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Abstract

We propose a shape matching method that produces
dense correspondences tuned to a specific class of shapes
and deformations. In a scenario where this class is rep-
resented by a small set of example shapes, the proposed
method learns a shape descriptor capturing the variabil-
ity of the deformations in the given class. The approach
enables the wave kernel signature to extend the class of rec-
ognized deformations from near isometries to the deforma-
tions appearing in the example set by means of a random
forest classifier. With the help of the introduced spatial reg-
ularization, the proposed method achieves significant im-
provements over the baseline approach and obtains state-
of-the-art results while keeping short computation times.

1. Introduction
In the last decade there has been an increasing influx of

work on finding and describing correspondences among 3-
dimensional shapes (i.e., 2-dimensional surfaces embedded
into R3). Nevertheless, while the advances made by works
such as [12, 3, 18, 21, 1, 8] have been dramatic, the problem
is far from being solved.

Many methods in shape matching use a notion of similar-
ity that is defined on a very general set of possible shapes.
Due to the highly ill-posed nature of the shape matching
problem, it is very unlikely that a general method will re-
liably find good matchings between arbitrary shapes. In
fact, while many matching methods (such as methods based
on metric distortion [17, 3, 16] and eigen-decomposition of
the Laplacian [18, 21, 1]) mostly capture near-isometric de-
formations, others might consider too general deformations
which are not consistent with the human intuition of cor-
respondence. In applications where the class of encoun-
tered shapes is in-between, adapting the matching methods
at hand is often very tedious.

Figure 1. Example of dense shape matching using random forests
under non-isometric deformations. Shapes in the shaded area are
a subset of the training set. The forest is trained with wave kernel
descriptors and consists of 80K training classes with 19 samples
per class. Matches are encoded by color.

In this paper we try to bridge the gap between gen-
eral shape matching methods and application-specific algo-
rithms by taking a learning-by-examples approach.1 In our
scenario, we assume to be given a set of training shapes
which are equivalent up to some class of non-isometric de-
formations. Our goal is to learn from these examples how
to match two shapes falling into the equivalence class rep-
resented by the training set. Recently, Litman et al. [10]
took a signal processing approach to formulate a generic
family of parametric spectral descriptors for deformable
shapes. Differently, we treat the shape matching problem
as a classification problem, where input samples are points
on the shape manifold and the output class is an element
of a canonical label set, which might e.g. coincide with the
manifold of one of the shapes in the training set.

A first contribution of this paper consists in a new ran-
dom forest classifier, which can tackle this unconventional
classification problem in an efficient and effective way,
starting from a general parametrizable shape descriptor.
Our classifier is designed in a way to randomly explore the
descriptor’s parametrization space, and find the most dis-

1Dataset available at: http://vision.in.tum.de/data/
datasets/kids
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criminative features that properly recover the transforma-
tion map characterizing the shape category at hand. In this
work, we consider the wave kernel signature (WKS) [1] as
the shape descriptor. This descriptor is known to be invari-
ant to isometric transformations, but the forest can effec-
tively exploit it to match shapes undergoing deformations
that are far from isometric. In a broad sense, the output of
the random forest can be seen as a new descriptor by itself
that is tuned to the shapes and deformations appearing in the
training set. In this respect, the proposed method is comple-
mentary to existing shape descriptors as it can improve the
performance of a given descriptor.

One of the main benefits of our approach is the fact that
the random forest classifier gives for each point on the shape
an ordered set of matching candidates, hence delivering a
dense point-to-point matching. Since such a descriptor does
not include any spatial regularity, we propose a regular-
ization technique based on the functional maps representa-
tion [14]. We show experimentally that the proposed learn-
ing approach improves significantly the underlying general
descriptor, being competitive with respect to other state-of-
the-art matching pipelines on equivalent benchmarks.

It is worth mentioning that an approach related to ours
was taken by Taylor et al. [22] for the task of human pose
estimation from RGB-D data. To this end, they trained a
random forest with large amounts of data covering all pos-
sible pose variations of a human shape. Their regression
model relies on a parametrized, skinned, articulated refer-
ence 3D model in a canonical pose; the regression process
then tries to infer a model parametrization that best explains
the image data. Differently from this approach we do not
need parametrized models, as we work directly with man-
ifolds and their intrinsic quantities, thus allowing for more
general scenarios. In addition, our method only requires a
few exemplary training models encompassing the range of
deformations the shape is expected to undergo, which dras-
tically reduces the required computational effort.

