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Abstract
We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over
the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable
using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a
geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other
existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds
and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool
for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special
adjustment, and it can be implemented efficiently with simple operations on sparse matrices.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis, 3D Shape Matching, Geometric Modeling

1. Introduction

3D acquisition continues to reach new levels of sophistication and
is rapidly being incorporated into commercial products ranging
from the Microsoft Kinect for gaming to LIDAR for autonomous
cars and MRI for medical imaging. An essential building block
for application design in many of these domains is fast and reli-
able recovery of 3D shape correspondences. Shape correspondence
problems arise in applications as diverse as character animation,
3D avatars, pose and style transfer, or texture mapping, to mention
a few.

A modern theme in shape correspondence involves the repre-
sentation of a map from one shape to another. While the most ob-
vious representation maintains pairs of source and target points,
this is by no means the only option. Our paper is mainly related
to two frameworks developed for establishing correspondence be-
tween shapes: optimization on product manifolds and functional
maps.

The first class of methods represents the correspondence on the
Cartesian product of the two shapes. First methods of this type
were formulated using graph matching [ZWW∗10]. Windheuser
et al. optimize in a product space [WSSC11], preserving impor-
tant differential geometric properties. A similar approach was ap-
plied in [LRS∗16] for 2D-to-3D matching. In [VLR∗17], corre-
spondence is formulated as kernel density estimation on the prod-
uct manifold, interpreted as alternating diffusion-sharpening pro-
cess in [VLB∗17].

Soft maps [SNB∗12] represent correspondence between shapes
as a distribution on the product manifold with prescribed marginals

reflecting area preservation. Nonconvex objectives can be used
to incorporate metric information into optimization for soft
maps [Mém11, SPKS16], while other objectives on soft maps can
be understood as probabilistic relaxations of classical distortion
measures from differential geometry [SGB13, MCSK∗17]. These
methods suffer from high complexity, usually quadratic in the num-
ber of shape vertices.

Functional maps [OCB∗17] abandon pointwise correspondence,
instead modeling correspondences as linear operators between
spaces of functions. An approximation of such operators in a pair
of truncated orthogonal bases dramatically reduces the problem
complexity. One of the key innovations of the functional maps
framework is allowing to bring a new set of algebraic methods
into the domain of shape correspondence. Several follow-up works
tried to improve the framework by employing sparsity-based pri-
ors [PBB∗13], manifold optimization [KBB∗13, KGB16], non-
orthogonal [KBBV15] or localized [CSBK17, MRCB18] bases,
coupled optimization over the forward and inverse maps [ERGB16,
EBC17,HO17], combination of functional maps with metric-based
approaches [ADK16,SK17], and kernelization [WGBS18]. Recent
works of [NO17, NMR∗18] considered functional algebra (func-
tion point-wise multiplications together with addition). Generaliza-
tions addressing the settings of multiple shapes [HWG14,KGB16],
partial correspondence [RCB∗17, LRB∗16], and cluttered corre-
spondence [CRM∗16] have been proposed as well. Most recently,
functional maps have also been used in conjunction with intrin-
sic deep learning methods [LRR∗17]. For a comprehensive sur-
vey of functional maps and related techniques, we refer the reader
to [OCB∗17].
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Motivation and contribution. In this paper, we advocate posing
correspondence—and understanding relationships between the ex-
isting representations above—in terms of functions on the product
manifold of the source and target. A motivating observation is that
functional maps approximate a distribution representing the corre-
spondence in the product space as a linear combination of sepa-
rable tensor-product basis functions. This distribution, however, is
supported on a manifold with a dimension lower than that of the
product space: For a pair of two dimensional shapes, the distribu-
tion is supported on a two-dimensional manifold embedded in a
four-dimensional space. Consequently, most of the support of the
basis functions is wasted on “empty” regions of the product space.
Localized bases on the individual domains improve this situation,
but still most of their support is wasted.

We show how point-to-point maps, functional maps, and soft
maps all can be understood as (signed) measures on the product and
how these representations might be converted to one another. More
importantly, this viewpoint suggests new techniques to represent
and approximate mappings directly on the product, e.g. by build-
ing a basis from eigenfunctions of the product Laplace–Beltrami
operator potentially after filtering undesirable matches.

Our theoretical contributions have practical bearing on the de-
sign of correspondence techniques. After discretizing product man-
ifolds and their Laplace–Beltrami operators, we consider map de-
sign and processing problems among two- and three-dimensional
shapes. Reasoning about the product manifold leads to compact,
understandable bases for map design that focus resolution in the
part of the product most relevant to a correspondence task. One of
such means is the construction of inseparable bases. To this end,
we propose to compute localized harmonics on the product mani-
fold, and discuss a numerical scheme that keeps the complexity of
such a computation feasible and, in particular cases, comparable to
that of the construction of a separable localized basis. We finally
showcase our framework applied to the task of map refinement.

