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Abstract Most Structure from Motion pipelines are

based on the iterative refinement of an initial batch of

feature correspondences. Typically this is performed by

selecting a set of match candidates based on their pho-

tometric similarity; an initial estimate of camera intrin-

sic and extrinsic parameters is then computed by min-

imizing the reprojection error. Finally, outliers in the

initial correspondences are filtered by enforcing some

global geometric property such as the epipolar con-

straint. In the literature many different approaches have

been proposed to deal with each of these three steps,

but almost invariably they separate the first inlier se-

lection step, which is based only on local image prop-

erties, from the enforcement of global geometric con-

sistency. Unfortunately, these two steps are not inde-

pendent since outliers can lead to inaccurate parame-

ter estimation or even prevent convergence, leading to

the well known sensitivity of all filtering approaches

to the number of outliers, especially in the presence of

structured noise, which can arise, for example, when the

images present several repeated patterns. In this paper

we introduce a novel stereo correspondence selection

scheme that casts the problem into a Game-Theoretic

framework in order to guide the inlier selection towards

A. Albarelli
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Università Ca’ Foscari Venezia, Dipartimento di Scienze Ambi-

entali, Informatica, Statistica, Italy
E-mail: torsello@unive.it

a consistent subset of correspondences. This is done by

enforcing geometric constraints that do not depend on

full knowledge of the motion parameters but rather on

some semi-local property that can be estimated from

the local appearance of the image features. The practi-

cal effectiveness of the proposed approach is confirmed

by an extensive set of experiments and comparisons

with state-of-the-art techniques.

Keywords Inlier selection · Game-Theory · Structure

from Motion

1 Introduction

The common goal of all Structure from Motion (SfM)
techniques is to infer as many 3D clues as possible by

analyzing a set of 2D images. In general the 3D knowl-

edge that can be obtained by such methods can be clas-

sified into two different (but related) classes: scene and

camera information. Scene information is referred to

the actual shape of the objects depicted in the images.

This often boils down to assigning a plausible location

in space to some significant subset of the acquired 2D

points. These newly reconstructed 3D points are the

“structure” part of SfM. By contrast, camera informa-

tion includes all the parameters that characterize the

abstract model of the image acquisition process. These

can in turn be classified into intrinsic and extrinsic pa-

rameters. Intrinsic parameters are related to the physi-

cal characteristics of the camera itself, such as its focal

length and principal point, while the extrinsic param-

eters define the camera pose, that is its position and

rotation with respect to a conventional origin in the

3D space. Unlike the structure part, which is physically

bound to a particular 3D configuration, the intrinsic
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Fig. 1 A simplified schema that captures the general steps found in many SfM approaches. The main loop is usually based on an

iterative refinement of the candidate scene points based of their geometric consistency with respect to the estimated motion. Circles
between steps represent the applied outlier filtering strategies.

and extrinsic parameters can vary in each shot; for this

reason they are usually referred to as “motion”.

Given the wide range of practical applications that

could take advantage of a 3D reconstruction, it is not

surprising that SfM has been a very active research

topic during the last decades. In fact, many different

approaches have been proposed in literature: some are

aimed at solving the most general scenarios, others spe-

cialize to sub-domains, both in terms of the number of

free parameters allowed and in terms of the assump-

tions made on some characteristics of the scene to be

inferred. While the most relevant SfM approaches will

be discussed with more detail in Section 2.3, in this

section we will resort to the simplified general work-

flow presented in Figure 1 in order to introduce the

key ideas and contributions of the proposed approach.

To this end, the typical pipeline can be roughly split

in two subsequent macro steps (respectively dubbed as

Image based and Structure and Motion based in Fig-

ure 1). The first step deals with the localization in the

source 2D images of salient feature points that are both

distinctive and repeatable. Such points are meant to be

tracked between different images, thus creating mul-

tiple sets of correspondences that will be used in the

scene reconstruction step. The use of a reduced set of

relevant points is crucial as their repeatable character-

ization allows us to minimize the chance of including

wrong correspondences. Typically, filters are applied to

the selection and matching phase in an attempt to make

this phase more robust. In Figure 1 the extracted fea-

tures are further culled by using filter f1, which elim-

inates points that exhibit very common descriptors or

that are not distinctive or stable enough. A second re-

finement can be achieved after the matching: most im-

plementations of filter f2 remove correspondences that

are not reliable enough, that is pairs where the sec-

ond best match has a very similar score to the first

one or that involve too different descriptors. Once a

suitable set of point pairs has been found among all

the images, the second macro step of the pipeline uses

them to perform the actual structure and motion esti-

mation. This happens by building a reasonable guess for

both the camera parameters and the spatial locations

of the correspondences found, and then, almost invari-

ably, by applying a bundle adjustment optimization to

refine them. Also, at this stage, filtering techniques can

be adopted in order to remove outliers from the ini-

tial set of matches. Specifically, a filter that removes

pairs that do not agree with the estimated epipolar con-

straints can be applied after combining some or all the

images into the initial guesses (f3 ), or after bundle ad-

justment optimized the structure and motion estimates

(f4 ). Depending on the result of the filtering a new ini-

tial estimation can be triggered, taking advantage of

the (hopefully) more accurate selection of correspond-

ing features. This kind of process leads to an iterative

refinement that usually stops when the inlier set does

not change or becomes stable enough. While this ap-

proach works well in many scenarios, it inherently con-

tains a limitation that might drive it to poor results or

even prevent it from converging at all: The main cri-

terion for the elimination of erroneous matches is to

exclude points that exhibit a large reprojection error

or adhere poorly to the epipolar constraint after a first

round of scene and pose estimation. Unfortunately this

afterthought is based upon an error evaluation that de-

pends on the initial matches; this leads to a quandary

that can only be solved by avoiding wrong matches from

the start. This is indeed a difficult goal, mainly because

the macro step from which the initial matches are gen-

erated is only able to exploit strictly local information,

such as the appearance of a point or of its immediate

surroundings. By contrast the following step would be

able to take advantage of global knowledge, but this

cannot be trusted enough to perform an extremely se-

lective trimming and thus most methods settle with

rather loose thresholds. In order to alleviate this lim-

itation, in this paper we introduce a robust matching

technique that allows to operate a very accurate inlier

selection at an early stage of the process and without

any need to rely on preliminary structure and motion

estimations. This is obtained by enforcing properties
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that are inferable from image regions at a local or semi-

local scale and then by extending their validation to a

global scale. Similar approaches have already been used

to obtain better camera pose estimations when deal-

ing with complex multi-component scenes, where local

observations can be handled in a decoupled way, thus

leading to a better resilience to outliers (Fermuller et al

1997). In this paper the inlier validation happens by

casting the selection process into a Game-Theoretic set-

ting, where feature-correspondences are allowed to com-

pete with one another, receiving support from corre-

spondences that satisfy the same semi-local constraints,

and competitive pressure from the rest. The surviving

correspondences form a small cohesive set of mutually

compatible correspondences, satisfying the semi-local

constraint globally. Of course many alternative selec-

tion techniques exist and can be adopted to perform

the inlier set optimization, nevertheless the proposed

Game-Theoretic approach offers the unique advantage

of a strong tendency to limit false negatives rather than

concentrating on low false positives as most matching

techniques in the literature. This propery allows for a

strong resilience to the large number of outliers nor-

mally encountered in general SfM scenarios. Further,

the approach is quit3e general; in fact, in Section 3 we

will show how the definition of different payoff func-

tions between strategies leads to optimizers with task-

specific goals. Finally, in order to assess the advantage

provided by our approach, in the experimental section

we compare our technique with a reference implemen-

tation of the structure-from-motion system presented

in (Snavely et al 2006) and (Snavely et al 2008).