2. Learning a Canonical Transformation with
Random Forests

In order to employ a random forest classifier to address
non-rigid shape matching, we learn from examples a canon-
ical transformation, i.e. a transformation from the points of
a shapeM represented as a triangular mesh defined over a
vertex set VM, to a canonical label set L. In Section 3 we
will show how this can be used to obtain dense correspon-
dences between non-rigid shapes.

Random forests [2] are ensembles of decision trees that
have become very popular in the computer vision commu-
nity to solve both classification and regression problems.
Applications range from object detection, tracking and ac-
tion recognition [7] to semantic image segmentation and
categorization [20], and 3D pose estimation [22] to name

just a few. The forest classifier is particularly appealing be-
cause its trees can be trained efficiently and techniques like
bagging and randomized feature selection allow to limit the
correlation among trees and thus ensure good generaliza-
tion. We refer to [5] for a detailed review.

Inference. In the context of shape matching, a decision
tree routes a point m of a test shape M from the root of
the tree to a leaf node, where a probability distribution de-
fined on a discrete label set L is assigned to the point. The
path from the root to a leaf node is determined by means
of binary decision functions called split functions located at
the internal nodes, which given a shape point return L or
R depending on whether the point should be forwarded to
the left or to the right with respect to the current node. Ac-
cording to this inference procedure, each tree t ∈ F of a
forest F provides a posterior probability P (`|〈m〉M, t) of
label ` ∈ L, given a point 〈m〉M in a test shapeM. This
probability measure is the one associated with the leaf of
tree t ∈ F that the shape point would reach. The prediction
of the whole forest F is finally obtained by averaging the
predictions of the single trees as follows:

P (`|〈m〉M,F) =
1

|F|
∑
t∈F

P (`|〈m〉M, t) . (1)

The outcome of the prediction over a shapeM can be rep-
resented as a left-stochastic matrix XM encoding the proba-
bilistic canonical transformation, where

(XM)`m = P (`|〈m〉M,F) . (2)

for each ` ∈ L and m ∈M.

Learning. During the learning phase, the structure of the
trees, the split functions and the leaf posteriors are deter-
mined from a training set. Let {(Ri, Ti)}mi=1 be a set of m
reference shapes Ri each equipped with a canonical trans-
formation, i.e. a bijection Ti : VRi → L between the vertex
set of the reference shape and the label set L. A training set
T for the random forest is given by the union of the graphs
of the mappings Ti, i.e.

T = {(r, Ti(r)) : r ∈ VRi , 1 ≤ i ≤ m} .

The learning phase that creates each tree forming the forest
consists in a recursive procedure that starting from the root
iteratively splits the current terminal nodes. During this pro-
cess, each shape point of the training set is routed through
the tree in a way to partition the whole training set across
the terminal nodes. The decision whether a terminal node
has to be further split and how the splitting will take place is
purely local, as it involves exclusively the shape points that
have reached that node. A terminal node typically becomes
a leaf of the tree if the depth of the node exceeds a given



limit, if the size of the subset of training samples reaching
the node is small enough, or if the entropy of the label dis-
tribution for the sample is low enough. If this is the case,
then the leaf node is assigned the label distribution of subset
S of training samples that have reached the leaf, i.e.

P (`|S) =
|{(r, `) ∈ S}|

|S|
. (3)

The probability distribution P (·|S) will become the pos-
terior probability during inference for every shape point
reaching the leaf. Consider now the case where the terminal
node is split. In this case, we have to select a proper split
function ψ(〈r〉Ri) ∈ {L,R} that will route a point r of
shape Ri reaching the node to the left or right branch. An
easy and effective strategy for guiding this selection con-
sists in generating a finite pool Ψ of random split functions
and retaining the one maximizing the information gain with
respect to the label space L. The information gain IG (ψ)
due to split function ψ ∈ Ψ is given by the difference be-
tween the entropy of the node posterior probability defined
as in (3) before and after having performed the split. In de-
tail, if S ⊆ T is the subset of the training set that has reached
the node to be split and SL, SR is the partition of S induced
by the split function ψ, then IG (ψ) is given by

IG (ψ) = H (P (·|S))− H (P (·|S) |ψ) ,

where H (·) denotes the entropy and

H (P (·|S) |ψ) =
|SL|
|S|

H
(
P
(
·|SL
))

+
|SR|
|S|

H
(
P
(
·|SR

))
.