2. Background

Manifolds. We model shapes as Riemannian d-manifolds
(M,gM) (possibly with boundary ∂M) equipped with area
elements dx induced by the standard metric gM; we do not restrict
our focus to surfaces but rather allowM and N to have different
intrinsic dimensions. We denote by TxM the tangent plane at
x ∈M, modeling the manifold locally as a Euclidean space. Given
two scalar functions f ,g :M→ R belonging to an appropriate
functional space F(M), we use the standard manifold inner
product 〈 f ,g〉M =

∫
M f (x)g(x)dx.

In analogy to the Laplace operator in flat spaces, the posi-
tive semidefinite Laplace–Beltrami (LB) operator ∆M equips us
with the tools to extend Fourier analysis to manifolds. The man-
ifold Laplacian admits an eigen-decomposition ∆Mφi = λiφi for
i ≥ 1, with real eigenvalues 0 = λ1 ≤ λ2 ≤ . . . and eigenfunctions
{φi}i≥1 forming an orthonormal basis of L2(M) = { f : M→
R | 〈 f , f 〉M <∞}. Any function f ∈ L2(M) can thus be rep-
resented via the Fourier-like series expansion

f (x) = ∑
i≥1
〈 f ,φi〉Mφi(x) . (1)

Product manifolds. Given two manifolds (M,gM),(N ,gN ) of
dimension dM and dN , respectively, their product (M×N ,gM⊕
gN ) is a manifold of dimension dM + dN , where gM ⊕ gN =(

gM 0
0 gN

)
is the direct sum of the individual metric tensors [GP10],

inducing the area element da = dxdy. By this definition of product,
to each point (x,y) ∈M×N is attached a tangent space derived
by the canonical isomorphism T(x,y)M×N = TxM× TyN (see
[Tu11, ex. 8.7]). For tangent vectors ξ,η ∈ TxM and ζ,µ ∈ TyN ,
the inner product of (ξ,ζ),(η,µ) ∈ T(x,y)M×N is given by

〈(ξ,ζ),(η,µ)〉T(x,y)M×N = 〈ξ,η〉TxM+ 〈ζ,µ〉TyN . (2)

Now let f ∈ F(M), g ∈ F(N ) for some functional spaces F ,
and denote by f ∧ g the outer product of f and g defined by the
mapping

f ∧g : (x,y) 7→ f (x)g(y) . (3)

The LB operator ∆M×N obeys the (outer) product rule identity
[Cha84]:

∆M×N ( f ∧g) = (∆M f )∧g+ f ∧ (∆N g) . (4)

Given eigenvectors (φ,ψ) with corresponding eigenvalues (α,β)
satisfying ∆Mφ = αφ and ∆Nψ = βψ, application of the product
rule yields

∆M×N (φ∧ψ) = (∆Mφ)∧ψ+φ∧ (∆Nψ)

= (α+β)(φ∧ψ) . (5)

This observation leads to a characterization of LB eigenvalues for
product manifolds:

Theorem 1 ([BGM71, Proposition A.II.3]) Let ξ be an eigen-
function of the product LB operator ∆M×N with the correspond-
ing eigenvalue γ. Then, there exist some eigenfunctions φ of ∆M
and ψ of ∆N with the eigenvalues α and β, respectively, such that
ξ = φ∧ψ and γ = α+β.

It is also easy to check that the set of eigenfunctions {φi∧ψ j}i, j
is orthogonal, since:∫
M×N

(φi∧ψ j)(φk ∧ψ`)da =
∫
M×N

φi(x)ψ j(y)φk(x)ψ`(y)da

=
∫
M

φiφkdx
∫
N

ψ jψ`dy (6)

= δikδ j` =

{
1 (i = k) and ( j = `);
0 otherwise,

(7)

where δi j is the Kronecker delta.

Soft maps. A soft map µ̃ :M→ Prob(N ) is a function assign-
ing a probability measure over N to each point inM [SNB∗12].
Soft maps can be equivalently represented by their densities, i.e.,
nonnegative scalar functions µ :M×N → [0,1] defined on the
product manifoldM×N satisfying µ̃(x)(B) =

∫
B⊆N µ(x,y)dy for

all x ∈M and all measurable subsets B⊆N .

As a particular case, a bijection π̃ :M→N induces a soft map
µ̃ by requiring, for all x∈M, that µ̃(x)(B) = 1 if and only if π̃(x)∈
B ⊆ N , i.e., the image µ̃(x) is a unit Dirac mass δπ̃(x) centered at
π̃(x).
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Figure 1: Discretization of the Laplace-Beltrami operator on a cy-
cle graph (a) and on a triangular mesh (b) for interior (green) and
boundary edges (red). We also show the hat basis function on the
graph.