2 Background

Before discussing our robust matching approach we will

briefly review the most significant related contributions

available in literature and introduce some basic notions

about the geometry of the SfM process.

2.1 Features Extraction and Matching

The selection of 2D point correspondences is arguably

the most critical step in image based multi-view recon-

struction and, differently from techniques augmented

by structured light or known markers, there is no guar-

antee that pixel patches exhibiting strong photo consis-

tency are actually located on the projection of the same

physical point. Further, even when correspondences are

correctly assigned, the interest point detectors them-

selves introduce displacement errors that can be as large

as several pixels. Such errors can easily lead to sub-

optimal parameter estimation or, in the worst cases,

to the inability of the optimization algorithm to ob-

tain a feasible solution. For this reasons, reconstruc-

tion approaches adopt several specially crafted expedi-

ents to avoid the inclusion of outliers as much as possi-

ble. In the first place correspondences are not searched

throughout the whole image plane, but only points that

are both repeatable and well characterized are consid-

ered. This selection is carried out by means of interest

point detectors and feature descriptors. Salient points

are localized with sub-pixel accuracy by general de-

tectors, such as Harris Operator (Harris and Stephens

1988) and Difference of Gaussians (Marr and Hildreth

1980), or by using techniques that are able to locate

affine invariant regions, such as Maximally Stable Ex-

tremal Regions (MSER) (Matas et al 2004) and Hessian-

Affine (Mikolajczyk and Schmid 2002). The affine in-

variance property is desirable since the change in ap-

pearance of a scene region after a small camera motion

can be locally approximated with an affine transforma-

tion. Once interesting points are found, they must be

matched to form the candidate pairs to be fed to the

subsequent parameter optimization steps. Most of the

currently used techniques for point matching are based

on the computation of some affine invariant feature de-

scriptor. Specifically, to each point is assigned a fea-

ture vector with tens to hundreds of dimensions, plus a

scale and a rotation value. Among the most used fea-

ture descriptor algorithms are the Scale-Invariant Fea-

ture Transform (SIFT) (Lowe 1999, 2003), Speeded Up

Robust Features (SURF) (Herbert Bay and Gool 2006),

Gradient Location and Orientation Histogram (GLOH)

(Mikolajczyk and Schmid 2005) and more recently the

Local Energy based Shape Histogram (LESH) (Sarfraz

and Hellwich 2008), the SIFT algorithm being the first

of the lot and arguably the most widely adopted. The

complete SIFT technique, introduced and patented by

Lowe, describes in detail both the detection step and

the computation of repeatable descriptors to be asso-

ciated with the found keypoints. Specifically, the lo-

calization of potentially relevant features happens by

first applying to the image a Gaussian filter at differ-

ent scales and then by selecting points that are max-

ima or minima of the Difference of Gaussians (DoG)

that occur at multiple scales. This is done by compar-

ing each pixel in the DoG images to its eight neighbors

at the same scale and nine corresponding neighboring

pixels in each of the neighboring scales. Subsequently

the found candidates are interpolated to nearby data

in order to ensure an accurate and repeatable position

and thus they are filtered by discarding points that ex-

hibit a low contrast or that are located along an edge
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Fig. 2 Example of SIFT features extracted and matched using the VLFeat package. Each feature in the first image has been matched

with the feature in the second image that exhibits the most similar descriptor. Note that, while most of the correspondences are

correct, many mismatches are still present.

(which could hinder the precision of the localization).

Finally, an orientation based on the local image gradi-

ent is assigned to each one of the surviving points. The

computation of the descriptor vector is then performed

on the image closest in scale to the keypoint’s scale

and rotates accordingly to the keypoint’s orientation.

To this end, a set of histograms are computed based

on the magnitude and orientation values picked from

the neighborhood of the feature. The magnitudes are

further weighted by a Gaussian function with σ equal

to half the width of the descriptor window. The his-

tograms are then packed in a vector which is typically

long 128 or 256 elements and that is normalized to unit

length in order to enhance invariance to changes in il-

lumination. Given the great success of the SIFT de-

tector/descriptor, several enhancements and specializa-

tions were introduced since the original paper by Lowe;

for instance, PCA-SIFT (Ke and Sukthankar 2004) ap-

plies PCA to the normalized gradient patch to gain

more distinctiveness, PHOW (Bosch et al 2007) makes

the descriptor denser and allows to use color informa-

tion, ASIFT (Morel and Yu 2009) extends the method

to cover the tilt of the camera in addition to scale, skew

and rotation. In all these techniques, the descriptor vec-

tor is robust with respect to affine transformations: i.e.,

similar image regions exhibit descriptor vectors with

small mutual Euclidean distance. This property is used

to match each point with the candidate with the near-

est descriptor vector. However, if the descriptor is not

distinctive enough this approach is prone to select many

outliers. A common optimization involves the definition

of a maximum threshold over the distance ratio between

the first and the second nearest neighbors. In addition,

points that are matched multiple times are deemed as

ambiguous and discarded (i.e., one-to-one matching is

enforced). Despite any effort made in this direction, any

filter that operates at a local level is fated to fail when

the matched regions are very similar or identical, a situ-

ation that is not uncommon as it happens every time an

object is repeated multiple times in the scene or there is

a repeated texture. In Figure 2 we show two examples

of SIFT features extracted and matched by using the

VLFeat (Vedaldi and Fulkerson 2008) Matlab toolkit.

In the first example almost all the correspondences are

correct, still some clear mismatches are visible both be-

tween the plates of the saurus (which are similar in

shape) and on the black background (which indeed con-

tains some amount of noise). In the second example

several identical screws are matched and, as expected,

features coming from different objects are confused and

almost all the correspondences are wrong. It should be

noted that such mismatches are not a fault of the de-

scriptor itself as it performs exactly its duty by assign-

ing similar description vectors to features that are al-

most identical from a photometric standpoint. In fact,

this particular example is specially crafted to break

traditional matchers that rely on local properties. In

the experimental section, we will show how introduc-

ing some level of global awareness in the process allows

to deal well also with these cases that are indeed very

common in the highly repetitive world of human-made

objects and urban environments.