2.1. Split functions for shape matching

During the build up of the forest the randomized train-
ing approach allows us to vary the parametrization of the
shape descriptor for each point of the shape. In fact, we
can in principle let the forest automatically determine the
optimal discriminative features of the chosen descriptor for
the matching problem at hand. Among the wide range of
available choices [18, 21] we have opted for the recently in-
troduced Wave Kernel Signature (WKS) [1]. The WKS is
invariant to quasi-isometric deformations of the shape man-
ifold, and is demonstrably robust to various other transfor-
mations that can happen in practice.

The WKS evaluates the probability of a quantum particle
to be located at a point m of shapeM under a certain en-
ergy distribution. Given an energy level e and by consider-
ing the following family of log-normal energy distributions

fe(ν) ∝ exp

(
− (log e− log ν)2

2σ2

)
,

with mean log e and variance σ2, the expected probability
of measuring the particle in m at any time is given by

p(〈m〉M; e) =

∞∑
k=1

f2e (νk)φ2k(〈m〉M) , (4)

where νk are the nonnegative eigenvalues of the Laplace-
Beltrami operator ∆M and φk are the corresponding or-
thonormal eigenfunctions. From a practical perspective, it
can be shown [1] that the sum in (4) can be restricted to
the first k < ∞ components. We make explicit in (4) the
dependency on k by writing:

p(〈m〉M; e, k) =

k∑
k=1

f2e (νk)φ2k(〈m〉M) . (5)

We are now in the position of generating at each node of
a tree during the training phase a pool of randomized split
functions by sampling an energy level e, a number of eigen-
pairs k and a threshold τ . Accordingly, the split functions
will take the form:

ψ(〈m〉M; e, k, τ) =

{
L if p(〈m〉M; e, k) > τ

R otherwise .

By doing so, we retain the full power of the WKS descriptor
without resorting to a pre-defined parametrization, which
might not be optimal over the whole shape.

3. Shape Matching and Regularization
In the following sections, for the sake of fluency we will

simplify the notation and write m in place of 〈m〉M, with
the understanding that m ∈ VM.

The simplest way to infer a correspondence from a for-
est prediction consists in assigning each point m ∈ VM to
the most likely label according to its final distribution, i.e.,
the label maximizing P (`|m,F). If we are also given a
reference shape R from the training set, the maximum a
posteriori estimate of ` can be transformed into a point-to-
point correspondence from M to R via the known bijec-
tion T : VR → L. Figures 2(a)(b) show an example of this
approach. The resulting correspondence is exact for about
50% of the points, whereas it induces a large metric distor-
tion on the rest of the shape. However, this is not a conse-
quence of the particular criterion we adopted when applying
the prediction. Indeed, the training process is oblivious to
the underlying manifolds as it is only based on pointwise in-
formation: the correspondence estimates are taken indepen-
dently for each point and thus the metric structure of the test
shape is not taken into account during the regression. Nev-
ertheless, as we shall see, the predicted distributions carry
enough information that can be exploited to obtain a consis-
tent matching.

3.1. Regularization

In the following we show how a given forest prediction
can be regularized in a way to produce a meaningful cor-
respondence. However, instead of acting directly on the
matching, we will operate in the space of functions defined
on shapes.



Figure 2. The coordinate functions from a test shape M (standing cat) are transferred to a reference shape R (walking cat) via the
functional map CM,R induced by the forest prediction. Most of the ambiguities arise in fx, and are due to the global intrinsic symmetry
of the cat. The first column shows the map fx on the test cat, while the second and third columns are obtained by mapping fx without
and with regularization respectively. The remaining four columns show the mappings of fy and fz without regularization. The symmetric
ambiguities disappear as a result of the regularization process (columns (a)-(c), matches encoded by color).

