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Abstract: In this report, we propose a novel and e�cient approach for active
unsurpervised texture segmentation. First, we show how we can extract a small set
of good features for texture segmentation based on the structure tensor and nonlinear
di�usion. Then, we propose a variational framework that allows to incorporate these
features in a level set based unsupervised segmentation process that adaptively takes
into account their estimated statistical information inside and outside the region to
segment. Unlike features obtained by Gabor �lters, our approach naturally leads to
a signi�cantly reduced number of feature channels. Thus, the supervised part of a
texture segmentation algorithm, where the choice of good feature channels has to be
learned in advance, can be omitted, and we get an e�cient solution for unsupervised
texture segmentation. The actual segmentation process based on the new features
is an active and adaptative contour model that estimates dynamically probability
density functions inside and outside a region and produces very convincing results.
It is implemented using a fast level set based active contour technique and has been
tested on various real textured images. The performance of the approach is favorably
compared to recent studies.

Key-words: Level Set Theory, Texture Segmentation, Adaptative Image Segmen-
tation, Nonlinear Di�usion, Structure Tensor.



Segmentation active et non supervisée d'images

texturées à l'aide d'une di�usion non linéaire du tenseur

de structure

Résumé : Dans ce rapport, nous proposons une nouvelle approche pour la seg-
mentation active d'images texturées. Tout d'abord, nous présentons une méthode
d'extraction d'un nombre restreint de composantes pour caractériser l'information
de texture présente dans l'image à segmenter. Ce processus est basé sur le tenseur de
structure et la di�usion non-linéaire. Ensuite, nous proposons un cadre variationnel
a�n d'incorporer ces di�érentes caractérisitiques dans un processus de segmentation
adaptatif et non supervisé, basé sur les ensembles de niveaux. Contrairement aux
approches utilisant des �ltres de Gabor pour extraire l'information texture, notre
approche fournit naturellement un nombre réduit de composantes. Ainsi, la partie
supervisée pour la segmentation d'images texturées, où le choix des bonnes caracté-
ristiques est issu d'un processus d'apprentissage, peut être évitée et nous obtenons
une solution e�cace pour une segmentation non-supervisée d'images texturées. Basé
sur ces nouvelles composantes, nous proposons un processus de segmentation actif
et adaptatif où les densités de probabilités à l'intérieur et a` l'extérieur du contour
sont estimées de manière dynamique. Nous utilisons une technique rapide basée sur
les ensembles de niveaux pour la mise en oeuvre. Pour �nir, mous présentons des
résultats de validation sur diverses images réelles et nous les comparons avec succès
à ceux obtenus à partir d'études récentes.

Mots-clés : Théorie des courbes de niveaux, segmentation d'images texturées,
segmentation adaptative d'images, di�usion non-linéaire, tenseur de structure.
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1 Introduction

In recent time it has become very popular to use prior knowledge in the �eld of image
segmentation. There are many techniques proposed in the literature, some of them
including priors on the shape of objects [12, 6, 19], others, in the �eld of texture
segmentation, use learned descriptive or generative models of textures in order to
retrieve them during the segmentation process [16, 13]. With no doubt the usage of
appropriate prior knowledge is very important for the ability to deal with di�cult
image scenes. However, there is very few work so far on how to obtain this prior
knowledge automatically. So far segmentation algorithms with the ability to handle
di�cult image scenes need a supervised initialization step, where they are told the
right segmentations of a training set of images. It would be preferable to extract
the prior knowledge automatically from simpler image scenes, in order to use it in
succeeding scenes that are more di�cult to deal with. This requires a powerful image
segmentation method that does not depend on prior knowledge, but can nevertheless
handle the whole set of possible objects as long as the scene is not spoiled by clutter.
Basically such a segmentation process splits into two parts: The �rst part is the
acquisition of suitable features that are powerful enough to discriminate regions that
a human observer would describe as di�erent. The second part models the statistics
of these features and searches for a segmentation that �ts best to this model.
Especially in the area of texture segmentation the literature does not agree so far,
how adequate features should be extracted from the image. Mostly Gabor �lters are
used [9, 16, 22, 21] but for example also the parameters of Markov Random Fields
[7] are quite popular. Gabor �lters have the decisive drawback that they induce a lot
of redundancy and thus lots of feature channels. This is not so much a problem for
supervised segmentation, as in this case statistics can be used to reduce the dimen-
sion of feature space, yet for unsupervised segmentation it is. An interesting work
that helps to solve this problem is that of Bigün et al. [4]. They used the structure
tensor in order to discriminate between textures. The advantage of their method is
that the structure tensor yields only three feature channels for each scale. However,
the Gaussian smoothing used for the structure tensor dislocates the edges in feature
space leading to inaccurate segmentation results. Brox and Weickert [5] proposed a
nonlinear structure tensor based on nonlinear matrix-valued di�usion that is able to
tackle this problem. A very similar outcome is achieved by the approach of van den
Boomgaard and van de Weijer [24], who applied robust statistics to orientation esti-
mation. Our approach is based on that in [5], yet we use a better adapted di�usion
technique that also brings us back to vector-valued di�usion. Sagiv et al. [21] also
apply vector-valued PDEs in order to smooth their feature channels. However, their
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4 Rousson & Brox & Deriche