2.2 Camera Model and Epipolar Geometry

The pinhole projection (Figure 3) is the most common

camera model used in reconstruction frameworks. Its

wide adoption is due to its ability to approximate well

the behaviour of many real cameras. In practical scenar-

ios radial and tangential lens distortions are the main

sources of divergence from the pinole model, however

it is easy to fit polynomial models to them and com-

pensate for their effect (Tsai 1987; Weng et al 1992).

The most important parameters of this model are the

pose of the camera with respect to the world (repre-

sented by a rotation matrix R and a translation vector

T ), the distance of the projection center from the image

plane (the focal length f in Figure 3), and the coordi-

nates on the image plane of the intersection between

the optical axis and the plane itself (the principal point

c = (cx, cy)T in Figure 3). The projection of a world
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Fig. 3 Illustration scheme of the pinhole camera model (a) and of the epipolar geometry (b). See text for details.

point m on the image plane happens in two steps. The

first step is a rigid body transformation from the world

coordinate system to the camera system. This can be

easily expressed (using homogeneous coordinates) as:
Xc

Yc
Zc
1

 ∼ [R T

0 1

]
X

Y

Z

1


The second step is the projection of the point in cam-

era coordinates on the image planes, which happens by

applying a camera calibration matrix K containing the

intrinsic parameters of the model. The most general

version of the calibration matrix allows for a different

vertical (fy) and horizontal (fx) focal length to accom-

modate for non-square pixels, and for a skewness factor

(s) to account for non-rectangular pixels:

K =

fx s cx
0 fy cy
0 0 1


In practice, for most real cameras, pixels can be ap-

proximated by perfect squares, thus we can resort to

the basic model of Figure 3 and assume s = 0 and

fx = fy = f . Usually the camera pose and calibration

matrices are combined into a single 3 × 4 projection

matrix P = K[R T]. This projection matrix can be

directly applied to a point in (homogeneous) world co-

ordinates to obtain its corresponding 2D point on the

image plane:

m′ = Pm = K[R T]m .

When a point is observed by two cameras its projections

on the respective image planes are not independent. In

fact, given the projectionm1 of pointm in the first cam-

era, its projection m2 on the second image plane must

lie on the projection l2 of the line that connects m1 to

m (see Figure 3). This line is called the epipolar line

and can be found for each point m1 in the first image

plane by intersecting the plane defined by o1,o2 and m1

(the epipolar plane) with the second image plane. The

epipolar constraint can be enforced exactly only if the

position of m1 and m2 and the camera parameters are

known without error. In practice, however, there will

always be some distance between a projected point and

the epipolar line it should belong to. This discrepancy is

a useful measure for verification tasks such as the detec-

tion of outliers among alleged matching image points,

or the evaluation of the quality of estimated camera

parameters. The epipolar constraint can be expressed

algebraically in a straightforward manner. If we know

the rotation matrix and translation vector that move

one camera reference system to the other we have that:

xT
1 Ex2 = xT

1

 0 −tz ty
tz 0 −tx
−ty tx 0

Rx2 = 0 ,

where the essential matrix E is the product between the

cross product matrix of the translation vector T and the

rotation matrix R, and x1 and x2 are points expressed

in the reference systems of the first and second camera

respectively, belonging to the same epipolar plane. If

the calibration matrices of both cameras are known,

this constraint can also be expressed in terms of image

points by applying the inverse of the two calibration

matrices to the image points:

(K1
−1m1)TE(K2

−1m2
T ) =

m1
T (K1

−1TEK2
−1)m2 = 0 ,

Where F = K1
−1TEK2

−1 is called the fundamental

matrix. It is clear that if intrinsic camera parameters

are known the epipolar constraint can be verified on

image points by using just the essential matrix, which

has only five degrees of freedom; otherwise it is nec-

essary to resort to the use of the fundamental matrix,
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which has seven degrees of freedom. Many algorithms

are known to estimate both E or F from image point

correspondences (Hartley 1995; Zhang et al 1995; Torr

and Zisserman 1998).

2.3 Structure from Motion

Structure from Motion (SfM) has been a core Computer

Vision topic for a long time and a large number of dif-

ferent problem formulations and algorithms have been

introduced over the last few decades (Aggarwal et al

2010; Weng et al 1993; Zhang 1995). The distinctive

traits of many SfM techniques recently proposed in lit-

erature are usually to be found in the approach used

for the initial estimate and in the refinement technique

adopted. In general this refinement happens by itera-

tively applying a bundle adjustment algorithm (Triggs

et al 2000) to an initial set of correspondences, 3D

points and motion hypotheses. This optimization is al-

most invariably carried out by means of the Levenberg-

Marquardt algorithm (Levenberg 1944), which is very

sensitive to the presence of outliers in the input data.

For this reason any possible care should be taken in

order to supply the optimizer with good hypotheses or

at least a minimal number of outliers. When a reason-

able subset of all the points is visible in all the im-

ages global methods can be used to obtain such initial

hypothesis. This approach, commonly called factoriza-

tion, was initially proposed only for simplified camera

models that are not able to fully capture the pinhole

projection (Tomasi and Kanade 1992; Weinshall and

Tomasi 1995). More recently, similar approaches have

been presented also for perspective cameras (Sturm and

Triggs 1996; Heyden et al 1999), however their need for

having each point visible in each camera severely re-

duces their usability in practical scenarios where occlu-

sion is usually abundant. For this reason incremental

methods, which allow to add one or a few images at a

time, are by far more popular in SfM applications. Usu-

ally such methods start from a reliable image pair (for

instance the pair with the higher number of good corre-

spondences), then an initial reconstruction is obtained

by triangulation and finally extended sequentially. The

extension can happen by virtue of common 2D points

between a new camera and one or more images already

in the batch. If internal camera parameters are known

(at least roughly) rotation and translation direction can

be extracted from the essential matrix and translation

magnitude can be found using the projection in the

new image of an already reconstructed 3D point. In the

more general case intrinsic parameters are not known

and the new camera can be added by exploiting the

correspondences between its 2D features and previously

triangulated 3D points to estimate the projection ma-

trix (Beardsley et al 1997; Pollefeys et al 1999). Fi-

nally, it is possible to merge partial reconstructions by

using corresponding 3D points (Fitzgibbon and Zisser-

man 1998). Many modern approaches iterate this pro-

cess by including and excluding point correspondences

or entire images by validating them with respect to the

currently estimated structure and camera poses (Brown

and Lowe 2005; Vergauwen and Van Gool 2006; Snavely

et al 2008).