Functional maps. We make use of the functional map
framework introduced in [14]. A (probabilistic) correspon-
dence between two shapes M and R, given in terms of
a left-stochastic matrix XM,R, can be related to a linear
map C : L2(M) → L2(R) between the sets of square-
integrable scalar valued functions onM andR via

CM,R = Φ>RXM,RΦM , (6)

where CM,R denotes the matrix-form of the linear map C
and matrices ΦM,ΦR ∈ Rn×k contain the first k eigen-
functions of the discrete Laplace-Beltrami operators ∆M
and ∆R, respectively. The correspondence XM,R can be
expressed in terms of the canonical transformation TR and
the forest prediction XM as

(XM,R)rm = (XM)TR(r)m = X−1R XM , (7)

where XR is the matrix-form of transformation TR, which
is invertible because TR is a bijection. By combining (6)
and (7) we finally get

CM,R = Φ>RX
−1
R XMΦM , (8)

which maps scalar functions between test and reference
shape.

In Figure 2 (first 7 columns) we use such a construction
to map the coordinate functions fi : M → R (where i ∈
{x, y, z}) to scalar functions onR. Specifically, we plot f i

and their reconstructions gi = ΦRCM,RΦ>Mf i. Note that
the reference shape is axis-aligned, so that the x coordinates
of its points grow from the right side (blue) to the left side
of the model (red).

Metric distortion using functional maps. The plots we
show in Figure 2 tell us that most of the error in the cor-
respondence arises from the (global) intrinsic symmetries
of the shape. As mentioned previously, this is to be ex-
pected since the training process does not exploit any kind
of structural information about the manifolds. This suggests
the possibility to regularize the prediction by introducing

metric constraints on the correspondence. Specifically, we
consider an objective of the form

E(X) = c(XM,R, X) + ρ(X) , (9)

where X is a correspondence between shapesM andR. The
first term (or cost) ensures closeness to the prediction given
by the forest, while the second term is a regularizer giving
preference to geometrically consistent solutions. A natural
choice for such regularity term is the Lp-relaxed Gromov-
Hausdorff metric distortion [11, 16]

ρ(X) =
1

2

∑
r,r′∈VR

m,m′∈VM

ε(m, r,m′, r′)XrmXr′m′ , (10)

where function ε is the absolute distortion of the metric
functions dM, dR on the two manifolds, namely

ε(m, r,m′, r′) = |dM(m,m′)− dR(r, r′)| . (11)

Other choices for ε are also possible [16]. With these def-
initions, ρ(X) directly quantifies to what extent the given
mapping X deviates from isometry. In other words, a mini-
mizer of (9) is expected to be close to the predicted match-
ing XM,R while at the same time preserving pairwise dis-
tances on the two shapes as much as possible.

Since finding a solution to (9) involves taking all possible
pairs of matches on the two shapes, the problem is of com-
binatorial nature and thus in general very difficult to solve.
Fortunately, a more convenient formulation can be obtained
if we use the language of functional maps. Let CM,R be
the functional map induced by the correspondence XM,R
according to Eq. (8). The functional (9) can be rewritten as

E(C) = ‖CM,R − C‖2F + ρ(C) , (12)

where ‖ · ‖F denotes the Frobenius matrix norm. Suppose
we are given a (possibly sparse) collection of matches O ⊂
VM × VR. Then for each (p, q) ∈ O we can define two
distance maps dp :M→ R and dq : R → R as

dp(x) = dM(p,x) , dq(y) = dR(q,y) . (13)
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Figure 3. Example of a dense matching among two shapes M and
N without making use of an intermediate reference. Both shapes
are taken from the ’jumping’ set, while the shapes of the training
set are taken from the ’squat’ sequence by Vlasic et al.1

With these definitions, we can express the regularity term
ρ(C) in the embedding functional space as

ρ(C) =
∑

(p,q)∈O

‖Cd̂p − d̂q‖22 , (14)

where d̂p = Φ>Mdp and d̂q = Φ>Rdq are the distance map
representations in the respective bases. Note that Eqs. (13)
are now encoding the pairwise distances appearing in (11).
In order for the regularization to work as expected, the pro-
vided collection of matches should constrain well the so-
lution, in the sense that it should help to disambiguate the
intrinsic symmetries of the shape. For example, matches
along the tail of the cat would bring little to no informa-
tion on what solution to prefer. In practice, we can seek for
a few matches that cover the whole shape and be as accu-
rate as possible. To this end, we generate evenly distributed
samples Vfps ⊂ VM on the test shape via farthest point sam-
pling [11] by using the extrinsic Euclidean metric. Then, we
construct a matching problem that attempts to minimize an
objective of the form given in Eq. (10), but restricted to the
set of predicted matches