Functional maps. A functional map T associated to a map π̃ :
M → N is a linear mapping T : F(N ) → F(M) defined as
[OBCS∗12]:

T (g) = g◦ π̃ . (8)

Note how this construction allows to move from identifying a
map between manifolds to identifying a linear operator between
Hilbert spaces. The functional map T admits a matrix representa-
tion wrt orthogonal bases {φi}i≥1,{ψ j} j≥1 on F(M) and F(N )
respectively, with coefficients C = (ci j) determined as follows:

T (g) = ∑
i j≥1
〈ψ j,g〉N 〈φi,T (ψ j)〉M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ci j

φi . (9)

3. Discretization

We show how to discretize the main quantities involved in our
framework on 1D and 2D manifolds, as well as their products.

1D shapes (curves). We model 1D manifolds as closed contours
with circular topology (no boundary), discretized as 2-regular cycle
graphs G = (N ,E) with n≥ 3 nodesN and as many edges E . The
LB operator ∆ is discretized using standard FEM with linear hat
functions; in the hat basis, scalar functions on G are approximated
piecewise-linearly on the edges. The Laplacian takes the form of a
n×n sparse matrix L = S−1W, where:

wi j =


− 1
‖ei j‖ ei j ∈ E
−∑i 6=k wik i = j
0 otherwise

(10)

si j =


1
6‖ei j‖ ei j ∈ E
1
3 ∑k∈N (i) ‖eik‖ i = j
0 otherwise

(11)

and the notation is according to Figure 1, withN (i) being the set of
the neighbors of node i. In our tests we use non-lumped masses si j;
in applications requiring additional efficiency, lumped mass matri-
ces diag(ŝii) can be used by setting ŝii = ∑ j si j.

The product of two boundary-free 1D manifoldsM,N is a 2D
manifold (a surface) M×N with torus topology. For the dis-
cretization of the Laplacian onM×N , we appeal to the following:

Theorem 2 (Discrete product Laplacian) LetM,N be 1D man-
ifolds with no boundary, discretized as 2-regular cycle graphs, and

let SM,WM and SN ,WN be the mass and stiffness matrices for
∆M and ∆N respectively, obtained via FEM with respect to piece-
wise linear (hat) basis functions. Then,

SM×N = SM⊗SN (12)

WM×N = WM⊗SN +SM⊗WN (13)

are the mass and stiffness matrices for the product manifold Lapla-
cian ∆M×N with respect to piecewise bilinear basis functions, de-
fined on a quad meshing of the toric surfaceM×N . Here, ⊗ de-
notes the Kronecker product.

Proof See Appendix A.

Corollary 1 The LB operator ∆M×N is discretized as:

LM×N = LM⊗ IN + IM⊗LN , (14)

where IM,IN are nM×nM and nN ×nN identity matrices.

Proof See Appendix A.

The discretization of ∆M×N does not require the explicit con-
struction of a quad mesh embedded in R3; the toric shapes shown
in these pages only serve visualization purposes. Further, the dis-
cretization (14) is consistent with the spectral decomposition iden-
tities (5); see [Fie73] and [HIK11, Proposition 33.6] for additional
discussion.

2D shapes (surfaces). We model 2D surfaces as manifold triangle
meshes (V,E ,F) with n vertices V connected by edges E = Ei∪Eb
(where Ei and Eb are interior and boundary edges, respectively) and
triangle faces F . In analogy to the 1D case, the discretization of
the LB operator is obtained using FEM with piecewise linear basis
functions on triangle elements [Duf59], taking the form of an n×n
sparse matrix L = S−1W, where

wi j =


(cotαi j + cotβi j)/2 i j ∈ Ei

(cotαi j)/2 i j ∈ Eb

−∑k 6=i wik i = j
0 otherwise,and

(15)

si j =


(A(Thi j)+A(Ti jk))/12 i j ∈ Ei

A(Ti jk)/12 i j ∈ Eb
1
6 ∑k∈N (i) A(Tk) i = j
0 otherwise.

(16)

Here, A(T ) denotes the area of triangle T andN (i) is the set of the
neighbors of vertex i; see Figure 1 for notation.

Given two 2D manifoldsM and N , their product is a 4D mani-
foldM×N . The LB operator onM×N is discretized similarly
the lower-dimensional case:

Corollary 2 LetM, N be surfaces discretized as triangle meshes,
and let SM,WM and SN ,WN be the mass and stiffness matri-
ces for ∆M and ∆N . Then, equations (12)-(14) provide a valid dis-
cretization of the LB operator ∆M×N . This discretization is equiv-
alent to the application of FEM on a 3-3 duoprism tessellation of
the 4D product manifoldM×N using multilinear basis functions.

