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Abstract. We propose a nonlinear statistical shape model for level set
segmentation which can be efficiently implemented. Given a set of train-
ing shapes, we perform a kernel density estimation in the low dimensional
subspace spanned by the training shapes. In this way, we are able to com-
bine an accurate model of the statistical shape distribution with efficient
optimization in a finite-dimensional subspace. In a Bayesian inference
framework, we integrate the nonlinear shape model with a nonparamet-
ric intensity model and a set of pose parameters which are estimated
in a more direct data-driven manner than in previously proposed level
set methods. Quantitative results show superior performance (regard-
ing runtime and segmentation accuracy) of the proposed nonparametric
shape prior over existing approaches.

1 Introduction

Originally proposed in [5, 11] as a means to propagate interfaces in time, the
level set method has become increasingly popular as a framework for image
segmentation. The key idea is to represent an interface Γ ⊂ Ω in the image
domain Ω⊂R3 implicitly as the zero level set of an embedding function φ :R3→
Ω:

Γ = {x ∈ Ω | φ(x) = 0}, (1)

and to evolve Γ by propagating the embedding function φ according to an appro-
priate partial differential equation. The first applications of this level set formal-
ism for the purpose of image segmentation were proposed in [1, 10, 7]. Two key
advantages over explicit interface propagation are the independence of a particu-
lar parameterization and the fact that the implicitly represented boundary Γ can
undergo topological changes such as splitting or merging. This makes the frame-
work well-suited for the segmentation of several objects or multiply-connected
objects.

When segmenting medical images, one commonly has to deal with noise,
missing or misleading image information. For certain imaging modalities such
as ultrasound or CT, the structures of interest do not differ much from their
background in terms of their intensity distribution — see Figure 1. Therefore
they can no longer be accurately segmented based on the image information
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Fig. 1. Segmentation challenges and estimated intensity distributions.
The two curves on the right correspond to the empirical probability of intensities
inside and outside the left ventricle (for the ultrasound image) and the prostate (for
the CT image). The region-based segmentation of these structures is a challenging
problem, because objects and background have similar histograms. Our segmenta-
tion scheme optimally exploits the estimated probabilistic intensity models.

alone. In recent years, researchers have therefore proposed to enhance the level
set method with statistical shape priors. Given a set of training shapes, one can
impose information about which segmentations are a priori more or less likely.
Such prior shape information was shown to drastically improve segmentation
results in the presence of noise or occlusion [9, 16, 3, 14, 4, 6]. Most of these ap-
proaches are based on the assumption that the training shapes, encoded by their
signed distance function, form a Gaussian distribution. This has two drawbacks:
Firstly, the space of signed distance functions is not a linear space, therefore,
the mean shape and linear combinations of eigenmodes are typically no longer
signed distance functions. Secondly, even if the space were a linear space, it is
not clear why the given set of sample shapes should be distributed according to
a Gaussian density. In fact, as we will demonstrate in this work, they are gen-
erally not Gaussian distributed. Recently, it was proposed to use nonparametric
density estimation in the space of level set functions [3] in order to model non-
linear1 distributions of training shapes. While this resolves the above problems,
one sacrifices the efficiency of working in a low-dimensional subspace (formed by
the first few eigenmodes) to a problem of infinite-dimensional optimization.

In the present paper, we propose a framework for knowledge-driven level set
segmentation which integrates three contributions: Firstly, we propose a statis-
tical shape prior which combines the efficiency of low-dimensional PCA-based
methods with the accuracy of nonparametric statistical shape models. The key
idea is to perform kernel density estimation in a linear subspace which is suffi-
ciently large to embed all training data. Secondly, we propose to estimate pose
and translation parameters in a more data-driven manner. Thirdly, we optimally
exploit the intensity information in the image by using probabilistic intensity
models given by kernel density estimates of previously observed intensity distri-
butions.

1 The term nonlinear refers to the fact that the manifold of permissible shapes is not
merely a linear subspace.
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2 Level Set Segmentation as Bayesian Inference

The goal of level set segmentation can be formulated as the estimation of the
optimal embedding function φ : Ω→R given an image I : Ω→R. In the Bayesian
framework, this can be computed by maximizing the posterior distribution

P(φ | I) ∝ P(I |φ) P(φ). (2)

The maximization of (2) results in a problem of infinite-dimensional opti-
mization. Given a set of training shapes encoded by their signed distance func-
tions {φi}i=1..N , Tsai et al. [16] proposed to reduce the segmentation problem to
one of finite-dimensional optimization by constraining the optimization problem
to the finite-dimensional subspace spanned by the training shapes.