O = {(m, r) ∈ Vfps × VR | (XM,R)rm > 0} . (15)

In practice this set is expected to be small, since the predic-
tion given by the forest is very sparse and we select around
50 farthest samples per test shape (≈0.2% of the total num-
ber of points on the adopted datasets). This results in a small
matching problem that we solve via game-theoretic match-
ing [16], a `1-regularized technique that allows to obtain
sparse, yet very accurate solutions in an efficient manner.
Once a sparse set of matches is obtained, we solve (12) as
the weighted least-squares problem

min
C
‖CM,R − C‖2F +

∑
(p,q)∈O

ωpq‖Cd̂p − d̂q‖22 , (16)

where ωpq ∈ [0, 1] are weights (provided by the game-
theoretic matcher) giving a measure of confidence for each
match (p, q) ∈ O. Figure 2(c) shows the result of the regu-
larization performed using 25 sparse matches (indicated by
small spheres).

3.2. Matching without a reference

In this section we consider a scenario in which a refer-
ence shape R is not available for the matching process, but
one is instead interested in a correspondence between two
new shapes, both unknown to the forest.

Let M and N be two test shapes, and let XM, XN de-
note the corresponding label predictions as defined in (2),
i.e. for each point m ∈ VM and each label ` ∈ L the
probability P (`|m) is given by (XM)`m, and accordingly
for N . We are now interested in obtaining a probabilistic
correspondence matrix XM,R between M and R. To this
end, we interpret each element of XM,N as the probability
that a given point fromM corresponds to a point in N , i.e.
(XM,N )nm = P (n|m) for any m ∈ VM and n ∈ VN . By
using Bayes’ theorem and by taking a uniform prior over
the shapes’ points, we obtain

(XM,N )nm = P (n|m) =
∑
`∈L

P (n|`) P (`|m)

=
∑
`∈L

(X̃N )`n(XM)`m = X̃>NXM ,
(17)

where

(X̃N )`n = P (n|`) =
P (`|n)∑

n′∈VN

P (`|n′)
=

(XN )`n∑
n′∈VN

(XN )`n′

.

As in the case of matching to a reference shape, there is
the need to regularize the obtained correspondence XM,N
with the techniques introduced in Section 3.1. However,
in this case, the correspondence matrix is not necessarily
sparse and, hence, the set of candidates given in (15) is in
general not small. In addition, we would like to avoid calcu-
lating (17) explicitly as this is a product of two big matrices.
Again, we overcome these issues by shifting to a functional
map representation:

XM,N ≈ ΦN (Φ>N X̃>N )(XMΦM )︸ ︷︷ ︸
C

Φ>M . (18)

Note that the brackets are crucial to simplify and signif-
icantly speed up computation. Also, columns of XM,N
can be calculated on-the-fly without the need of storing the
whole correspondence matrix. It is indeed enough to store
ΦNC and ΦM . This is useful to determine the candidate
points for the game-theoretic matching step, which can be

1http://people.csail.mit.edu/drdaniel/mesh animation/

http://people.csail.mit.edu/drdaniel/mesh_animation/
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Figure 4. Comparison between our method and an approach based on WKS affinity using shapes from the dataset of Vlasic et al. Columns
one to four show the predicted and regularized solutions for both approaches. The last three columns show how the indicator function at
one point gets functionally mapped to a second shape, by using the (non-regularized) C obtained from the forest, and by CWKS.

obtained iteratively by following a sampling strategy on the
support of each column of XM,N . Even the most simple
strategy, such as choosing the 20 most likely points on N
for each of the farthest samples onM leads to very accurate
results (see Figure 3).

4. Experimental results
In all our experiments we used the WKS as pointwise de-

scriptor for the training process. As in [14], we limited the
size of the bases on the shapes to the first 100 eigenfunc-
tions of the Laplace-Beltrami operator, computed using the
cotangent scheme [13].

