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Summary. This chapter presents an approach for motion capturing (MoCap) of
dressed people. A cloth draping method is embedded in a silhouette based MoCap
system and an error functional is formalized to minimize image errors with respect
to silhouettes, pose and kinematic chain parameters, the cloth draping components
and external forces. Furthermore, Parzen-Rosenblatt densities on static pose config-
urations are used to stabilize tracking in highly noisy image sequences. We report on
various experiments with two types of clothes, namely a skirt and a pair of shorts.
Finally we compare the angles of the MoCap system with results from a commer-
cially available marker based tracking system. The experiments show, that we are
less than one dregree above the error range of marker based tracking systems, though
body parts are occluded with cloth.

12.1 Introduction

Classical motion capture (MoCap) comprises techniques for recording the move-
ments of real objects such as humans or animals [35]. In biomechanical settings, it
is aimed at analyzing captured data to quantify the movement of body segments,
e.g. for clinical studies, diagnostics of orthopaedic patients or to help athletes to un-
derstand and improve their performances. It has also grown increasingly important
as a source of motion data for computer animation. Surveys on existing methods
for MoCap can be found in [21, 22, 11]. Well known and commercially available
marker based tracking systems exist, e.g. those provided by Motion Analysis, Vicon
or Simi [20]. The use of markers comes along with intrinsic problems, e.g. incorrect
identification of markers, tracking failures, the need for special laboratory environ-
ments and lighting conditions and the fact that people may not feel comfortable with
markers attached to the body. This can lead to unnatural motion patterns. As well,
marker based systems are designed to track the motion of the markers themselves,
and thus it must be assumed that the recorded motion of the markers is identical to
the motion of the underlying human segments. Since human segments are not truly
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Fig. 12.1. (A) Input: A multi-view image sequence (4 cameras, one cropped image is
shown). (B) The algorithm determines the cloth parameters and joint configuration
of the underlined leg model. (C) Cloth and leg configuration in a virtual environment.
(D) Plain leg configuration.

rigid this assumption may cause problems, especially in highly dynamic movements
typically seen in sporting activities. For these reasons, marker-less tracking is an im-
portant field of research that requires knowledge in biomechanics, computer vision
and computer graphics.
Typically, researchers working in the area of computer vision prefer simplified human
body models for MoCap, e.g., stick, ellipsoidal, cylindric or skeleton models [3, 4,
19, 10, 13]. In computer graphics advanced object modeling and texture mapping
techniques for human motions are well known [17, 6, 5, 36], but image processing or
pose estimation techniques (if available) are often simplified.
In [9] a shape-from-silhouettes approach is applied to track human beings and incor-
porates surface point clouds with skeleton models. One of the subjects even wears
a pair of shorts, but the cloth is not explicitly modeled and simply treated as rigid
component. Furthermore, the authors just perform a quantitative error analysis on
synthetic data, whereas in the present study a second (commercial) marker based
tracking system is used for comparison.
A recent work of us [28] combines silhouette based pose estimation with more re-
alistic human models: These are represented by free-form surface patches and local
morphing along the surface patches is applied to gain a realistic human model within
silhouette based MoCap. Also a comparison with a marker based system is performed
indicating a stable system. In this setup, the subjects have to wear a body suit to
ensure an accurate matching between the silhouettes and the surface models of the
legs. Unfortunately, body suits may be uncomfortable to wear in contrast to loose
clothing (shirts, shorts, skirts etc.). The subjects also move slightly different in body
suits compared to being in clothes since all body parts (even unfavorable ones) are
clearly visible. The incorporation of cloth models would also simplify the analysis of
outdoor scenes and arbitrary sporting activities. It is for these reasons that we are
interested in a MoCap system which also incorporates cloth models. A first version
of our approach has been presented in [29].
Cloth draping [12, 14, 18, 34] is a well known research topic in computer graphics.
Virtual clothing can be moved and rendered so that it blends seamlessly with motion
and appearance in movie scenes. The motion of fabrics is determined by bending,
stretching and shearing parameters, as well as external forces, aerodynamic effects
and collisions. For this reason the estimation of cloth simulation parameters is es-
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sential and can be done by video [2, 7, 25, 24] or range data [16] analysis. Existing
approaches can be roughly divided into geometrically or physically based ones. Phys-
ical approaches model cloth behavior by using potential and kinetic energies. The
cloth itself is often represented as a particle grid in a spring-mass scheme or by using
finite elements [18]. Geometric approaches [34] model cloths by using other mechan-
ics theories which are often determined empirically. These methods can be very fast
computationally but are often criticized as being not very appealing visually.
The Chapter is build upon the foundations and basic tracking system described in
Chapter 11. This comprises techniques for image segmentation with level sets, pose
estimation of kinematic chains, shape registration based on ICP or optic flow, motion
prediction by optic flow, and a prior on joint angle configurations. The focus of this
work is now the embedding of a clothing model within the MoCap system. To make
the Chapter self-contained, we repeat foundations in the next section. In Section
three, we continue with introducing a kinematically motivated cloth draping model
and a deformation model, which allow deformation of the particle mesh of a cloth
with respect to oncoming external forces. The proposed draping method belongs to
the class of geometric approaches [34] for cloth draping. The advantages for choosing
this class are two-fold: Firstly, we need a model which supports time efficiency, since
cloth draping is needed in one of the innermost loops for minimization of the used
error functional. Secondly, it should be easy to implement and based on the same
parametric representation as the used free-form surface patches. This allows a direct
integration into the MoCap system. In section four we will explain how to minimize
the cloth draping and external forces within an error functional for silhouette based
MoCap. This allows us to determine joint positions of the legs even if they are
partially occluded (e.g. by skirts). We present MoCap results of a subject wearing
a skirt and a pair of shorts and perform a quantitative error analysis. Section five
concludes with a summary.