Proof See Appendix A.
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Figure 2: The Cartesian product of two edge elements is a quad
(a), while taking the product of two triangles yields a 4D geometric
structure called a 3-3 (or triangular) duoprism (b). Note that all
these objects are polytopes (i.e. they have faces), not simple graphs.

We emphasize that, as a consequence of the Corollary, the com-
putation of the product Laplacian ∆M×N does not require con-
structing a high-dimensional embedding for M×N , thus avoid-
ing cumbersome manipulation of duoprismic product elements (see
Figure 2 for an illustration of these elements).

Finally, scalar functions on a manifoldM are represented by n-
dimensional vectors f = ( f (x1), . . . , f (xn))

>, where x1, . . . ,xn de-
note graph nodes and mesh vertices in the 1D and 2D case respec-
tively. Inner products 〈 f ,g〉M are discretized as f>Sg, where S is
the mass matrix. On product manifolds, scalar functions are rep-
resented as nM× nN matrices F, usually deriving from an outer
product f ∧ g discretized as fg>; inner products are computed as
vec(F)>S vec(G).

4. Map representation on the product manifold

Soft functional maps. It will be instrumental for our purposes to
introduce a “soft” generalization of functional maps. For soft maps
µ̃ :M→ Prob(N ) with associated density µ ∈ L1(M×N ), we
define a soft functional map Tµ :F(N )→F(M) as the expectation

Tµ(g)(x) =
∫
N

g(y)µ(x,y)dy . (17)

It is easy to check that Tµ is linear in g, hence admitting a ma-
trix representation with coefficients defined as in (9); in particular,
in the standard basis one obtains a stochastic matrix with each row
summing to 1. If the density µ encodes a non-soft map (i.e., when-
ever µ(x, ·) is concentrated at one point), the definition (17) boils
down to the original definition (8), T (g)(x) =

∫
N g(y)δπ̃(x)(y)dy =

(g ◦ π̃)(x), where the last equivalence stems from the sampling
property of Dirac deltas.

We begin our discussion by deriving a connection between
functional map matrices and expanding soft map measures in the
Laplace–Beltrami basis:

Theorem 3 (Equivalence) Let Tµ :F(N )→F(M) be a soft func-
tional map (17) with underlying density µ ∈ L1(M×N ). Further,
let ci j = 〈φi,Tµ(ψ j)〉M be the matrix coefficients of Tµ in the or-
thogonal bases {φi}i≥1,{ψ j} j≥1, and let pi j = 〈φi ∧ψ j,µ〉M×N
be the expansion coefficients of µ in the product basis {φi∧ψ j}i, j ,
such that µ = ∑i j(φi∧ψ j)pi j . Then, ci j = pi j for all i, j.

Proof The functional map matrix coefficients are computed as:

ci j = 〈φi,Tµ(ψ j)〉M =
∫
M

φi(x)Tµ(ψ j)(x)dx (18)

=
∫
M

φi(x)
∫
N

ψ j(y)µ(x,y)dydx (19)

=
∫
M×N

φi(x)ψ j(y)µ(x,y)da , (20)

while the expansion coefficients of µ are given by

pi j = 〈φi∧ψ j,µ〉M×N =
∫
M×N

φi(x)ψ j(y)µ(x,y)da . (21)

Comparing equations (20) and (21), we see that ci j = pi j for any
choice of i, j ≥ 1.

Note that Theorem 3 applies to any choice of orthogonal bases
{φi}i≥1 ∈ F(M),{ψ j} j≥1 ∈ F(N ).

Spectral representation. Consider the order-k, band-limited ap-
proximation of µ:

µ≈
k

∑
`=1

ξ`p` , (22)

where each ξ` is an eigenfunction of ∆M×N which uniquely iden-
tifies, via (5), a pair of eigenfunctions φi,ψ j onM and N respec-
tively. According to Theorem 3, the expansion coefficients p` are
exactly those appearing in the functional map matrix C, when this
is expressed in the Laplacian eigenbases ofM andN as originally
proposed by Ovsjanikov et al. [OBCS∗12]. There is, however, a
crucial difference in the way the two sets of coefficients are stored.
We come to the following observation:

Truncation. The product eigenfunctions ξ` appearing in the sum-
mation (22) are associated to the product eigenvalues αi + β j,
which are ordered non-decreasingly. In contrast, in [OBCS∗12]
it was proposed to truncate the two summations in (9) to i =
1, . . . ,kM and j = 1, . . . ,kN , where indices i and j follow the non-
decreasing order of the eigenvalue sequences αi and β j separately.

We see that, due to the different ordering, the eigenfunctions
φi,ψ j involved in the approximation (22) of µ are not necessarily all
those involved in the construction of C (9), assuming k = kMkN .
In the former case we operate with a reduced basis directly on
M×N , while in the latter case we consider two reduced bases
on M and N independently. This has direct implications on the
quality of the approximated maps, as illustrated in Figure 3.