feature extraction method based on Gabor �lters is completely di�erent from ours.
In Section 4 we will compare the two approaches to each other.
Once the correct features are extracted, a segmentation process that accounts for
these informations must be de�ned. Recently, segmentation methods based on level
sets and variational formulations have been able to integrate di�erent cues like bound-
ary information [14], region information [16] and shape prior [12, 6, 19]. The use of
level set functions to represent evolving curves gives many good properties to the
segmentation process: the curve is represented implicitly, topological changes are
naturally possible, it can be used in any dimension and e�cient techniques for nu-
merical implementation exist. Thus, we decided to de�ne a method based on active
contours using the level set representation. One key point of our method is the unsu-
pervised aspect: the information must be incorporated in the segmentation process
without adding particular knowledge on the image. For this purpose, an adaptative
and active segmentation is proposed, following the idea of [18]. The minimization
of the proposed energy gives the maximum a posteriori segmentation under some
hypotheses which can be made in our case.
The remainder of this paper is organized as follows: In the next section we derive our
feature extraction method from the structure tensor and nonlinear di�usion. Sec-
tion 3 then deals with the adaptive segmentation based on the extracted features.
In Section 4 we show some results and compare them to previous approaches. The
paper is concluded by a brief summary.

2 Feature Extraction

Our approach to extract the features is based on the classical structure tensor [4, 8, 25]

J� = K� � (rIrI
>) =

 
K� � I

2
x K� � IxIy

K� � IxIy K� � I
2
y

!
(1)

where K� is a Gaussian kernel with standard deviation � and subscripts denote par-
tial derivatives. Obviously the structure tensor yields three feature channels for each
scale. In order to keep things simple, we will only consider one scale in this pa-
per. One could incorporate further scales by adding additional feature channels very
easily. Comparing the number of features obtained by the structure tensor to that
of Gabor �lters reveals that the degree of freedom for the orientation known from
Gabor �lters is replaced by the smoothed versions of the image derivatives. It should
be noted that the image derivatives include the whole orientation information, so the
components of the structure tensor are as powerful for the discrimination of di�erent
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textures as a whole set of Gabor �lters for a �xed scale.
The major problem of the classic structure tensor is the dislocation of edges due to
the smoothing with Gaussian kernels. This leads to inaccurate segmentation results
near region boundaries. The basic idea in [5] to address this problem is the replace-
ment of the Gaussian smoothing by nonlinear di�usion. We stick to this idea but
enhance the technique for its application to texture segmentation.

Nonlinear di�usion is based on the early work of Perona and Malik [17]. The main
idea is to reduce the smoothing in the presence of edges. The resulting di�usion
equation is

@tu = div (g(jruj)ru) (2)

with u(t = 0) being the image I and g a decreasing function.
So far this equation can only be used with scalar-valued data like a gray value image.
Gerig et al. [10] introduced a version of nonlinear di�usion for vector-valued data

@tui = div

 
g

 
NX
k=1

jrukj
2

!
rui

!
8i (3)

where ui is an evolving vector channel and N the total number of vector channels.
Note that in this approach all channels are coupled by a joint di�usivity, so an edge
in one channel also inhibits smoothing in the others.
If we regard the components of a matrix as components of a vector, what is rea-
sonable, since the Frobenius norm of a matrix equals the Euclidean norm of the
resulting vector, it is possible to di�use a matrix, such as the structure tensor, with
the above-mentioned scheme. This yields a version of a nonlinear structure tensor
that is a bit di�erent from that mentioned in [5]. The matrix-valued di�usion in fact
equals a scheme proposed by Tschumperlé and Deriche [23]. Note that according
to Weickert and Brox [26] the coupling of the channels ensures the preservation of
semipositive de�niteness.