12.1.1 Contributions

In this chapter we inform about the following main contributions:

1. A so-called kinematic cloth draping method is proposed. It belongs to the class
of geometric cloth draping methods and is well suited to be embedded in a
MoCap-system due to the use of a joint model.

2. The cloth draping is extended by including a deformation model which allows
to adapt the cloth draping to external forces, the scene dynamics or speed of
movement.

3. The main contribution is to incorporate the cloth draping algorithm in a silhou-
ette based MoCap system. This allows for determining the joint configurations
even when parts of the person are covered with fabrics (see Figure 12.1).

4. Finally we perform a quantitative error analysis. This is realized by comparing
the MoCap-results with a (commercially available) marker based tracking sys-
tem. The analysis shows that we get stable results and can compete with the
error range of marker based tracking systems.
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Fig. 12.2. The MoCap system in [28]: Top: The model of the person is assumed.
Left: The object contours are extracted in the input images. Right: These are used
for correspondence pose estimation. The pose result is applied as shape prior for the
segmentation process and the process is iterated.

12.2 Foundations: Silhouette based MoCap

This work is based on a marker-less MoCap system [30, 28]. In this system, the
human being is represented in terms of free-form surface patches, joint indices are
added to each surface node and the joint positions are assumed. This allows to gen-
erate arbitrary body configurations, steered through joint angles. The corresponding
counterparts in the images are 2D silhouettes: These are used to reconstruct 3D ray
bundles and a spatial distance constraint is minimized to determine the position
and orientation of the surface mesh and the joint angles. In this section we will give
a brief summary of the MoCap system. These foundations are needed later to ex-
plain concisely, where and how the cloth draping approach is incorporated. A more
detailed survey can be found in Chapter 11.

12.2.1 Silhouette extraction

In order to estimate the pose from silhouettes, these silhouettes have to be extracted
first, which comes down to a classical segmentation problem. In the system described
here, the segmentation is based on a level set representation of contours.
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Fig. 12.3. Silhouette extraction based on level set functions. Left: Initial segmen-
tation. Right: Segmentation result.