Relation to finite sections. The functional map representation was
originally introduced in [OBCS∗12] as a convenient language for
solving map inference problems of the type [OCB∗17]:

CA = B , (23)

where matrices B = (〈φi, f j〉M),A = (〈ψi,g j〉N ) contain Fourier
coefficients of a given set of corresponding “probe” functions
f j,g j, j = 1, . . . ,q on M and N respectively (typically, descrip-
tors are used). In the problem above, one is asked to estimate the
functional map C.

By truncating the matrix C to the left upper kM× kN subma-
trix (as proposed in [OBCS∗12]), one obtains a finite-dimensional
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Figure 3: The ground truth map (here the identity) between the two
shapes on the left approximated according to (a) the standard func-
tional map representation, (b) the (separable) LB eigenfunctions of
the product manifold, ordered according to the product eigenval-
ues, and (c) the (inseparable) localized harmonics on the product
manifold. All three cases use the same amount of coefficients. The
black curve in each matrix represents the maximum likelihood es-
timate for the underlying pointwise map (i.e., the maximum value
for each row). In this example the product manifold is a flat torus,
represented in the parametric domain in (a), (b), (c).
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Figure 4: Left: The k = 100 frequencies involved in the construc-
tion of a 10× 10 functional map matrix C correspond to an irreg-
ular sampling of the Laplacian spectrum of the product manifold.
Right: In turn, only some of the coefficients ci j of matrix C ap-
pear among the first k expansion coefficients pi j of the map in the
product eigenbasis. Here C is framed in black, while the blue dots
identify the first k coefficients pi j.

approximation of the infinite linear system (23). This procedure,
known as the finite section method [GRS10], does not always guar-
antee convergence, and a series of remedies using rectangular sec-
tions (kM 6= kN ) have been proposed in the literature for gen-
eral systems (see [GO17] for a discussion pertaining to functional
maps).

Recall that, according to Theorem 3, the matrix elements ci j cor-
respond to the expansion coefficients pi j appearing in (22). Thus,
due to the different ordering of the pi j’s, the approximation carried
out in (22) can be regarded as an “irregular” finite section (see Fig-
ure 4, right); in contrast with purely algebraic approaches consider-
ing general systems of linear equations such as (23), our approach
carries now a geometric meaning in that the shape of the section is
determined by the geometry of the correspondence manifold.

5. Spectral map processing

In this paper, we consider curves and surfaces as our shapes. De-
spite their different intrinsic dimensions, our framework applies to
both without specific adjustment.

Localized spectral encoding. Theorem 3 establishes the equiva-
lence between the soft functional map Tµ representation coefficients
ci j in the bases {φi}i≥1 ⊆ F(M) and {ψ j} j≥1 ⊆ F(N ) and the
coefficients p` of the underlying density µ Fourier series (22) in the
eigenbasis {ξ`}`≥1 ⊆ F(M×N ) of the product manifold Lapla-
cian ∆M×N . This equivalence directly stems from ξ`’s having the
separable form φi∧ψ j, by virtue of Theorem 1. It may be advanta-
geous, however, to consider different orthonormal bases onM×N
that are not necessarily separable. In particular, we observe that µ
tends to be localized on the product manifold M×N (see Fig-
ure 3), and thus the standard outer product basis is extremely waste-
ful as it is supported on the entireM×N .

A better alternative is the use of localized manifold harmonics
[CSBK17,MRCB18]. Assume that we are given a rough indication
of the support of µ (for example, coming from a shape matching
algorithm) in the form of a step potential function

V (x,y) =
{

ν µ(x,y)≈ 0;
0 otherwise.

(24)

where ν≥ 1. Then, the variational problem

min
ξ1,...,ξk

k

∑
`=1

∫
M×N

(
‖∇M×N ξ`‖2

gM⊕gN +V ξ
2
`

)
da (25)

s.t. 〈ξ`,ξ`′〉M×N = δ`,`′

produces a set of orthonormal functions denoted by ξ̂1, . . . , ξ̂k that,
for a sufficiently large value of ν, are also localized in the support
of V . Note that this new basis {ξ̂`}k

`=1 is no longer separable, i.e.,
the functions ξ̂ are not in general expressible as outer products of
functions defined on the originating domains. See Figures 5 and 6
for an illustration.

The basis {ξ̂`}k
`=1 turns out to be the eigenbasis of the Hamilto-

nian operator [CSBK17] H = ∆M×N +V and can be computed
by the eigendecomposition of the product Laplacian matrix with
the addition of diagonal potential. We note that the size of such
problem can be huge (if the shapes are discretized with n ∼ 103

points, the product Laplacian matrix has size n2×n2 = 106×106;
see Theorem 2), and despite its extreme sparsity, computationally
expensive.