4.1. Comparison with dense methods
In this set of experiments we compare with the state

of the art techniques in (dense) non-rigid shape matching,
namely the functional maps pipeline [14], blended intrin-
sic maps (BIM) [8], and the coarse-to-fine combinatorial
approach of [19]. We perform these comparisons on the
TOSCA high-resolution dataset [4]. The dataset consists of
80 shapes belonging to different classes, with resolutions
ranging in 4K-52K points. Shapes within the same class
have the same connectivity and undergo nearly-isometric
deformations. Ground-truth point mapping among shapes
from the same class is available. In particular, given a
predicted map f :M→N and the corresponding ground-
truth g :M→N , we define the error of f as

ε(f, g) =
∑

m∈VM

dN (f(m), g(m)) , (19)

where dN is the geodesic metric on N , normalized by√
Area(N ) to allow inter-class comparisons. Similarly, we

define the average (pointwise) geodesic error as ε(f,g)
|VM| .

Although the methods considered in these experiments
do not rely on any prior learning, the comparison is still
meaningful as it gives an indication of the level of accu-
racy that our approach can attain in this class of problems.
The experiments were designed on the same benchmark and
following a procedure similar to the one reported in [8, 14].

Specifically, for each model M of a class (e.g., the class
of dogs), we randomly picked other 6 models from the
same class (not includingM), and trained a random forest
with them (thus, we only considered classes with at least 6
shapes). Then we predicted a dense correspondence forM
according to the technique described in Section 2.

We show the results of this experiment in Fig. 5 (right).
Each curve depicts the percentage of matches that attain an
error below the threshold given on the x-axis. Our method
(red line) detects 90% correct correspondences within a
geodesic error of 0.05. Almost all correct matches are de-
tected within an error of 0.1. This is compatible with and
even improves the results given by the other methods on
the same data. Note that our training process only makes
use of pointwise information (namely, the WKS); in con-
trast, the functional maps pipeline (blue line) adopts sev-
eral heuristics (WKS preservation constraints in addition to
orthogonality of C, region-wise features, etc.) in order to
constrain the solution optimally [14]. Upon visual inspec-
tion, we observed that most of the errors in our method were
due to the poor choice of points made in the regularization
step. This is analogous to what is reported for the BIM
method [8]. Typically, we observed that around 20 well-
distributed points are sufficient to obtain accurate results.

4.2. Sensitivity to training parameters
We performed a sensitivity analysis of our method with

respect to the parameters used in the training process,
namely the size of the training set and the number of trees
in the forest. In these experiments we employed the cat
models from the TOSCA dataset (28K vertices) with the
corresponding ground-truth.

In Fig. 5 (middle) we plot the average geodesic error ob-
tained by a test shape (depicted along the curve) as we var-
ied the number of shapes in the training set. The geodesic
error of the correspondence stabilizes when at least 6 shapes
are used for training. This means that only 6 samples
per label are sufficient in order to determine an optimal
parametrization of the nearly-isometric deformations occur-
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Figure 5. Left: Fraction of exact matches predicted by a random forest vs. maximum support size of the probability distributions on a test
shape. The forest was trained with 9 shapes. Middle: Sensitivity to number of shapes used in the training set. Note how the correspondence
predicted using little training data (top-left model) is only partially regularized. Right: Comparison with the state-of-the-art methods on
nearly-isometric shapes (TOSCA). Symmetric correspondences are considered correct solutions for all methods.

ring on the shape. This result contrasts the common setting
in which random forests are trained with copious amounts
of data [22, 6], making the approach rather practical when
only limited training data is available.

Figure 5 (left) shows the change in accuracy as we in-
crease the number of trees in the forest. Note that increas-
ing the number of trees directly induces a larger support of
the probability distributions over L. In other words, each
point of the test shape receives more candidate matches if
the forest is trained with more trees (see Eq. (1)). The hit
ratio in the bar plot is defined as the fraction of exact pre-
dictions given by the forest over the entire test shape. We
compare the results with the hit ratio obtained by looking
for k-nearest neighbors in WKS descriptor space, with k
equal to the maximum support size employed by the forest
at each level. From this plot we see that the forest predic-
tions are twice as accurate as WKS predictions for equal
support sizes. In particular, random forest predicts the ex-
act match for almost half (around 14K points) of the shape
when trained with 15 trees.