In this paper, we make use of this compact representation of the embedding
function. Given the distance d on the space of signed distance functions defined
by: d2(φ1, φ2) =

∫
Ω

(φ1(x)−φ2(x))
2
dx, we align the set of training shapes with

respect to translation and rotation. Subsequently, we constrain the level set
function φ to a parametric representation of the form:

φα,h,θ(x) = φ0(Rθx+ h) +
n∑

i=1

αi ψi(Rθx+ h), (3)

where φ0(x) = 1
N

∑N
i=1 φi(x) represents the mean shape, {ψi(x)}i=1..n are the

eigenmodes of the distribution, and n < N is the dimension of the subspace
spanned by the N training shapes. The parameter vector α = (α1, . . . , αn)
models shape deformations, while the parameters h ∈ R3 and θ ∈ [0, 2π]3 model
translation and rotation of the respective shape.2

The infinite-dimensional Bayesian inference problem in (2) is therefore re-
duced to a finite-dimensional one where the conditional probability

P(α, h, θ | I) ∝ P(I |α, h, θ) P(α, h, θ), (4)

is optimized with respect to the shape parameters α, and the transformation
parameters h and θ. In the following, we will assume a uniform prior on these
transformation parameters, i.e. P(α, h, θ) = P(α). In the next section, we will
discuss three solutions to model this shape prior.

3 An Efficient Nonparametric Statistical Shape Model

Given a set of aligned training shapes {φi}i=1..N , we can represent each of them
by their corresponding shape vector {αi}i=1..N . In this notation, the goal of sta-
tistical shape learning is to infer a statistical distribution P(α) from these sample
shapes. Two solutions which have been proposed are based on the assumptions
2 In our applications, where the scale of objects is known, a generalization to larger

transformations groups (e.g. similarity or affine) did not appear useful.
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Fig. 2. Schematic plots of different density estimates within a subspace.
Darker shading indicates areas of high probability density for the respective models.
The kernel density estimator adapts to the training data more flexibly since it does
not rely on specific assumptions about the shape of the distribution.

that the training shapes can be approximated by a uniform distribution [16,
14]: P(α) = const., or by a Gaussian distribution [9]:

P(α) ∝ exp
(
−α>Σ−1α

)
, where Σ =

1
N

∑
i

αiα
>
i . (5)

In the present paper, we propose to make use of nonparametric density es-
timation [13] to approximate the shape distribution within the linear subspace.
We model the shape distribution by the kernel density estimate:

P(α) =
1
Nσ

N∑
i=1

K

(
α−αi

σ

)
, where K(u) =

1√
2π

exp
(
−u

2

2

)
. (6)

There exist various methods to automatically estimate appropriate values for
the width σ of the kernel function, ranging from k-th nearest neighbor estimates
to cross-validation and bootstrapping. In this work, we simply set σ to be the
average nearest neighbor distance: σ2 = 1

N

∑N
i=1 minj 6=i |αi −αj |2.

In the context of level set based image segmentation, the kernel density esti-
mator (6) has two advantages over the uniform and Gaussian distributions:

– The assumptions of uniform distribution or Gaussian distribution are gener-
ally not fulfilled. The kernel density estimator, on the other hand, is known to
approximate arbitrary distributions. Under mild assumptions, it was shown
to converge to the true distribution in the limit of infinite sample size. We
refer to [15] for a proof.

– The space of signed distance functions is known to not be a linear space.
Therefore, neither the mean shape φ0 nor a linear combination of eigenmodes
as in (3) will in general be a signed distance function. As a consequence, the
functions φ(x) favored by the uniform or the Gaussian distribution cannot
be expected to be signed distance functions. The kernel density estimator
(6), on the other hand, favors shape vector α which are in the vicinity of the
sample shape vectors αi. By construction, these vector correspond to signed
distance functions. In fact: In the limit of infinite sample size, the
distribution inferred by the kernel density estimator (6) converges
towards a distribution on the manifold of signed distance functions.
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Figure 2 shows schematic plots of the three methods for a set of sample data
spanning a two-dimensional subspace in R3. The kernel density estimator clearly
captures the distribution most accurately.

In analogy to the shape learning, we make use of kernel density estimation
to learn the conditional probability for the intensity function I in (4) from ex-
amples. A similar precomputation of intensity distributions by means of mixture
models was proposed in [12]. Given a set of presegmented training images, the
kernel density estimate of the intensity distributions pin and pout of object and
background are given by the corresponding smoothed intensity histograms. This
has two advantages: Firstly, the kernel density estimator does not rely on spe-
cific assumptions about the shape of the distribution. Figure 1 shows that the
intensity distributions for ultrasound and CT images are not well approximated
by Gaussian or Laplacian models. Secondly, in contrast to the joint estimation of
intensity distributions (cf. [2, 8]), this simplifies the segmentation process which
no longer requires an updating of intensity models. Moreover, we found the seg-
mentation process to be more robust to initialization in numerous experiments.