A level set function Φ ∈ Ω 7→ R splits the image domain Ω into the foreground
region Ω1 and background region Ω2 with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if
x ∈ Ω2. The zero-level line thus marks the boundary between both regions. In order
to make the representation unique, the level set functions are supposed to be signed
distance functions.
Both regions are analyzed with respect to their feature distribution. The feature
space may contain, e.g., gray value, color, or texture features. The key idea is to
evolve the contour such that the two regions maximize the a-posteriori probability.
Usually, one assumes a priori a smooth contour, but more sophisticated shape priors
can be incorporated as well, as shown in Section 12.2.4. Maximization of the posterior
can be reformulated as minimization of the following energy functional:

E(Φ, p1, p2) = −
Z

Ω

`
H(Φ(x)) log p1 + (1−H(Φ(x))) log p2 + ν|∇H(Φ(x))|

´
dx,(12.1)

where ν > 0 is a weighting parameter and H(s) is a regularized version of the
Heaviside function, e.g. the error function. The probability densities pi describe the
region model. We use a local Gaussian distribution. These densities are estimated
according to the expectation-maximization principle. Having the level set function
initialized with some contour, the probability densities within the two regions can
be estimated. Contour and probability densities are then updated in an iterative
manner. An illustration can be seen in Figure 12.3. The left picture depicts the
initialization of the contour. The right one shows the estimated (stationary) contour
after 50 iterations. As can be seen, the legs and the skirt are well extracted, but there
are some problems in the area of the feet region caused by shadows. Incorporation
of a shape prior greatly reduces such effects.
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12.2.2 Pose estimation

Assuming an extracted image contour and the silhouette of the projected surface
mesh, the closest point correspondences between both contours are used to define
a set of corresponding 3D lines and 3D points. Then a 3D point-line based pose
estimation algorithm for kinematic chains is applied to minimize the spatial distance
between both contours: For point based pose estimation each line is modeled as a
3D Plücker line Li = (ni,mi), with a (unit) direction ni and moment mi [23]. There
exist different ways to represent projection rays. As we have to minimize distances
between correspondences, it is advantageous to use an implicit representation for a
3-D line. It allows instantaneously to determine the distance between a point and a
line. A Plücker line L = (n,m) is given as a unit vector n and a moment m with
m = x×n for a given point x on the line. An advantage of this representation is its
uniqueness (apart from possible sign changes). Moreover, the incidence of a point x
on a line L = (n,m) can be expressed as

x ∈ L ⇔ x× n−m = 0. (12.2)

This equation provides us with an error vector. Let L = (n,m), with m = v × n as
shown in Figure 12.4, and x = x1 + x2, with x /∈ L and x2 ⊥ n.

L

xv

n

x

x1

2

Fig. 12.4. Comparison of a 3-D point x with a 3-D line L.

Since x1 × n = m, x2 ⊥ n, and ‖n‖ = 1, we have

‖x× n−m‖ = ‖x1 × n + x2 × n −m‖ = ‖x2 × n‖ = ‖x2‖ (12.3)

where ‖ · ‖ denotes the Euclidean norm. This means that x×n−m in (12.2) results
in the (rotated) perpendicular error vector to line L.
The 3D rigid motion is expressed as exponential form

M = exp(θξ̂) = exp

„
θω̂ θv

03×1 0

«
(12.4)

where θξ̂ is the matrix representation of a twist ξ ∈ se(3) = {(v, ω̂)|v ∈ R
3, ω̂ ∈

so(3)}, with so(3) = {A ∈ R
3×3|A = −AT }. The Lie algebra so(3) is the tangential

space of the 3D rotations. Its elements are (scaled) rotation axes, which can either
be represented as a 3D vector or skew symmetric matrix,
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A twist ξ contains six parameters and can be scaled to θξ for a unit vector ω. The
parameter θ ∈ R corresponds to the motion velocity (i.e., the rotation velocity and
pitch). For varying θ, the motion can be identified as screw motion around an axis
in space. The six twist components can either be represented as a 6D vector or as a
4 × 4 matrix,