A rather critical issue is the appropriate choice of the di�usivity function g. For
the application to texture features TV �ow [20, 2, 15] seems to suit very well, since
it removes oscillations and leads to piecewise constant results. This is very impor-
tant, because the structure tensor contains �rst derivatives, which have very local
responses. The task of the smoothing process is actually to close the areas between
these local phenomena while preserving the important edges. This is exactly what
TV �ow does. Furthermore, it has the nice property of not causing any additional
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6 Rousson & Brox & Deriche

parameters. Since TV �ow leads to numerical problems when the gradient gets close
to zero, it is necessary to circumvent this case. This is mostly done by adding a small
positive constant � to the gradient magnitude.

g(jruj) =
1

jruj+ �
(4)

We deviate a little from the actual structure tensor by adding the image gray value,
which is certainly a very important feature, to the feature vector. Furthermore, the
channel based on IxIy appears only once and not twice, like in the structure tensor.
However, note that, although it seems as if its information was already present in
the other two channels of the structure tensor, it could not be neglected, because
the sign was lost by squaring the derivatives. So, this channel is very important to
ensure rotation invariance.
Finally, our features are computed by applying Eq.3 with initial conditions u1 = I,
u2 = I2x, u3 = I2y , u4 = IxIy and the di�usivity function g(s) = 1=s.
For implementation we apply the AOS scheme, proposed in [27], that allows e�cient
computation of TV �ow also for small �. For � in the area of 0.001, where the
approximation of TV �ow is much better than for larger � causing less blurring
e�ects, the AOS scheme is around 4 orders of magnitude faster than a simple explicit
scheme.

3 Adaptive segmentation based on these features

3.1 Variational Formulation

In this article, we restrict our study to the case of the segmentation into two textured
regions. Basically, it includes all the images where only one object is to be segmented.
Following [16], the image segmentation can be found by maximizing the a posteriori

partitioning probability p(P(
)jI) where P(
) = f
1;
2g is a partition of the image
domain 
. Instead of the original image I, we use the vector-valued image u =

(u1; :::; u4) obtained by smoothing (I; I2x; I
2
y ; IxIy) with Eq.3. It has been shown

in [16] that such an optimization is equivalent to an energy minimization. Two
hypotheses must be made: all the partitions are equally possible and the pixels
within each region are independent. Let p1(u(x)) and p2(u(x)) be the probability
density functions for the value u(x) to be in 
1 and 
2 respectively. Let @
 be the
boundary between 
1 and 
2, the segmentation can be found by minimizing the
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following energy:

E(
1;
2) = �

Z

1

log p1(u(x)) dx �

Z

2

log p2(u(x)) dx (5)

The main challenges are to de�ne a family of pdf to modelize each region that can
be general enough to capture a wide range of images and to �nd the minimum of
the energy. As we will see, too many parameters in the pdf approximation can
trap our variational approach in local minima. This will push us to use a simpli�ed
modelization.

3.2 Gaussian Approximation for all the channels

First, a general Gaussian approximation is used to model the information for each
region for all the four channels. Since the image u is vector-valued, we have to deal
with covariance matrices. Let f�1;�1g and f�2;�2g be the vectors'means and the
covariance matrices of the gaussian approximation in 
1 and 
2. The probability of
u(x) to be in 
i is:

pi(u(x)) =
1

(2�)2j�ij1=2
e�

1

2
(u(x)��i)T��1i

(u(x)��i) (6)

Therefore, the vectors'mean and convariance matrix of each region are additional
unkown parameters that must be introduced in the energy (5).
Before minimizing this energy, we introduce the level set representation. The level
set function � is de�ned as:(

�(x) = D(x; @
); if x 2 
1

�(x) = �D(x; @
); if x 2 
2

(7)

Furthermore, let H�(z) and Æ�(z) be regularized versions of the Heaviside and Dirac
functions. Then, the energy (5) can be minimized with respect to the whole set of
parameters f@
; �1; �2;�1;�2g using the following evolution equation (see [18] for
details):