4 Energy Formulation and Minimization

Maximizing the posterior probability in (2), or equivalently minimizing its neg-
ative logarithm, will generate the most probable segmentation of a given image.
With the nonparametric models for shape and intensity introduced above, this
leads to an energy of the form

E(α, h, θ) = − logP(I|α, h, θ)− logP(α), (7)

The nonparametric intensity model permits to express the first term and equa-
tion (6) gives exactly the second one. With the Heaviside step function H and
the short hand Hφ = H(φα,h,θ(x)), we end up with:

E(α, h, θ)=−
∫

Ω

Hφ log pin(I) + (1−Hφ) log pout(I)dx−log

(
1
Nσ

N∑
i=1

K

(
α−αi

σ

))
,

With e(x) =
[
log pout(I(x))

pin(I(x))

]
, Ki = K

(α−αi

σ

)
, and ψ = (ψ1, . . . , ψn), we obtain

the following system of coupled gradient descent equations:

dα

dt
=
∫
Ω

δ(φα,h,θ(x))ψ(Rθx+ h) e(x) dx+
1
σ2

∑N
i=1(αi −α)Ki∑N

i=1Ki

,

dh

dt
=
∫
Ω

δ(φα,h,θ(x))∇φα,h,θ(x) e(x) dx,

dθ

dt
=
∫
Ω

δ(φα,h,θ(x)) (∇φα,h,θ(x) · ∇θRx) e(x) dx.

(8)

In applications, we solve these equations by initializing the shape α with the
mean shape (α = 0) and the transformation parameters h and θ with some
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Initialization No prior Uniform prior Kernel prior

Fig. 3. Model Comparison. Level set segmentations obtained without prior,
with a uniform prior in the subspace and with a kernel prior in the subspace. In
contrast to the uniform prior, the nonparametric prior accurately constrains the
segmentation to a submanifold of familiar shapes (90% correctly classified, 2.7%
false positives).

reasonable estimates. Subsequently, we discretize the above partial differential
equations by a standard finite difference scheme.

Note that in all equations, the Dirac delta function δ appears as factor inside
the integrals over the image domain Ω. This allows to restrict all computations to
a narrow band around the zero crossing of φ. While the evolution of translation
and pose parameters h and θ are merely driven by the data term e(x), the shape
vector α is additionally drawn towards each training shape with a strength that
decays exponentially with the distance to the respective shape.

5 Experimental Results and Validation

Heart segmentation from ultrasound images

Figure 3 shows experimental results obtained for the segmentation of the left
ventricle in 2D cardiac ultrasound sequences, using shape priors constructed from
a set of 21 manually segmented training images. In contrast to the segmentation
with uniform prior (top row), the nonparametric statistical shape prior allows to
accurately constrain the segmentation (bottom row). This becomes particularly
apparent in areas where the data term is too weak. As a quantitative evaluation
we computed the percentage of correctly classified object pixels and that of mis-
classified ones. During energy minimization, the percentage of correctly classified
pixels increases from 56% to 90% while the percentage of false positives decreases
from 27% to 2.7% by using the kernel prior. Using the uniform prior, we attain
92% correctly classified, yet the percentage of false positives increases to 42%:
Merely constraining the boundary evolution to the linear subspace spanned by
the training shapes is insufficient to provide for accurate segmentation results.

Prostate segmentation from 3D CT images

We built a nonparametric 3D shape model of the prostate using 12 manually
extracted prostates (with seminal vesicles) collected from two different patients.
In contrast to existing work, we subsequently used a single shape model for the
segmentation of images from different patients.

We employed a leave-one-out strategy by removing the image of interest from
the training phase. Figure 5 shows 2D cuts of a few results obtained using this
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Fig. 4. Prostate segmentation for 2 patients with the same shape model.
Each column shows coronal and axial slices of the same segmentation, for the first
patient (left two columns) and the second one (last two). The first column also
shows the manual segmentation (black contour).

3D view Kernel/Uniform Kernel/Gaussian Kernel/Manual

Fig. 5. Comparison of the segmentations obtained with the kernel prior
(white) and with alternative approaches (black).

strategy. With a one-click initialization inside the organ, the algorithm lead to a
steady-state solution in less than 20 seconds. We obtained 86% successfully clas-
sified organ voxels and 11% mis-classified organ voxels. This compares favorably
to the intra-patients results reported in [6]. Figure 4 provides qualitative com-
parisons to the manual segmentation, as well as to the segmentations obtained
with uniform and Gaussian approximations of the shape distribution.

6 Conclusion

We proposed an efficient and accurate statistical shape prior for level set seg-
mentation which is based on nonparametric density estimation in the linear
subspace spanned by the level set surfaces of a set of training shapes. In addi-
tion, our segmentation scheme integrates nonparametric estimates of intensity
distributions and efficient optimization of pose and translation parameters. We
reported quantitative evaluation of segmentation accuracy and speed for cardiac
ultrasound images and for 3D CT images of the prostate. These indicate that
the proposed nonparametric shape prior outperforms previously proposed shape
priors for level set segmentation.
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