θξ = θ(ω1, ω2, ω3, v1, v2, v3)
T , ‖ω‖2 = 1, θξ̂ = θ

0
BB@

0 −ω3 ω2 v1
ω3 0 −ω1 v2
−ω2 ω1 0 v3

0 0 0 0

1
CCA .(12.6)

To reconstruct a group action M ∈ SE(3) from a given twist, the exponential

function exp(θξ̂) =
P∞
k=0

(θξ̂)k

k!
= M ∈ SE(3) must be computed. This can be done

efficiently by using the Rodriguez formula [23].
For pose estimation the reconstructed Plücker lines are combined with the screw
representation for rigid motions:
Incidence of the transformed 3D point Xi with the 3D ray Li = (ni,mi) can be
expressed as

(exp(θξ̂)Xi)3×1 × ni −mi = 0. (12.7)

Since exp(θξ̂)Xi is a 4D vector, the homogeneous component (which is 1) is ne-
glected to evaluate the cross product with ni. Then the equation is linearized and
iterated, see [28].
Joints are expressed as special screws with no pitch of the form θj ξ̂j with known ξ̂j
(the location of the rotation axes is part of the model) and unknown joint angle θj .
The constraint equation of an ith point on a jth joint has the form

(exp(θξ̂) exp(θ1ξ̂1) . . . exp(θj ξ̂j)Xi)3×1 × ni −mi = 0 (12.8)

which is linearized in the same way as the rigid body motion itself. It leads to three
linear equations with the six unknown pose parameters and j unknown joint angles.

12.2.3 Shape Registration

The goal of shape registration can be formulated as follows: Given a certain distance
measure; the task is to determine one transformations that leads to the minimum
distance between shapes. A very popular shape matching method working on such
representations is the iterated closest point (ICP) algorithm [1]. Given two finite sets
P and Q of points. The (original) ICP algorithm calculates a rigid transformation
T and attempts to ensure TP ⊆ Q.

1. Nearest point search: for each point p ∈ P find the closest point q ∈ Q.
2. Compute registration: determine the transformation T that minimizes the

sum of squared distances between pairs of closest points (p, q).
3. Transform: apply the transformation T to all points in set P .
4. Iterate: repeat step 1 to 3 until the algorithm converges.
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This algorithm converges to the next local minimum of the sum of squared distances
between closest points. A good initial estimate is required to ensure convergence to
the sought solution. Unwanted solutions may be found if the sought transformation
is too large, e.g. many shapes have a convergence radius in the area of 20◦ [8], or if
the point sets do not provide sufficient information for a unique solution.
The original ICP algorithm has been modified in order to improve the rate of conver-
gence and to register partially overlapping sets of points. Zhang [37] uses a modified
cost function based on robust statistics to limit the influence of outliers. Other ap-
proaches aim at the avoidance of local minima during registration subsuming the
use of Fourier descriptors [31], color information [15], or curvature features [33].
The advantages of ICP algorithms are obvious: they are easy to implement and
will provide good results, if the sought transformation is not too large [8]. For our
tracking system we compute correspondences between points on image silhouettes
to the surface mesh with the ICP algorithm presented in [31].
In Chapter 11 and [27] it is further explained how an alternative matching procedure,
by using the optic flow can be used to improve the convergence rate and convergence
radius. In this work we make use of both matchers to register a surface model to an
image silhouette.

12.2.4 Combined pose estimation and segmentation

Since segmentation and pose estimation can both benefit from each other, it is
sensible to couple both problems in a joint optimization problem. To this end, the
energy functional for image segmentation in (12.1) is extended by an additional term
that integrates the surface model:

E(Φ, θξ) = −
Z

Ω

`
H(Φ) log p1 + (1−H(Φ)) log p2

´
dx+ ν

Z

Ω

|∇H(Φ)| dx

+λ

Z

Ω

(Φ− Φ0(θξ))
2 dx

| {z }
Shape

.
(12.9)

The quadratic error measure in the shape term has been proposed in the context of
2D shape priors, e.g. in [32]. The prior Φ0 ∈ Ω → R is assumed to be represented
by the signed distance function. This means in our case, Φ0(x) yields the distance
of x to the silhouette of the projected object surface.