�t(x) = Æ�(�(x)) (log p1(u(x)) � log p2(u(x))) (8)

while the Gaussian parameters are updated at each iteration following:�
�i(�) =

R

 u(x)�idx=

R

 �idx

�i(�) =
R

(�i � u(x))(�i � u(x))T�idx=

R

 �idx

(9)
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8 Rousson & Brox & Deriche

with

�
�1(z) = H�(z)
�2(z) = 1�H�(z)

A regularization constraint on the length of @
 can be added, yielding the following
�nal evolution equation for �:

�t(x) = Æ�(�(x)) (� div(r�=jr�j)
+ log p1(u(x)) � log p2(u(x)))

(10)

Considering full covariance matrices leads to lots of unknown parameters. This can
result in multiple local minima and makes the energy minimization quite di�cult.
Such a situation is shown in Figure 1a where the curve stops before capturing one leg
of the zebra. If we further analyse the channels depicted in Figure 2, we can see that
the information included in each channel is not that much correlated. So, making
the hypothesis that the channels are not correlated, the pdf pi(u(x)) for i = f1; 2g
can be estimated using the joint density probability of each component:

pi(u(x)) = �4
k=1pk;i(uk(x)) (11)

This is equivalent to consider a diagonal covariance matrix. With this new approxi-
mation the energy has only 8 unknown statistical parameters for each region (4 for
the vectors'mean and 4 for the covariance matrix) instead of 14 when a full covari-
ance matrix is considered. Hence, we obtain the favored result as shown in Figure
1b.

Figure 1: (a) Left: Result with full �. (b) Right: Result with diagonal �.

INRIA
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Figure 2: Feature channels u1; ::; u4.

3.3 Non-Parametric Approximation for

u1

The Gaussian approximation for the �rst channel, which corresponds to smoothed
version of the gray value image I (see the �rst feature in Figure 2) does not seem to
suit very well. So for this channel, an estimation of the pdf based on the histogram
should be preferred. Since we make the assumption that di�erent channels are not
correlated, the pdf in each channel can be estimated using di�erent approaches. As
in [11], we propose to use a continous version of the Parzen density for the �rst
channel. The probability of u1(x) to be in 
i is given by:

p1;i(u1(x)) =
1

j
ij

Z

i

g�(u1(x)� u1(x̂)) dx̂ (12)

where the Gaussian kernel is g�(z) =
1p
2��

e�
z
2

2�2

Using the shape derivative tool in [3], we now di�erenciate the following functional:

F (
i) =

Z

i

log

�
1

j
ij

Z

i

g�(u1(x)� u1(x̂)) dx̂

�
dx (13)

RR n° 4695



10 Rousson & Brox & Deriche

The shape derivative of this functional (see annex and [3] for details) is:

< F 0(
i); V >= �
R

i

�
log p1;i(u(x))

+ 1
j
ij

R

i

g�(u1(x)�u1(x̂))
p1;i(x̂)

dx̂

�
(V:N)da(x)

(14)

Using the level set representation, it gives us a new evolution equation for �:

�t(x) = Æ�(�)

�
� div(r�=jr�j) +

4X
k=1

log
pk;1(u(x))

pk;2(u(x))| {z }
usual term

�

+Æ�(�)

�
1

j
1j

R


H�(�)

g�(u1(x)�u1(x̂))
p1;1(u(x̂))

dx̂

� 1
j
2j

R


(1�H�(�))

g� (u1(x)�u1(x̂))
p1;2(u(x̂))

dx̂

�
9>>=
>>; additional term

(15)

while Gaussian parameters for the channels u2; u3 and u4 are updated at each itera-
tion according to (9). In this new evolution equation an additional term appears due
to the �rst channel. Regarding the other terms of the equation, they are the same
as the ones obtained with gaussian approximation for all channels when a diagonal
covariance matrix is considered.
By using this non-parametric representation to approximate the �rst channel infor-
mation, experimental results are improved a lot, as can be seen in Figure 3. Actually,
the parametric estimation for the structure channels is very robust and when it is
combined with gray level information, the method can deal with a much larger range
of images, in particular with low-textured images.