As an alternative, we consider a patch P ⊂M×N of the prod-
uct manifold corresponding to µ(x,y) > 0, and define the eigen-
problem

∆P ξ̄`(x,y) = γ`ξ̄`(x,y) (x,y) ∈ int(P)
ξ̄`(x,y) = 0 (x,y) ∈ ∂P (26)

of the product patch Laplacian ∆P with homogeneous Dirichlet
boundary conditions. In practice, this is implemented by construct-
ing the stiffness and mass matrices Wint(P),Sint(P) by selecting
the rows and columns of WM×N ,SM×N that correspond to the
vertices in int(P). A generalized eigenproblem is solved, yielding
eigenfunctions ξ̄int(P) defined on int(P); the final eigenfunctions
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Figure 5: Examples of basis functions on the product manifold (here visualized as a torus embedded in R3) of two 1D shapes. We plot a
few standard LB eigenfunctions (top row) and localized manifold harmonics (bottom row). The first basis function in the bottom row also
indicates the used region. Here and in the following, we use the present color scheme (blue denotes small values, red large values, white is
zero).

Figure 6: Projecting the basis functions on the product manifold
of horse and elephant back onto the factor shapes (here only the
horse projection is visualized). Top row: Projection of three prod-
uct LB eigenfunctions, which correspond exactly to three standard
LB eigenfunctions on the horse shape. Bottom row: Projection of
three localized harmonics; these projections do not correspond to
any LB eigenfunction on the horse. Still, note how they capture the
geometric features of the underlying shape.

ξ̄ on the entire patch P are obtained by setting ξ̄(x) = ξint(P) for
x ∈ int(P) and ξ̄(x) = 0 for x ∈ ∂P .

If the patch is selected in such a way that its size scales as O(n)
rather than O(n2) in the size of the shapes (in practice, this can
be achieved by taking a fixed-size band around the initial corre-
spondence), the computation of the localized basis {ξ̄`}k

`=1 has the
same complexity as eigendecomposition of the individual Lapla-
cians ∆M,∆N . An example application of this construction is de-
scribed next.

Despite the computational gains of working with patches P ⊂
M×N , computing the eigen-decomposition of the full Hamilto-
nian ∆M×N +V may still be useful in certain settings. Note, in
particular, that one may define a soft potential V (x,y) = 1−µ(x,y)
[MRCB18] directly reflecting the reliability of the underlying map
in terms of its density. Further, it is also possible to define a patch
Hamiltonian ∆P +V |P with soft potential if desired.

Example: Map refinement. As an illustrative application of our
framework, we propose a simple procedure for map refinement:
Given some initial, possibly sparse and noisy correspondence, the
task is to produce a dense, denoised map.

We follow an iterative approach. In each iteration k, the map
is represented as a density µ(k) :M×N → [0,1]. This density is
interpreted as a heat distribution throughout the iterations, which
proceed as follows.

At the k-th iteration, a diffusion process is initialized with
u(k)t=0 := µ(k) and solved for a given diffusion time T (k). This has the
effect of spreading correct correspondence information and there-
fore suppressing mismatches, resulting in an effective map denois-
ing approach akin to diffusion-based smoothing from image pro-
cessing [Wit83, PM90]. The final heat distribution u(k)T is thresh-
olded to define a patch P(k) ⊂M×N where the correct corre-
spondence is likely to be contained, with likelihood expressed in
terms of the diffused density. We then recover a bijective (non-
soft) density µ(k+1) from u(k)T by solving a linear assignment prob-
lem [Ber98] restricted to regionP(k), and use it to initialize the next
iteration.

These blur-and-sharpen steps are iterated until convergence
while decreasing T (k), resulting in a sequence P(0) ⊇ ·· · ⊇ P(k) ⊇
P(k+1). In practice, we decrease T (k) logarithmically across itera-
tions; see Figure 10. At k = 0, the density u(0) is the given input,
e.g., a mixture of Dirac deltas or a soft map.

The diffusion step in each iteration is realized via the spectral
decomposition of the product patch Laplacian ∆P with Dirichlet
boundary conditions (26), specifically for p,q ∈M×N :

uT (p) =
∫
M×N

hT (p,q)u0(q)dq (27)

hT (p,q) = ∑
`≥0

e−T γ` ξ̄`(p)ξ̄`(q) , (28)

where hT is the heat kernel at time T on the product manifold
M×N . Throughout the iterations we keep the number of eigen-
functions for the approximation (28) constant.