Given the contour Φ, the pose estimation method from Section 12.2.2 minimizes the
shape term in (12.9). Minimizing (12.9) with respect to the contour Φ, on the other
hand, leads to the gradient descent equation

∂tΦ = H ′(Φ)

„
log

p1

p2
+ ν∇>

„ ∇Φ
|∇Φ|

««
+ 2λ (Φ0(θξ)− Φ). (12.10)

The total energy is minimized by iterating both minimization procedures. Both
iteration steps minimize the distance between Φ and Φ0. While the pose estimation
method draws Φ0 towards Φ, thereby respecting the constraint of a rigid motion,
(12.10) in return draws the curve Φ towards Φ0, thereby respecting the data in the
image.
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12.2.5 Quantitative error analysis

A lack of many studies (e.g. [19]) is that only a visual feedback about the pose result
is given, by overlaying the pose result with the image data.

Fig. 12.5. Screen shot of the used EVA solver from Motion Analysis
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Fig. 12.6. Tracked arms: The angle diagrams show the elbow values of the Motion
analysis system (dotted) and the silhouette system (solid).
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Fig. 12.7. Tracked Push-ups: The angle diagrams show the elbow values of the
Motion analysis system (dotted) and the silhouette system (solid).

To enable a quantitative error analysis, we use a commercial marker based tracking
system for a comparison. Here, we use the Motion Analysis software [20], with
an 8-Falcon-camera system. For data capture we use the Eva 3.2.1 software and
the Motion Analysis Solver Interface 2.0 for inverse kinematics computing. In this
system a human has to wear a body suit and retroflective markers are attached to
it. Around each camera is a strobe light led ring and a red-filter is in front of each
lens. This gives very strong image signals of the markers in each camera. These are
treated as point markers which are reconstructed in the eight-camera system. Figure
12.5 shows a screen shot of the Motion Analysis system. The system is calibrated
by using a wand-calibration method. Due to the filter in front of the images we had
to use a second camera set-up which provides real image data. This camera system
is calibrated by using a calibration cube. After calibration, both camera systems
are calibrated with respect to each other. Then we generate a stick-model from the
point markers including joint centers and orientations. This results in a complete
calibrated set-up we use for a system comparison.
Figure 12.6 shows the first test sequence, where the subject is just moving the arms
forwards and backwards. The diagram on the right side shows the estimated angles
of the right elbow. The marker results are given as dotted lines and the silhouette
results in solid lines. The overall error between both angles diagrams is 2.3 degrees,
including the tracking failure between frames 200 till 250.
Figure 12.7 shows the second test sequence, where the subject is performing a series
of push-ups. Here the elbow angles are much more characteristic and also well com-
parable. The overall error is 1.7 degrees. Both sequences contain partial occlusions
in certain frames. But this can be handled from the algorithm.
In [26] eight biomechanical measurement systems are compared (including the Mo-
tion Analysis system). A rotation experiment is performed, which shows that the
RMS4 errors are typically within three degrees. Our error measures fit in this range
quite well.

4 root mean square
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12.3 Kinematic cloth draping

To integrate a clothing model in the MoCap system, we decided to use a geometric
approach. The main reason is that cloth draping is needed in one of the innermost
loops for pose estimation and segmentation. Therefore it must be very fast. In our
case we need around 400 iterations for each frame to converge to a solution. A cloth
draping algorithm in the area of seconds would require hours to calculate the pose
of one frame and weeks for a whole sequence.

Fig. 12.8. The cloth draping principle. Joints are used to deform the cloth while
draping on the surface mesh.

Fig. 12.9. Draping of the skirt model

We decided to model the skirt as a string-system with underlined kinematic chains:
The main principle is visualized on the left in Figure 12.8 for a piece of cloth falling
on a plane. The piece of cloth is represented as a particle grid, a set of points with
known topology. While lowering the cloth, the distance of each cloth point to the
ground plane is determined. If the distance between one point on the cloth to the
surface is below a threshold, the point is set as a fixed-point, see the top right
image on the left of Figure 12.8. Now the remaining points are not allowed to fall
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Fig. 12.10. Cloth draping of a skirt and shorts in a simulation environment.