3 Non-Cooperative Games for Inlier Selection

The selection of matching points based on the feature

descriptors is only able to exploit local information.

This limitation conflicts with the richness of informa-

tion that is embedded in the scene structure. For in-

stance, under the assumption of rigidity and small cam-

era motion, intuition suggests that features that are

close in one view cannot be too far apart in the other

one. Further, if a pair of features exhibit a certain dif-

ference of angles or ratio of scales, this relation should

be maintained among their respective matches. Our

basic idea is to formalize this intuitive notion of con-

sistency between pairs of feature matches into a real-

valued compatibility function and to find a large set

of matches that express a high level of mutual com-

patibility. Of course, the ability to define a meaning-

ful pairwise compatibility function and a reliable tech-

nique for finding a consistent set is at the basis of

the effectiveness of the approach. Following (Torsello

et al 2006; Albarelli et al 2009), we model the match-

ing process in a Game-Theoretic framework, where two

players select a pair of matching points from two im-

ages. Each player then receives a payoff proportional to

how compatible his match is with respect to the other

player’s choice. Clearly, it is in each player’s interest

to pick matches that are compatible with those the

other players are likely to choose. In general, as the

game is repeated, players will adapt their behavior to

prefer matchings that yield larger payoffs, driving all

inconsistent hypotheses to extinction, and settling for

an equilibrium where the pool of matches from which

the players are still actively selecting their associations

forms a cohesive set with high mutual support. Within

this formulation, the solutions of the matching prob-

lem correspond to evolutionary stable states (ESS’s), a

robust population-based generalization of the notion of

a Nash equilibrium. In a sense, this matching process

can be seen as a contextual voting system, where each

time the game is repeated the previous selections of the

other players affect the future vote of each player in

an attempt to reach consensus. This way the evolving
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context brings global information into the selection pro-

cess. Since the evolutionary process is driven entirely by

the payoff between strategies, it is clear that by adopt-

ing an appropriate compatibility function it is possible

to suit the framework to achieve different goals. In this

paper we will introduce two payoff functions to address

our multi-view point matching problem. In Section 3.2

we will define a compatibility among pairs of correspon-

dences that is proportional to the similarity of the affine

transformation inferred from each match; this is done

to exploit the expected local spatial and scale coherence

among image patches. In Section 3.3 we will propose a

refinement step that filters out groups of matches by

letting them play an evolutionary game where the pay-

off is bound to their mutual ability to comply with the

epipolar constraint.

3.1 Game-Theoretic Selection

Originated in the early 40’s, Game Theory was an at-

tempt to formalize a system characterized by the ac-

tions of entities with competing objectives, which is

thus hard to characterize with a single objective func-

tion (Weibull 1995). According to this view, the empha-

sis shifts from the search of a local optimum to the def-

inition of equilibria between opposing forces, providing

an abstract theoretically-founded framework to model

complex interactions. In this setting multiple players

have at their disposal a set of strategies and their goal

is to maximize a payoff that depends also on the strate-

gies adopted by other players.

Here we will concentrate on symmetric two player

games, i.e., games between two players that have the

same set of available strategies and that receive the

same payoff when playing against the same strategy.

More formally, let O = {1, · · · , n} be the set of avail-

able strategies (pure strategies in the language of Game-

Theory), and C = (cij) be a matrix specifying the pay-

offs, then an individual playing strategy i against some-

one playing strategy j will receive payoff cij . A mixed

strategy is a randomization of the available strategies,

i.e., a probability distribution x = (x1, . . . , xn)T over

the set O. Clearly, mixed strategies are constrained to

lie in the n-dimensional standard simplex

∆n =

{
x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

n∑
i=1

xi = 1

}
.

The support of a mixed strategy x ∈ ∆, denoted by

σ(x), is defined as the set of elements chosen with non-

zero probability: σ(x) = {i ∈ O | xi > 0}. The expected

payoff received by a player choosing element i when

playing against a player adopting a mixed strategy x is

(Cx)i =
∑
j cijxj , hence the expected payoff received

by adopting the mixed strategy y against x is yTCx.

The best replies against mixed strategy x is the set of

mixed strategies

β(x) = {y ∈ ∆ | yTCx = max
z

(zTCx)} .

The best reply is not necessarily unique. Indeed, except

in the extreme case in which there is a unique best re-

ply that is a pure strategy, the number of best replies

is always infinite. A central notion of Game-Theory is

that of a Nash equilibrium. A strategy x is said to be

a Nash equilibrium if it is the best reply to itself, i.e.,

∀y ∈ ∆, xTCx ≥ yTCx . This implies that ∀i ∈ σ(x)

we have (Cx)i = xTCx; that is, the payoff of every

strategy in the support of x is constant. The idea un-

derpinning the concept of Nash equilibrium is that a

rational player will consider a strategy viable only if no

player has an incentive to deviate from it.

We undertake an evolutionary approach to the com-

putation of Nash equilibria. Evolutionary Game-Theory

originated in the early 70’s as an attempt to apply

the principles and tools of Game-Theory to biological

contexts. It considers an idealized scenario where pairs

of individuals are repeatedly drawn at random from a

large population to perform a two-player game. In con-

trast to traditional Game-Theoretic models, players are

not supposed to behave rationally, but rather act ac-

cording to a pre-programmed behavior, or mixed strat-

egy. Further, it is supposed that some selection process

operates over time on the distribution of behaviors fa-

voring players that receive higher payoffs.

In this dynamic setting, the concept of stability, or

resistance to invasion by new strategies, becomes cen-

tral. A strategy x is said to be an evolutionary stable

strategy (ESS) if it is a Nash equilibrium and

∀y ∈ ∆ xTCx = yTCx⇒ xTCy > yTCy . (1)

This condition guarantees that any deviation from the

stable strategies does not pay.

The search for a stable state is performed by simu-

lating the evolution of a natural selection process. Un-

der very loose conditions, any dynamics that respect

the payoffs is guaranteed to converge to Nash equilib-

ria (Weibull 1995) and (hopefully) to ESS’s; for this

reason, the choice of an actual selection process is not

crucial and can be driven mostly by considerations of

efficiency and simplicity. We chose to use the replica-

tor dynamics (Taylor and Jonker 1978), a well-known

formalization of the selection process governed by the

following equation

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)TCx(t)
(2)
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where xi is the i-th element of the population and C

the payoff matrix.

A point x is said to be a stationary (or equilib-

rium) point of our dynamical system, if ẋi = 0, for all

i = 1, . . . , n. A stationary point x is said to be asymptot-

ically stable if any trajectory starting sufficiently close

to x converges to x.