Finally, in Fig. 4 we show a qualitative comparison be-
tween our method and an approach based on WKS. The
rationale of this experiment is to show that the prediction
given by the forest gives better results than what can be
obtained without prior learning within the same pipeline
(i.e., prediction followed by regularization). Specifically,
for each point in one shape we construct a probability dis-
tribution on the other shape based on a measure of descrip-
tor affinity in WKS space. We then estimated a functional
map CWKS from the resulting set of constraints, and plotted
a final correspondence before and after regularization.

4.3. Learning non-isometric deformations
In this section we consider a scenario in which the

shapes to be matched may undergo more general (i.e., far
from isometric) deformations. Examples of such deforma-
tions include local and global changes in scale, topological
changes, resampling, partiality, and so forth. Until now, few
methods have attempted to tackle this class of problems.
Most dense approaches [8, 14, 19, 15] are well-defined in
the quasi-isometric and conformal cases only; instances of

inter-class matching were considered in [8], but the success
of the method depends on the specific choice of (usually
hand-picked) feature points used in the subsequent opti-
mization. Sparse methods considering the general setting
from a metric perspective [16, 3, 17] attempt to formalize
the problem by using the language of quadratic optimiza-
tion, leading to difficult and highly non-convex formula-
tions. An exception to the general trend was given in [24],
where the matching is formulated as a linear program in
the product space of manifolds. The method allows to ob-
tain dense correspondences for more general deformations,
but it assumes consistent topologies and is computationally
expensive (∼2 hours to match around 10K vertices). An-
other recent approach [9] attempts to model deviation from
isometry in the framework of functional maps, by seeking
compatible harmonic bases among two shapes. However, it
relies on a (sparse) set of matches being given as input and
it shares with [24] the high computational cost.

As described in Section 2, the forest does not contain any
explicit knowledge of the type of deformations it is asked
to parametrize. This means that, in principle, one could
feed the learning process with training data coming from
any collection of shapes, with virtually no restrictions on
the transformations that the shapes are allowed to undergo.
Clearly, an appropriate choice of the pointwise descriptor
should be made in order for the forest to provide a concise
and discriminative model. To test this scenario, we con-
structed a synthetic dataset consisting of 8 high-resolution
(80K vertices) models of a kid under different poses (quasi-
isometries), and 11 additional models of increasingly cor-
pulent variants of the same kid (local scale deformations)
with a fixed pose (see Fig. 1). The shapes have equal num-
ber of points and point-to-point ground-truth is available.

We test the trained random forest with a plump kid hav-
ing a previously unseen pose. Note that the result is rea-
sonably accurate if we keep in mind the noisy setting: the
forest was trained with WKS descriptors, which are orig-
inally designed for quasi-isometric deformations, and thus
not expected to work well in the more general setting [10].
Despite being just a qualitative evaluation, this experiment



demonstrates the generality of our approach. The match-
ing process we described can still be employed in general
non-rigid scenarios if provided with limited, yet sufficiently
discriminative training data.

4.4. Performance
The proposed approach was implemented in C++ and

tested on an Intel Core i7 with 8GB memory. In order to
assess performance of the method, we built a training set
from 20 nearly-isometric shapes of 80K points each. The
learning process on this dataset took ∼35 min to train one
tree. We trained 15 trees and subsequently employed the
resulting forest to produce dense matches for a collection
of 10 shapes of 80K points each. The average matching
time was 4.30 sec per shape without regularization. Reg-
ularization took 22 sec on average including farthest point
sampling of 50 points (5%, Eq. (15)), computation of exact
geodesics [23] (85%, Eq. (13)), minimization of the met-
ric distortion (5%, Eq. (10)), and solving the resulting least
squares problem (5%, Eq. (16)).

5. Conclusions
In this paper we proposed the adoption of the random

forest training paradigm for dense correspondence prob-
lems among deformable shapes. To our knowledge, this is
the first attempt at introducing a statistical learning view
on this family of problems. We demonstrate the effective-
ness of our approach on a standard benchmark, where we
obtain state-of-the-art results and very low prediction times
for shapes with tens of thousands of vertices. The approach
is flexible in that it provides a means to model deforma-
tions which are far from isometric, and it consistently ob-
tains high predictive performance on all tested scenarios.
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