Fig. 12.11. Reconstraining the skirts’ length.

Fig. 12.12. External forces, e.g. virtual wind on the shorts (left) and the skirt
(right). Visualized is frontal and backward wind.

downwards anymore. Instead, for each point, the nearest fixed-point is determined
and a joint (perpendicular to the particle point) is used to rotate the free point
along the joint axis through the fixed point. The used joint axes are marked as blue
lines in Figure 12.8. The image on the right in Figure 12.8 shows the geometric
principle to determine the twist for rotation around a fixed point: The blue line
represents a mesh of the rigid body, x is the fixed point and the (right) pink line
segment connects x to a particle p of the cloth. The direction between both points is
projected onto the y-plane of the fixed point (1). The direction is then rotated around
90 degrees (2), leading to the rotation axis n. The point pairs (n, x × n) are the
components of the twist, see equation (12.6). While lowering the cloth, free particles
not touching a second rigid point, will swing below the fixed point (e.g. p′). This
leads to an opposite rotation (indicated with (1’), (2’) and n′) and the particle swings
back again, resulting in a natural swinging draping pattern. The draping velocity
is steered through a rotation velocity θ, which is set to 2 degrees during iteration.
Since all points either become fixed points, or result in a stationary configuration
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Fig. 12.13. Left: Overlaid pose result without external forces. Right: Overlaid pose
result including external forces.

while swinging backwards and forwards, we constantly use 50 iterations to drape
the cloth. The remaining images on the left in Figure 12.8 show the ongoing draping
and the final result. Figure 12.9 shows the cloth draping steps of a skirt model.
Figure 12.10 shows example images of a skirt and a pair of shorts falling on the
leg model. The skirt is modeled as a 2-parametric mesh model. Due to the use of
general rotations, the internal distances in the particle mesh cannot change with
respect to one of these dimensions, since a rotation maintains the distance between
the involved points. However, this is not the case for the second sampling dimension.
For this reason, the skirt needs to be re-constrained after draping. This is visualized
in Figure 12.11: If a stretching parameter is exceeded, the particles are reconstrained
to minimal distance to each other. This is only done for the non-fixed points (i.e. for
those which are not touching the skin). It results in a better appearance especially
for certain leg configurations.
Figure 12.11 shows that even the creases are maintained. In this case, shorts are
simpler since they are modeled as cylinders, transformed together with the legs and
then draped.
To improve the dynamic behavior of clothing during movements, we also add exter-
nal forces to the cloth draping. We continue with the cloth-draping in the following
way: dependent on the direction of a force we determine a joint on the nearest
fixed point for each free point on the surface mesh with the joint direction being
perpendicular to the force direction. Now we rotate the free point around this axis
dependent on the force amount (expressed as an angle) or until the cloth is touching
the underlying surface. Figure 12.12 shows examples of the shorts and skirt with
frontal or backward virtual wind acting as external force. The external forces and
their directions are later part of the minimization function during pose tracking.
Figure 12.13 visualizes the effect of the used deformation model. Since the motion
dynamics of the cloth are determined dynamically, we need no information about
the cloth type or weight since they are implicitly determined from the minimized
cloth dynamics in the image data; we only need the measurements of the cloth.

12.4 Combined cloth draping and MoCap

The assumptions are as follows: We assume the representation of a subject’s lower
torso (i.e. for the hip and legs) in terms of free-form surface patches. We also as-
sume known joint positions along the legs. Furthermore we assume the wearing of
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Fig. 12.14. The basic algorithm for combined cloth draping and motion capturing

a skirt or shorts with known measures. The person is walking or stepping in a four-
camera setup. These cameras are triggered and calibrated with respect to one world
coordinate system. The task is to determine the pose of the model and the joint
configuration. For this we minimize the image error between the projected surface
meshes to the extracted image silhouettes. The unknowns are the pose, kinematic
chain and the cloth parameters (external forces, cloth thickness, etc.). The task can
be represented as an error functional as follows:

E(Φ, p1, p2, θξ, θ1, . . . , θn, c, w) =

−
Z

Ω

`
H(Φ) log p1 + (1−H(Φ)) log p2 + ν|∇H(Φ)|

´
dx

| {z }
segmentation

+λ

Z

Ω

(Φ− Φ0( θξ, θ1, . . . , θn| {z }
pose and kinematic chain,

, c, w|{z}
external forces

))dx

| {z }
shape error

Due to the large number of parameters and unknowns we decided for an itera-
tive minimization scheme, see Figure 12.14: Firstly, the pose, kinematic chain and
external forces are kept constant, while the error functional for the segmentation
(based on Φ, p1, p2) is minimized (section 12.2.1). Then the segmentation and exter-
nal forces are kept constant while the pose and kinematic chain are determined to
fit the surface mesh and the cloth to the silhouettes (section 12.2.2). Finally, differ-
ent directions of external forces are sampled to refine the pose result (section 12.3).
Since all parameters influence each other, the process is iterated until a steady state
is reached. In our experiments, we always converged to a local minimum.
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12.5 Experiments

Fig. 12.15. Example sequences for tracking clothed people. Top row: walking, leg
crossing, knee bending and knee pulling with a skirt. Bottom row: walking, leg
crossing, knee bending and knee pulling with shorts. The pose is determined from
4 views (just one of the views is shown, images are cropped).

Fig. 12.16. Error during grabbing the images

For the experiments we used a four-camera set up and grabbed image sequences
of the lower torso with different motion patterns: The subject was asked to wear
the skirt and the shorts while performing walking, leg crossing and turning, knee
bending and walking with knees pulled up. We decided on these different patterns,
since they are not only of importance for medical studies (e.g. walking), but they
are also challenging for the cloth simulator, since the cloth is partially stretched
(knee pulling sequence) or hanging down loosely (knee bending). The turning and
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Fig. 12.17. Example leg configurations of the sequences. The examples are taken
from the subject wearing the shorts (blue) and the skirt (red) (leg crossing, walking,
knee bending, knee pulling).

Fig. 12.18. The set-up for quantitative error analysis: Left/middle, the subject with
attached markers. The cloth does not interfere with tracking the markers. Right: A
strobe light camera of the used Motion Analysis system.

leg crossing sequence is interesting due to the higher occlusions. Figure 12.15 shows
some pose examples for the subject wearing the skirt (top) and shorts (bottom). The
pose is visualized by overlaying the projected surface mesh onto the images. Just one
of the four camera views is shown. Each sequence consists of 150-240 frames. Figure
12.16 visualizes the stability of our approach: While grabbing the images, a couple of
frames were stored completely wrong. These sporadic outliers can be compensated
from our algorithm, and a few frames later (see the image on the right) the pose is
correct. Figure 12.17 shows leg configurations in a virtual environment. The position
of the body and the joints reveal a natural configuration.
Finally, the question about the stability arises. To answer this question, we attached
markers to the subject and tracked the sequences simultaneously with the commer-
cially available Motion Analysis system [20]. The markers are attached to the visible
parts of the leg and are not disturbed by the cloth, see Figure 12.18. We then com-
pare joint angles for different sequences with the results of the marker based system,
similar to Section 12.2.5. The overall errors for both types of cloth varies between
1.5 and 4.5 degrees, which indicates a stable result, see [26]. Table 12.1 summarizes
the deviations
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Fig. 12.19. Left: Knee angles from sequences wearing the shorts. Right: Knee
angles from sequences wearing the skirt. Top left: Angles of the knee up sequence.
Bottom left: Angles of the knee bending sequence. Top right: Angles of the walk-
ing sequence. Bottom right: Angles of the leg crossing sequence.

Table 12.1. Deviations of the left and right knee for different motion sequences.

Skirt Shorts

Sequence Left knee Right knee

Dancing 3.42 2.95
Knee-up 3.22 3.43
Knee bending 3.33 3.49
Walking 2.72 3.1

Sequence Left knee Right knee

Dancing 4.0 4.0
Knee-up 3.14 4.42
Knee bending 2.19 3.54
Walking 1.52 3.38

The diagrams in Figure 12.19 shows the overlay of the knee angles for two skirt and
two shorts sequences. The two systems can be identified by the smooth curves from
the Motion Analysis system and unsmoothed curves (our system).