It can be shown (Weibull 1995) that a point x ∈ ∆
is the limit of a trajectory of the replicator dynamics

starting from the interior of ∆ if and only if it is a Nash

equilibrium. Further, if point x ∈ ∆ is an ESS, then it

is asymptotically stable for the replicator dynamics.

In our approach, we let matches compete with one

another, each obtaining support from compatible asso-

ciations and competitive pressure from all the others.

The selection process is simulated by running the re-

currence (2) and, at equilibrium, only pairings that are

mutually compatible should survive and are then taken

to be inliers.

3.2 Affine Preserving Matching Game

Central to this framework is the definition of a match-

ing game, or, specifically, the definition of the strate-

gies available to the players and of the payoffs related

to these strategies. Given a set M (model) of feature

points in a source image and a set D (data) of features

in a target image, we call a matching strategy any pair

(a1, a2) with a1 ∈M and a2 ∈ D. We call the set of all

the matching strategies S ⊆ M × D. The total num-

ber of matching strategies in S can, in theory, be as

large as the Cartesian product of the sets of features

detected in the images. Since most interest point de-

tectors extract thousands of features from an image,

a suitable selection should be made in order to keep

its size limited. To this end we can exploit unary in-

formation such as the distance between descriptors or

the photo-consinstency of local image patches to select

only feasible pairs. Specifically, for each source feature

we can generate k matching strategies that connect it to

the k nearest destination features in terms of descriptor

distance. Since our Game-Theoretic approach operates

inlier selection regardless of the descriptor, we do not

need to set any threshold with respect to the absolute

descriptor distance or the distinctiveness between the

first and the second nearest point. In this sense, the

only constraint that we need to impose over k is that it

should be large enough that we can expect the correct

correspondence to be among the candidates for a signif-

icant proportion of the source features. In our prelimi-

nary work (Albarelli et al 2010) we already analyzed the

influence of k over the quality of the matches obtained

and we found that a very small amount of candidates

a1

a2

b1

b2

a2'T(b1b2)

T(a1a2)

b2'

da

db

T(b1b2)

T(a1a2)

Fig. 4 The payoff between two matching strategies is inversely
proportional to the maximum reprojection error obtained by ap-

plying the affine transformation estimated by a match to the

other.

(typically 3 or 4) are enough to guarantee a satisfactory

performance, however, in the presence of highly repeat-

ing patterns, a larger value might be needed. By reduc-

ing the number of correspondences per source feature

to a constant value, we limit the growth of the number

of strategies to be linear with the number of (source)

features to be matched.

Once S has been selected, our goal becomes to ex-

tract from it a large subset of correspondences that in-

cludes only correctly matched features: that is, strate-

gies that associate a physical point in the source image

with the same physical point (if visible) in the desti-

nation image. To this end, it is necessary to define a

payoff function Π : S × S → R+ that exploits some

pairwise information available at this early stage (i.e.

before estimating camera and scene parameters) and

that can be used to impose consistency globally. Since

location, scale, and rotation are associated to each fea-

ture, we can associate to each correspondence (a, b) be-

tween feature a in the source image and feature b in the

target image a similarity transform T (a, b) that maps

the neighborhood of a into the neighborhood of b, trans-

forming the location, orientation, and scale measured

in the source image into the location, orientation, and

scale observed in the target image. Under small motion

assumptions, we can expect these similarity transforma-

tions to be very similar locally. Thus, imposing the con-

servation of the similarity transform, we aim to extract

clusters of feature matches that belong to the same re-

gion of the object and that tend to lie at the same

level of depth. While this could seem to be an unsound

assumption for general camera motion, in the experi-

mental section we will show that it holds well with the

typical disparity found in standard multiple view and

stereo data sets. Further, it should be noted that with
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Fig. 5 An example of the affine-based evolutionary process. Four feature points are extracted from two images and a total of six
matching strategies are selected as initial hypotheses. The matrix Π shows the compatibilities between pairs of matching strategies

according to a one-to-one similarity-enforcing payoff function. Each matching strategy got zero payoff with itself and with strategies

that share the same source or destination point (i.e., Π((b1, b2), (c1, b2)) = 0). Strategies that are coherent with respect to a similarity
transformation exhibit high payoff values (i.e., Π((a1, a2), (b1, b2)) = 1 and π((a1, a2), (d1, d2)) = 0.9)), while less compatible pairs

get lower scores (i.e., π((a1, a2), (c1, c2)) = 0.1). Initially (at T=0) the population is set to the barycenter of the simplex and slightly

perturbed. After just one iteration, (c1, b2) and (c1, c2) have lost a significant amount of support, while (d1, c2) and (d1, d2) are still
played by a sizable amount of population. After ten iterations (T=10) (d1, d2) has finally prevailed over (d1, c2) (note that the two

are mutually exclusive). Note that in the final population ((a1, a2), (b1, b2)) have a larger support than (d1, d2) since they are a little

more coherent with respect to similarity.

large camera motion, most, if not all, commonly used

feature detectors fail, thus any inlier selection attempt

becomes meaningless.

In order to define the payoff function Π we need a

way to measure the distance between similarity trans-

forms. In order to avoid the problem of mixing incom-

mensurable quantities, we compute the distance in terms

of the reprojection error expressed in pixels. Specifi-

cally, given two matching strategies (a1, a2) and (b1, b2)

and their respective associated similarities T (a1, a2) and

T (b1, b2), we calculate virtual points a′2 and b′2 by ap-

plying the other strategy transformation to the source

features a1 and b1 (see Figure 4). More formally,

a′2 = T (b1, b2)a1
b′2 = T (a1, a2)b1 ,

Given virtual points a′2 and b′2, we can measure the

similarity between (a1, a2) and (b1, b2) as:

sim((a1, a2), (b1, b2)) = e−λmax(|a2−a
′
2|,|b2−b

′
2|) (3)

where λ is a selectivity parameter: If λ is small, then the

similarity function (and thus the matching) is more tol-

erant with respect to deviation in the similarity trans-

formations, becoming more selective as λ grows. Since

each source feature can correspond with at most one

destination point, it is desirable to avoid any kind of

multiple match. It is easy to show that a pair of strate-

gies with zero mutual payoff cannot belong to the sup-

port of an ESS (see (Albarelli et al 2009)), thus any

payoff function Π can be easily adapted to enforce one-

to-one matching by defining:

Π((a1, a2), (b1, b2)) =


sim((a1, a2), (b1, b2)) a1 6= b1,

a2 6= b2

0 else

(4)

We define payoff (4) a similarity enforcing payoff func-

tion and we call an affine matching game any symmet-

ric two player game that involves a matching strategies

set S and a similarity enforcing payoff function Π.

