and A = 50. The spatial domain and the disparity
space was discretized using Az = Ay = Ay = 1.0. We ran our numerical scheme
until the decrease of the energy was below a certain threshold. We also set up
Ishikawa’s algorithm for different neighborhood connectivities. Since different
neighborhood systems result in different weights of the smoothness term, we
had to adjust the value of A for the larger neighborhoods.

Fig. 1 shows a qualitative comparison of our continuous algorithm to Ishikawa’s
discrete algorithm. In case of a 4-connected neighborhood, one can clearly see
blocky structures in the solution. This effect, also known as metrication error,
has its origin in the coarse approximation of the smoothness term when using
a 4-connected or 8-connected neighborhood. We also provide a zoom in of the
upper right corner of the lamp for the different results. In this region the metri-
cation error of the discrete approach is clearly visible. In case of a 16-connected
neighborhood, the result of the discrete approach is comparable to the result of
our continuous approach.

Table 1 gives a quantitative comparison of our continuous algorithm to the
discrete approach of Ishikawa using a error threshold of 1 for wrong pixels. It
shows that the proposed continuous formulation provides error statistics slightly
superior to its discrete counterpart. One can also see that both the runtime
and the memory consumptions of Ishikawa’s discrete approach significantly in-
crease with larger neighborhoods. Comparing our continuous approach to the
16-connected discrete approach of Ishikawa, we see that our GPU-based algo-
rithm is about 20 times faster while requiring only 3.6% of its memory. This
enables our method to compute the solution of stereo problems of much larger
size in much shorter time.

Table 1. Quantitative comparison of the proposed continuous approach to Ishikawa’s
discrete 16-connected approach. It shows that our GPU-based algorithm is about 20
times faster while requiring only 3.6% of its memory.

[Algorithm [error (%)[Runtime CPU/GPU (sec)[Memory (MB)|
Ishikawa 4-neighborhood 2.90 29 /- 450
Ishikawa 8-neighborhood 2.63 4.9 /- 630
Ishikawa 16-neighborhood 2.71 14.9 / - 1500
Continuous formulation|| 2.57 25/ 0.75 54
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(a) Ishikawa 4-neighborhood (b) Ishikawa 8-neighborhood

(c) Ishikawa 16-neighborhood (d) Proposed continuous formulation

Fig. 1. Qualitative comparison of the proposed continuous approach to Ishikawa’s dis-
crete approach. It clearly shows the metrication error in case of 4-connected and 8-
connected neighborhoods, favoring 90 degree and 45 degree edges.

4.2 Evaluation on the Middlebury Stereo Database

In this section we provide a full evaluation of our algorithm on the standard
Middlebury stereo database [20]. In order to be more insensitive to brightness
changes in the input images we applied a high-pass filter to the input images
before computing the data term. We ran our algorithm with the following con-
stant parameter settings for the entire data base: A = 30, Az = Ay = 1.0 and
A~y = 0.5. The disparity range given by Yimin and Ymae, was set according to [20].
The computing time in this setting varies between 15 seconds for the Tsukuba
data set and 60 seconds for the Cones and Teddy data sets.

Fig. 2 shows the results of the stereo images. For a sub-pixel accurate thresh-
old of th=0.5, our algorithm is currently ranked as number 15 out of 39 stereo
algorithms. Note that Ishikawa’s algorithm failed in this setting due to its im-
mense memory requirements.
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(a) Tsukuba ) Venus (c) Teddy (d) Cones

(e) rank = 17 ) rank = 12 (g) 7rank = (h) rank = 8

(i) error=14.3% (j) error=4.99% (k) error= 12 5% (1) error=7.25%

Fig. 2. Quantitative results from the Middlebury stereo evaluation data base.

one should keep in mind that more sophisticated algorithms may provide
better quantitative results for the stereo problems. However, our variational
model is very simple and does not take into account additional information from
image segmentation, plane-fitting and consistency checks. More importantly, our
model can be exactly solved, which is not the case for the more sophisticated
approaches.

4.3 Real World Example

Finally we give results of our algorithm applied to a real world stereo problem.
Fig. 3 shows the estimated depth map from a large aerial stereo pair from Graz.
We ran our algorithm with the following parameter settings: A = 50, V,5, = —30,
Ymaz = 30 Az = Ay = 1.0 and Ay = 0.5. This example shows that the proposed
algorithm yields promising results for large practical problems.

5 Conclusion

In this paper we proposed a continuous formulation to the discrete multi-label
problem of Ishikawa. We showed that the original non-convex problem can be
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(a) Left image (1500 x 1400) pixel (b) Estimated depth map

Fig. 3. Estimated depth map of the proposed algorithm applied to a large aerial stereo
data set of Graz.

reformulated as a convex problem via embedding into a higher dimensional space.
Our formulation removes several shortcomings of Ishikawa’s discrete approach.
First, our algorithm is defined in a spatially continuous setting and is therefore
free from grid bias. Second, our algorithm is based on variational optimization
techniques which can be easily parallelized. Finally our algorithm needs less
memory enabling us to compute much larger problems. Results from practical
stereo examples emphasize the advantages of our approach over the discrete
approach of Ishikawa.

For future work we see mainly two directions. One direction is to investigate
more sophisticated optimization schemes to achieve an additional speedup in
computing the minimizer of the convex formulation. The other direction is to
improve the variational model for stereo estimation. Specifically, we plan to
incorporate additional cues such as edges into our variational model while still
allowing to compute its exact solution.
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