12.5.1 Prior knowledge on angle configurations

Chapter 11 also introduced the use of nonparametric density estimates to build
additional constraint equations to enforce the algorithm to converge to familiar
configurations. It further can be seen as the embedding of soft-constraints to penalize
configurations which are uncommon (e.g. to move the arm through the body) and
they regularize the equations which results in guaranteed non-singular system of
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equations. These advantages can also be seen from the experiments in Figure 12.20,
12.21 and 12.22:

Fig. 12.20. Scissors sequence (cropped images, one view is shown): The images
have been distorted with 60% uncorrelated noise, rectangles of random size and gray
values and a black stripe across the images.

Fig. 12.21. Quantitative error analysis of the scissors sequence (the knee angles are
shown). Black: the results of the Motion Analysis system. Blue: the outcome from
our marker-less system (deviation: 3.45 and 2.18 degrees). Red: The results from
our system for the highly disturbed image data (deviation: 6.49 and 3.0 degrees).
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Fig. 12.22. Cartwheel sequence in a Lab environment: The legs are not visible in
some key frames, but the prior knowledge allows to give the legs a natural (most
likely) configuration. The top images shows two views and three example frames of
the sequence. The bottom images show the leg configuration in a virtual environ-
ment.

Figure 12.20 shows results of a scissors sequence. The images have been distorted
with 60% uncorrelated noise, rectangles of random size and gray values and a black
stripe across the images. Due to prior knowledge of scissor jumps, the algorithm
is able to track the sequence successfully. The diagram in Figure 12.21 quantifies
the result by overlaying the knee angles for the marker results (black) with the
undisturbed result (blue) and highly noised (red) image data. The deviation for
the plain data is 3.45 and 2.18 degrees, respectively and for the highly disturbed
sequence we get 6.49 and 3.0 degrees. Due to the high amount of noise added to the
image data, we consider the outcome as a good result.
Figure 12.22 shows results from a cartwheel sequence. During tracking the sequence
the legs are not visible in some key frames, but the prior knowledge allows to give
the legs a natural (most likely) configuration. The top images shows two views and
three example frames of the sequence. The bottom images show the leg configuration
in a virtual environment.
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12.6 Summary

The contribution presents an approach for motion capture of clothed people. To
achieve this we extend a silhouette-based motion capture system, which relies on
image silhouettes and free-form surface patches of the body with a cloth draping
procedure. We employ a geometric approach based on kinematic chains. We call this
cloth draping procedure kinematic cloth draping. This model is very well suited to
be embedded in a motion capture system since it allows us to minimize the cloth
draping parameters (and external forces) within the same error functional such as
the segmentation and pose estimation algorithm. Due to the number of unknowns
for the segmentation, pose estimation, joints and cloth parameters, we decided on
an iterative solution. The experiments with a skirt and shorts show that the for-
mulated problem can be solved. We are able to determine joint configurations and
pose parameters of the kinematic chains, though they are considerably covered with
clothes. Indeed, we use the cloth draping appearance in images to recover the joint
configuration and simultaneously determine dynamics of the cloth. Furthermore,
Parzen-Rosenblatt densities of static joint configurations are used to generate con-
straint equations which enables a tracking of persons in highly noisy or corrupted
image sequences.
To quantify the results, we performed an error analysis by comparing our method
with a commercially available marker based tracking system. The experiments show
that we are close to the error range of marker based tracking systems [26].
Applications are straightforward: The motion capture results can be used to animate
avatars in computer animations, and the angle diagrams can be used for the analysis
of sports movements or clinical studies. The possibility of wearing loose clothes
is much more comfortable for many people and enables a more natural motion
behavior. The presented extension also allows us to analyze outdoor activities, e.g.
soccer or other team sports.
For future works we plan to extend the cloth draping model with more advanced ones
[18] and we will compare different draping approaches and parameter optimization
schemes in the motion capturing setup.
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