The main idea of the proposed approach is that

by playing a matching game driven by a similarity en-

forcing payoff function such as (4), the strategies (i.e.

correspondence candidates) that share a similar locally

affine transformation are advantaged from an evolution-

ary point of view and shall emerge in the surviving

population. In Figure 5 we illustrate a simplified ex-
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Fig. 6 An example of the selection of groups of features that agree with respect to a common epipolar geometry. Six matching groups

are selected by the affine matching step (labelled from a to f in the figure). Each pair of feature sets is modeled as a matching strategy

and the payoff among them is reported in matrix Π. Note that groups b,c and d are correctly matched and thus exhibit a high mutual
payoff. By contrast, group a (which is consistent both in terms of photometric and affine properties), e and f are clearly mismatched

with respect to the overall scene geometry, which in turn leads to a large error on the epipolar check and thus to a low score in the

payoff matrix. At the beginning of the evolutionary process each strategy obtains a fair amount of players (T=0). As expected, after
just one iteration of the replicator dynamics the most consistent strategies (b, c and d) obtain a clear advantage. Finally, after ten

iterations (T=10) the other groups have no more support in the population and only the correct matches survived.

ample of this process. Once the population has reached

a local maximum, all the non-extinct mating strategies

can be considered valid, however, technically strategies

become truly extinct only after an infinite number of

iterations. Since we halt the evolution when the popu-

lation ceases to change significantly, it is necessary to

introduce some criteria to distinguish correct from non-

correct matches. To avoid a hard threshold we chose to

keep as valid all the played strategies whose population

size exceeds a percentage of the most popular strategy.

We call this percentage quality threshold (q). This crite-

rion further limits the number of selected strategies, but

increases their consistency, since the population pro-

portion is linked to the coherence of the strategy with

the other surviving strategies. Each evolution process

selects only a single group of matching strategies that

are mutually coherent with respect to a local similarity

transformation. This means that if we want to cover a

large portion of the image we need to iterate the process

many times, pruning the previously selected matches at

each new iteration. Note that by imposing a minimal

size for a group to be deemed as valid, the odds of rec-

ognizing structured outliers as false positives get lower.

In fact, the probability of a large group to be coherent

with respect to local affinity by chance is reduced as

the minimal group size increases. Of course the usual

trade-off between the desired precision and recall pa-

rameters must be taken into account when setting this

kind of threshold.

3.3 Refinement by Epipolar Constraint Enforcement

The game formulation we just introduced shifts the

matching problem to a more global scope by produc-

ing a set of correspondences between groups of features.

While the affine camera model extracts very coherent

groups, making such macro features more robust and

descriptive than single points, in principle there is noth-

ing that prevents the system to still produce wrong or

weak matches. To reduce this chance we propose a dif-

ferent game setup that allows for a further refinement.

In this game the strategies set S corresponds to the

set of paired feature groups extracted from the affine

matching game and the payoff between them is related

to the features’ agreement to a common epipolar ge-

ometry. More specifically, given two pairs of matching

groups a ⊆M ×D and b ⊆M ×D, each one made up

of model and data features, we estimate the epipolar

geometry from a∪ b and define the payoff among them

as:

Π(a, b) = e−λ
∑

(s,t)∈a∪b d(t,l(s)) (5)
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Fig. 7 Analysis of the performance of the Affine Game-Theoretic approach with respect to variation of the parameters of the algorithm.

Where l(p) is a function that gives the epipolar line in

the data image from the feature point p in the model im-

age, according to the estimated epipolar geometry, and

d(p, l) calculates the distance between point p and the

epipolar line l. It is clear that this distance is small (and

thus the payoff is big) if the two groups share a com-

mon projective interpretation and large otherwise. Of

course, different pairs of groups can agree on different

epipolar geometry, but the transitive closure induced by

the selection process ensures that the strategies in the

surviving population will agree on the same (or very

similar) projective transformation (see Figure 6 for a

complete example of this process). Regarding the esti-

mation of the epipolar geometry, it can be done in two

different ways: if we have at least the intrinsic calibra-

tion of the camera we can estimate the essential matrix,

by contrast, if we do not have any hint about the cam-

era geometry, we must resort to a more relaxed set of

constraints and use the fundamental matrix instead. In

the experimental section we will test both scenarios.

4 Experimental Results

We performed an extensive set of tests in order to vali-

date the proposed techniques and to explore their lim-

its. Both quantitative and qualitative results are shown

and performances are compared with those achieved

by a standard baseline method, i.e. the default feature

matcher in the Bundler suite (Snavely et al 2008).

4.1 General Setup and Data Sets

All the following experiments have been made by apply-

ing a common basic pattern: first a set of features is ex-

tracted from the images by using the SIFT keypoint de-

tector made freely available in (Lowe 2003), then these

interest points are paired using the matcher we want to

test, finally scene and camera parameters are estimated

by using the final portion of Bundler pipeline (i.e. the

part of the suite that applies Levenberg-Marquardt op-

timization to a set of proposed matches). We evalu-

ate three different approaches: The first, referred to

as Affine Game-Theoretic approach (AGT), uses the

affine matching game without the further refinement

provided by the enforcement of the epipolar geometry.

In this case the iterative extraction and elimination of

the groups is image-based, i.e., after a group of matches

is selected, all the matches that have sources or targets

close to the source and target points of the extracted

correspondences are eliminated, and then the evolution-

ary process is reiterated on the reduced set of strate-

gies. The process is stopped when an extracted group

is smaller than a given threshold or has average pay-

off smaller than a given threshold. This approach is the

same described in (Albarelli et al 2010). The second and

third approaches, referred to as Calibrated Projective

Game-Theoretic approach (CPGT) and Uncalibrated

Projective Game-Theoretic approach (UPGT) respec-

tively, make use of the epipolar refinement. CPGT as-

sumes that the camera intrinsic parameters are (ap-
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Fig. 8 Analysis of the performance of the Calibrated and Uncalibrated Projective Game-Theoretic approaches with respect to variation
of the parameters of the algorithm.

proximately) known and estimate the epipolar geom-

etry through the essential matrix, while UPGT uses

the fundamental matrix. In both these approaches the

iterative extraction and elimination of the groups is

strategy-based, i.e., after a group of matches is selected

only those matches are eliminated from the strategy set,

thus allowing for the same features to appear in several

groups, while the stopping criterion here is the same as

that of AGT. In our experiments the intrinsic param-

eters for CPGT have been estimated from the images

EXIF information. The three approaches are compared

against the default feature matcher in the Bundler suite

(BKM). This is a reasonable choice for several reasons:

BKM is optimized to work with SIFT descriptors and,
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obviously, with the Bundler suite; in addition it is very

popular in literature since Bundler itself has been used

as the default matcher in many of the recent papers

about SfM and dense stereo reconstruction. For each

test we evaluated two quality measures: the average re-

projection error (expressed in pixels) and the differences

in radians between the ground-truth and the estimated

rotation angle (∆α). The first measure aims to capture

the cumulative error made in the reconstruction of the

structure and the estimation of the motion, while the

second measure aims to decouple the error on the cam-

era orientation from the one related to the scene recon-

struction. This is possible since we used images pairs

coming from a calibrated camera head or image sets

with an available ground-truth. Specifically we used a

pair of cameras previously calibrated through a stan-

dard procedure and took stereo pictures of 20 different,

isolated objects; in addition we also included in the

data set the shots coming from the ”DinoRing” and

”TempleRing” sequences from the Middlebury Multi-

View Stereo dataset (Seitz et al 2006). We conducted

two main sets of experiments. The goal of the first set

is to analyze the impact of the parameters, namely

λ and quality threshold (q), over the accuracy of the

results. Since AGT and CPGT/UPGT have different

payoff functions and the selectivity λ is not directly

comparable we investigate its influence separately. In

addition, all the experiments regarding the refinement

methods are made using very relaxed parameters for

the AGT step. This is due to the fact that we are will-

ing to accept a slightly higher number of outliers in

the first step in exchange for a higher number of candi-

date groups, in the hope that the refinement process is

able to eliminate the spurious groups, but still result-

ing in a larger number of good correspondences from

which to perform parameter estimation. In the second

batch of experiments we compare our techniques with

the default Bundler matcher. In these experiments the

parameters are set to the optimal values estimated pre-

viously. We provide both quantitative and qualitative

results: the quantitative analysis is based on the er-

rors in reprojection and motion estimation, while the

qualitative results are based on a dense reconstruction

obtained using the recovered parameters as an input to

the PMVS suite (Furukawa and Ponce 2010).

4.2 Influence of Parameters

The AGT method depends on two explicit parameters:

the sensitivity parameter λ, which modulates the steep-

ness of the payoff function (4), and q, i.e. the percentage

of population density with respect to the most repre-

sented strategy that one match must obtain to be con-

sidered not-extinct. As stated in Section 3.2, λ controls

the selectivity of the selection process, while q allows to

further filter the extracted group based on its cohesive-

ness. Higher values will lead to a more selective culling,

while lower values will allow more strategies to pass the

screening. Figure 7 reports the results of these experi-

ments averaged over the full set of 20 stereo pairs taken

with a previously calibrated camera pair. The first row

shows the effect of the selectivity parameter λ. This is

evaluated for three different q levels, from 0.3 to 0.7.

As expected, both low and high values lead to larger

errors, mainly with respect to the estimation of the an-

gle between the two cameras. This is probably due to a

too tight and a too relaxed enforcement of local coher-

ence respectively. It could be argued that the estimation

of the optimal λ can be tricky in practical situations;

however, we must note that, with a reasonable high q,

it takes a very large sensitivity parameter to obtain a

worse performance than that obtained with the default

Bundler matcher. Regarding the quality threshold, we

can see in the second row of Figure 7 that the best re-

sults are achieved by setting a high level of quality: this

is clearly due to the fact that, in practice, the replica-

tor dynamics have converged to a stable ESS and thus

most of the non-zero strategies are indeed inliers and

are mostly subject only to the (small) feature localiza-

tion error, thus exhibiting an equally high density. In

Figure 8 we show the results obtained by trying differ-

ent parameters with CPGT and UPGT. As previously

stated, these experiments were made by performing an

affine matching step with relaxed parameters: namely

a λ value of 0.09 and a q of 0.6. The overall behavior

with respect to these parameters is similar to what ob-

served with AGT: very low and very high values for λ

lead to less satisfactory results (whereas in general bet-

ter than those obtained with the Bundler key matcher),

and high q seems to guarantee good estimates. Overall

it seems that CPGT always gives better results than

UPGT. We will analyze this behavior with more detail

in the next section.

4.3 Comparisons between Approaches

To further explore the differences among the proposed

techniques and the Bundler matcher, we executed two

sets of experiments. The first set applies the approaches

to unordered images coming from the DinoRing and

TempleRing sequences from the Middlebury Multi-View

Stereo dataset for these models, the camera extrinsic

parameters are provided and used as a ground-truth.

The rationale for using these sets (in opposite to sim-

ple stereo pairs) is to allow Bundler to optimize the
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Fig. 9 Distribution of the reprojection error in one multiple view (top) and one stereo pair (bottom) example.

parameters and correspondences over the complete se-

quence. The second set is composed of two calibrated

stereo scenes selected from the previously acquired col-

lection of 20 items, specifically a statue of Ganesha and

a handful of screws placed on a table. For all the sets of

experiments we evaluated both the rotation error of all

the cameras and the reprojection error of the detected

feature points. In the Middlebury sets the results are

presented as averages. The Dino model is a difficult

case in general, as it provides very few distinctive fea-

tures; the upper part of Figure 10 shows the correspon-

dences produced by AGT (left column) in comparison

with BKM (right column). The parameters were set

to the optimal values estimated in the previous exper-

iments (λ = 0.06 and q = 0.8). This resulted in the

detection of many correct matches organized in groups,

each corresponding to a different depth level, and visu-

alized with a unique color in the figure. As can be seen,

the different depth levels are properly estimated; this is

particularly evident throughout the arched back going

from the tail (in foreground) to the head of the model

(in background), where clustered sets of feature points

follow one after the other. Furthermore, these sets of in-

terest points maintain the right correspondences within

the pair of images. The Bundler matcher on the other

hand, while still achieving good results in the whole pro-

cess, also outputs erroneous correspondences (marked

in the figure). In the lower part of Figure 10 we can

see the results obtained with CPGT and UPGT with

λ = 0.3 and q = 0.7 after an affine matching step per-

formed with λ = 0.09 and q = 0.9. We can observe

that CPGT gives a significant boost to all the statis-

tics. By contrast UPGT performed worse than AGT

(albeit still better than BKM). This is probably due

to the higher number of degrees of freedom in the es-

timation of the fundamental matrix and, thus, to the

reduced ability to discriminate incompatible groups. In

fact, we can see that the size of the groups obtained

with AGT is generally rather small (from 4 to about

10 points), and it is easy to justify such a small num-

ber of correspondences under a common fundamental

matrix. The quality of reconstruction following the ap-

plication of all methods can be compared visually by

looking at the distribution of the reprojection error in

the top row of Figure 9. While most reprojections fall

within 1-3 pixels for the Game-Theoretic approaches,

the Bundler matcher exhibits a long-tailed trend, with

reprojection errors reaching 20 pixels. Unlike the Dino

model, the Temple model is quite rich of features: for

visualization purposes we only show a subset of the de-



15

Dino sequence Temple sequence

AGT BKM AGT BKM

Matches 14573 9245 25785 22317

ε ≤ 1 pix 24.83 6.49406 22.6049 24.6729
≤ 5 pix 54.94 48.3659 62.7737 61.8957

≥ 5 pix 20.21 45.1401 14.6214 13.4314
Avg. 2.3086 4.5255 2.3577 2.3732

∆α Avg. 0.005751 0.005561 0.010514 0.009376

S. dev. 0.003242 0.003184 0.005282 0.004646
Max 0.012057 0.011475 0.021527 0.017016

Avg. levels 8.42 - 9.27 -

Dino sequence Temple sequence

CPGT UPGT CPGT UPGT

Matches 15018 15231 28106 28407

ε ≤ 1 pix 32.1731 20.0126 25.7232 18.3715
≤ 5 pix 61.4826 75.4671 64.5294 78.5347
≥ 5 pix 6.3518 4.5203 9.7474 3.0938