The refinement process described above simultaneously im-
proves the correspondence and reduces the support of the den-
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Figure 7: Product space approximation of the correspondence between one-dimensional shapes with k = 100 basis functions. Bases con-
structed on bands of different size (1%, 5%, 25% and 90% of the total product manifold area) around the true correspondence are shown.
Separable basis (FM) is shown as a reference. Left: accuracy of the correspondence increases the product space basis becomes more
localized. Right (top row): image of a delta function by the functional maps. Right (bottom row): True correspondence (curve) and its ap-
proximation in inseparable product space bases with a varying degree of localization. The product manifold is depicted as a two-dimensional
torus (first row).
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Figure 8: Map approximation between two-dimensional shapes
(surfaces) with k = 500 basis functions on bands of different size
(10% and 15% of the total 4D product manifold area) around
the true correspondence. We also show images on the horse of
delta functions supported at three points (red, green, blue) on the
elephant. Here, the functional map (FM) was calculated using
30×30 = 900 basis functions.

sity around the most likely bijective map. This is similar in spirit
to the kernel matching approaches of [VLR∗17, VLB∗17], how-
ever, with the additional step of ‘carving out’ the relevant portion
P ⊂M×N throughout the iterations.

Illustrative results are reported qualitatively in Figure 9 and
quantitatively in Figure 10.

6. Discussion and conclusions

We introduced a novel perspective on map representation and pro-
cessing, where pointwise, functional, and soft maps can be under-
stood as densities on the product of the input shapes. We showed

0.1

0

Figure 9: An example of map refinement. We show the input cor-
respondence on top (sparse point-to-point matches, ∼ 10% of all
points) and the recovered dense map below. The heatmap on the
bottom right encodes geodesic error of the recovered correspon-
dence.

how to discretize the Laplace-Beltrami operator on the product
manifold and proposed the adoption of (inseparable) localized har-
monics for compactly encoding correspondences while ensuring
minimal energy dispersion, i.e., the resulting harmonics are not
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Figure 10: Sensitivity of map refinement to heat diffusion times and
noisy input. The legend reports diffusion time ranges (tmax, tmin);
within each range, time is decreased logarithmically over itera-
tions. Left: The input is a sparse correspondence of 10% of correct
matches. We see that high diffusion times are detrimental due to
the excessive spread of correspondence information. Right: The in-
put sparse correspondence is further corrupted with 30% random
mismatches.

‘wasted’ on portions of the product manifold that carry no infor-
mation on the map to be encoded. Our theoretical and applied con-
tributions suggest a new perspective on properties of the correspon-
dence manifold as well as new ways to pose algorithmic design for
map inference and processing.

Limitations. Perhaps the main limitation of our framework lies in
the scalability of our current numerical scheme. While we showed
that one can reduce the computational complexity to O(n) by ap-
propriately selecting a localization region, in practical applications
involving very noisy maps where the localization region tends to be
spread out across the entire product manifold, the advantage might
be less evident. For this reason, considering as a possible exten-
sion higher-dimensional products to encode cycle-consistent maps
in shape collections may soon become prohibitive. With the cur-
rent approach we trade off scalability for accuracy: Maps are en-
coded much more precisely in the localized basis, but this requires
the explicit computation of inseparable basis functions that do not
admit an efficient representation in terms of outer products. As a
possible remedy, an efficient solution to the eigenproblem might be
sought via approximation methods similar to [NBH18]. A second
limitation is in our map refinement scheme, which has limited re-
silience to particularly noisy input. We presented our algorithm as
an illustrative tool for map denoising, but more effective schemes
operating on the product manifold are likely possible.

Future work. From an investigative standpoint, it might be worth
considering a notion of optimal transport between maps as a means
of exploring the space of maps between given shapes, a natural
choice given our modeling of maps as measures on a manifold.
Related constructions could extend distortion measures like the
Dirichlet energy [Bre03, SGB13, Lav17] to the functional regime.

Another particularly interesting direction will be to consider gen-

eral graphs (as opposed to manifolds) and their products in the con-
text of network analysis, machine learning, and applications. While
many of our results may be directly translated to graphs, the lack of
differentiable structure poses new theoretical challenges and at the
same time provides a richer spectrum of possibilities; for example,
several different notions of product exist between graphs [HIK11].

Finally, a promising direction is the introduction of product
spaces within geometric deep learning [BBL∗16] pipelines, where
the data is in the form of signals defined on top of a manifold. Our
proposed discretization of the (product) Laplace-Beltrami opera-
tor, as well as its spectral decomposition, can be directly employed
in such pipelines, enabling new forms of structured prediction in
a range of challenging problems in vision, graphics and geometry
processing.
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Appendix A: Proofs

We provide proofs for the main propositions of the paper.

Proof of Theorem 2. Following standard FEM, we discretize the
Poisson equation ∆M×N f = g via the weak formulation

〈∆M×N f ,H j〉= 〈g,H j〉 , (29)

where functions are expressed in the hat basis {H j :M×N →
R}, and are thus approximated piecewise-linearly via the expansion
f (x)≈∑

n
i=1 f (vi)hi(x). The left-hand side of (29) can be written as

〈∆ f ,H j〉=−〈∇ f ,∇H j〉=−∑
i

f (vi)〈∇Hi,∇H j〉
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wi j

, (30)

where wi j are elements of the stiffness matrix W. The right-hand
side of (29) can be written as

〈g,H j〉= 〈∑
i

g(vi)Hi(x),H j〉= ∑
i

g(vi)〈Hi,H j〉
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

si j

, (31)

where si j are elements of the mass matrix S.