Avg. 1.7051 2.9841 2.1642 3.6713

∆α Avg. 0.004823 0.006437 0.009411 0.01328

S. dev. 0.003671 0.004514 0.005143 0.006545

Max 0.013147 0.017421 0.019725 0.027832

Avg. levels 17.21 18.34 20.13 22.05

Fig. 10 Results obtained with two multiple view data sets (image best viewed in color).
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Ganesha stereo Screws stereo

AGT BKM AGT BKM

Matches 280 200 211 46

ε ≤ 1 pix 98.2824 20 0 0
≤ 5 pix 1.7175 80 34.7716 6.75676

≥ 5 pix 0 0 65.2284 93.2432

Avg. 0.321248 1.67583 5.86237 10.2208

∆α 0.001014 0.007424 0.020822 0.030995

Levels 14 - 12 -

Ganesha stereo Screws stereo

CPGT UPGT CPGT UPGT

Matches 315 282 72 108

ε ≤ 1 pix 99.0017 83.4812 2.1637 0

≤ 5 pix 0.9983 16.5188 37.5721 26.3417
≥ 5 pix 0 0 60.2642 73.6583

Avg. 0.300272 1.2311 3.92133 4.6379

∆α 0.001623 0.00466 0.025341 0.03945

Levels 15 13 8 9

Fig. 11 Results obtained with two stereo view data sets (image best viewed in color).
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BKM AGT CPGT UPGT

Fig. 12 Comparisons of the point clouds produced by PMVS using the motion estimated with different matching methods. Re-
spectively the Bundler default keymatcher (BKM), the Affine Game-Theoretic technique (AGT) and the calibrated and uncalibrated

projective techniques (CPGT and UPGT).

tected matches for all the techniques. While the effec-

tiveness of our approaches is not negatively impacted

by the model characteristics, several mismatches are

extracted by BKM. In particular, the symmetric parts

of the object (mainly the pillars) result in very similar

features and this causes the matcher to establish one-

to-many correspondences over them. In the calibrated

stereo scenario, the Ganesha images are rich of distinc-

tive features and pose no particular difficulty to any of

the methods. The Bundler matcher provides very good

results, with only one evident false match out of a total

of 200 matches (see Figure 11). The resulting bundle

adjustment is quite accurate, giving very small rota-

tion errors and reprojection distances. Nevertheless, our

methods perform considerably better: reprojection er-

rors dramatically decrease, with around 98 percent of

the feature points falling below one pixel of reprojec-

tion error for AGT and 99 percent for CPGT. Unfor-

tunately UPGT is unable to refine the results obtained

with AGT, but still achieves smaller errors than BKM.

The second calibrated stereo scene, “Screws stereo”, is

an emblematic case and provides some meaningful in-

sight. The images depict a dozen screws standing on

a table, placed by hand at different depth levels. This

configuration, together with the abundance of features,

should provide enough information for the algorithms

to extract significant matches. However, the scene is a

difficult one due to the very nature of the objects de-

picted, which are all identical and highly symmetric,

resulting in several features with very similar descrip-
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tors and a difficulty in extracting good matches based

only on photometric information. Indeed, several false

matches are established by the Bundler matcher (see

the last column of Figure 11). Still, BKM results in a

reasonable estimation of the rigid transformation link-

ing the two cameras, as erroneous pairings are removed

a posteriori during the subsequent phases of bundle ad-

justment. By contrast, the AGT approach outputs large

and accurate sets of matches, roughly one per object,

and even difficult cases, such as the left-right paral-

lactic swaps taking place at the borders are correctly

dealt with. It is interesting to note that in this case the

boost given by CPGT is even more significant than in

the previous experiments, with a lower average repro-

jection error and an overall better error distribution.

Unlike with the previous cases, this happens by reduc-

ing the number of total matches rather than increasing

it, as the refinement process eliminates correspondences

that are not globally consistent. In addition this time

even UPGT gives better results than AGT: a histogram

of the reprojection errors for this object is shown in

Figure 9. Finally, a qualitative analysis of the differ-

ent approaches is shown in Figure 12, where the esti-

mated parameters and correspondences are fed to the

PMVS dense multiview stereo reconstruction tool. The

first and the second rows show the Dino and Screws

scenes from a frontal view, while the other two show a

top view of the same scenes. AGT and CPGT give the

best results for Dino with CPGT providing a more cor-

rect representation of the hollow area between the neck

and the first leg of the figurine and a smaller number

of spurious points. With the screws scene CPGT allows

by far the more consistent reconstruction, while BKM

is substantially unable to offer to PMVS a satisfactory

pose estimation.

4.4 Complexity and Running Time

With respect to complexity all the Game-Theoretic ap-

proaches are dominated by the steps of the replica-

tor dynamics. Each step is quadratic in the number

of strategies, but there is no guarantee about the to-

tal number of steps that are needed to reach an ESS.

We chose to stop the iterations when the variation of

the population was below a minimum threshold. Exe-

cution times for the matching steps of our technique

are plotted in Figure 13; the scatter plot shows a weak

quadratic growth of convergence time as the number

of matching strategies increases with a very small con-

stant in the quadratic term, resulting in computation

times below half a second even with a large number of

strategies.
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Fig. 13 Plot of the convergence time of the replicator dynamics
with respect to the number of matching strategies.

5 Conclusions

In this paper we introduced a novel Game-Theoretic

technique that performs an accurate feature matching

as a preliminary step for multi-view 3D reconstruction

using Structure from Motion techniques. Unlike other

approaches, we do not rely on a first estimation of scene

and camera parameters in order to obtain a robust inlier

selection, but rather, we enforce geometric constraints

based only on semi-local properties that can be esti-

mated from the images. In particular, we define two

selection games, one that selects local groups of com-

patible correspondences, enforcing a weak affine cam-

era model, and a second consolidation game that filters

out groups of matches by considering their compliance

with the epipolar constraint. Experimental comparisons

with a widely used technique show the ability of our

approach to obtain a tighter inlier selection and thus a

more accurate estimation of the scene parameters.
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