The Cartesian product of the two graphs discretizing M and
N has grid topology, as illustrated in Figure 11, and the result-
ing bilinear hat basis functions are expressed via the outer product
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He = h j ∧ hq. We can then compute the mass values (refer to the
Figure for the color notation):

see = 〈He,He〉= 〈h j ∧hq,h j ∧hq〉

=
∫

Qabde∪Qbce f∪Qdegh∪Qe f hi

h j(x)hq(y)h j(x)hq(y)dxdy

=
∫

Ei jk

h j(x)h j(x)dx
∫

Epqr

hq(y)hq(y)dy

= s j jsqq (32)

sae = 〈Ha,He〉= 〈hi∧hr,h j ∧hq〉

=
∫

Qabde

hi(x)hr(y)h j(x)hq(y)dxdy

=
∫

Ei j

hi(x)h j(x)dx
∫

Eqr

hr(y)hq(y)dy

= si jsqr (33)

sde = 〈Hd ,He〉= 〈hi∧hq,h j ∧hq〉

=
∫

Qabde∪Qdegh

hi(x)hq(y)h j(x)hq(y)dxdy

=
∫

Ei j

hi(x)h j(x)dx
∫

Epqr

hq(y)hq(y)dy

= si jsqq (34)

Similarly, the stiffness integrals read:

wee = 〈∇He,∇He〉= 〈∇h j ∧hq,∇h j ∧hq〉
= 〈∇h jhq,∇h jhq〉+2〈h j∇hq,∇h jhq〉+ 〈h j∇hq,h j∇hq〉

=
∫

Qabde∪Qbce f∪Qdegh∪Qe f hi

〈∇h j(x)hq(y),∇h j(x)hq(y)〉dxdy+ · · ·

=
∫

Qabde∪Qbce f∪Qdegh∪Qe f hi

hq(y)hq(y)〈∇h j(x),∇h j(x)〉dxdy+ · · ·

=
∫

Ei jk

〈∇h j(x),∇h j(x)〉dx
∫

Epqr

hq(y)hq(y)dy+ · · ·+ · · ·

= w j jsqq + s j jwqq (35)

wae = 〈∇Ha,∇He〉= 〈∇hi∧hr,∇h j ∧hq〉
= 〈∇hihr,∇h jhq〉+ 〈hi∇hr,h j∇hq〉
= wi jsqr + si jwqr (36)

wde = 〈∇Hd ,∇He〉= 〈∇hi∧hq,∇h j ∧hq〉
= 〈∇hihq,∇h jhq〉+ 〈hi∇hq,h j∇hq〉
= wi jsqq + si jwqq (37)

where we applied the outer product rule for the gradient operator,
and used the fact that 〈∇ f ,∇g〉= 0 for any pair of functions on the
two cycle graphs. Note the integrals sae and wae are non-zero even
if nodes a and e are not connected in the product graph.

In matrix notation, formulas (32)-(37) can be succinctly written
as:

S = S⊗S
W = W⊗S+S⊗W ,

completing the proof. �

a b c

d e f

g h i

q

r

p

i j k
· · ·· · ·...

...

He
H f

e
h

i
f

Figure 11: Left: The product of two closed contours discretized as
cycle graphs (in blue and red) is a quad mesh with toric topology
(in grey). Uniform edge lengths are used for illustration purposes.
Right: Two overlapping bilinear hats He and H f . On the quad el-
ement Qe f hi (marked in red) there is non-zero overlap, hence it
contributes to the computation of mass and stiffness values.

Proof of Corollary 1. The proof is straightforward and follows
from substituting the expressions (12), (13) into the general formula
L = S−1W:

LM×N = S−1
M×NWM×N

= (SM⊗SN )−1(WM⊗SN +SM⊗WN )

= (S−1
M⊗S−1

N )(WM⊗SN )+(S−1
M⊗S−1

N )(SM⊗WN )

= (S−1
MWM)⊗ (S−1

N SN )+(S−1
MSM)⊗ (S−1

N WN )

= LM⊗ IN + IM⊗LN . �

Proof of Corollary 2. Since triangular (3-3) duoprisms are, by def-
inition, the Cartesian product of two triangles, we can define a mul-
tilinear basis function on the product complex as the outer product
of two standard hats defined on triangle meshes. We are now in
the same setting as the lower dimensional case, and in particular
Equations (32)-(37) remain valid. �
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