3.4 Implementation remarks

To implement the evolution equation (15), we used an explicit scheme in time and
the curvature was estimated using the classical centered �nite di�erence. The level
set was updated only in a small narrow band around its zero crossing. A very tiny
narrow band is su�cient (we used a width of 12) since only local information is
important. Therefore, the size of the active area was relatively small, and it was
possible to reinitialize the level set function to the distance function at each iteration
in reasonable time. We used the reinitialization method described in [1] which limits
the displacements of the zero level. For all the examples shown in the next section,
the same initialization and the same parameters were used. Small circles were used
as initialization because even if the active region covers almost the whole image at

INRIA



Active Unsupervised Texture Segmentation on a Di�usion Based Feature Space 11

Figure 3: (a) Left: Result with Gaussian approximation for each channel. (b)
Right: Result with non-parametric approximation for the 1st channel.

the beginning, the �nal solution is reached after only few iterations (less than 30
iterations are mostly enough). But other initializations have also been tested and
the method seems very robust by giving the same result with di�erent initializations.
Results from di�erent initializations are shown in Figure 10.
Two parameters must be set, the regularization weight � and the parzen window size
�, we set it once and for all: � = 0:5 and � = 5. We were able to get good results
on a wide range of textured images with these parameters.
Since we use an explicit scheme and so a small timestep, the second order terms in
(15) are negligibles and can be omitted. With this approximation the curve evolution
takes around ten seconds on 250x200 images and standard hardware. Also the feature
extraction is quite e�cient since we use the AOS scheme. The computation time of
this part is also around ten seconds.

4 Results

We tested the performance of our method with synthetic as well as real test im-
ages. The synthetic test images are composed of textures from the Brodatz texture
database. The real images are from papers on texture segmentation that were pub-
lished earlier, so they allow direct comparison.
Figure 4a reveals our method to work quite �ne with common textured images. Note
the average gray value between the two textured regions not to be too much di�erent,
and there is also no dominant orientation for the background texture. Also note that
the correct way of smoothing the structure tensor (using Eq.3) is very important to
get such good results. Figure 4b shows that the segmentation fails completely if the

RR n° 4695



12 Rousson & Brox & Deriche

smoothing is omitted. Actually the smoothing is responsible for the fact that the
three feature channels based on the nonlinear structure tensor are able to outperform
a whole set of Gabor features. However, Figure 4c also shows the limitation that
was already mentioned in Section 2: If two textures can only be distinguished due
to their scale, there is no possibility for the structure tensor of only one scale to
separate the regions. Note that this problem could be �xed very easily by adding
the features of a structure tensor of di�erent scale. However, it is also interesting
that one has to construct very special cases to make the structure tensor of only one
scale to fail completely.

Figure 4: (a) Left: Result for a synthetic test image with smoothed features using
Eq.3. (b) Center: Segmentation fails if the feature channels are not smoothed. (c)
Right: Segmentation fails if texture only di�ers in scale.

More interesting than the synthetic images are the real images. Figures 5 and 6 prove
our method to be fully competitive to recent approaches published in [11] and [22]
(these results as well as the results extracted from [16] and [21] are the ones shown
in the original articles). Considering the results from the method in [21], where they
used smoothed features based on Gabor �lters, our method uses less feature channels
and compares favourably. Figures 8 and 9 show that we can even improve the good
results obtained in [16] where a supervised scheme was used. Finally, Figure 11 illus-
trates the capabilities of our approach on an other set of synthetic and natural images.

So obviously, our features based on the nonlinear structure tensor are very powerful
in discriminating di�erent textured regions, and our dynamic modelling of the active
regions is able to incorporate the features in a way that enables the algorithm to
cope with real textured images. We also want to stress that our method is almost

INRIA
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Figure 5: (a) Top: Result from [11]. (b) Bottom: Our result.

Figure 6: (a) Top: Result from [22]. (b) Bottom: Our result.

free of parameters. The parameters that appear for the nonlinear di�usion and the
active contour are very robust and can be set to �xed values. All our results have
been computed with the same parameters. This property is very important for an
unsupervised approach, because we think an approach can actually not be called
unsupervised, if for each image someone has to �gure out the right parameters �rst.
We are also in the process to apply our method to much more images.

5 Conclusions

In this paper two novel ideas were proposed and applied in order to cope with un-
supervised texture segmentation. First, the idea of using the structure tensor for
feature extraction was emphasized and a nonlinear version was shown to be compet-
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14 Rousson & Brox & Deriche

Figure 7: (a) Left: Result from [21]. (b) Right: Our result.

Figure 8: (a) Top: Result from [16]. (b) Bottom: Our result.

itive or even superior to a whole set of Gabor features. Second, we have proposed
a new segmentation model based on a variational formulation and on the level rep-
resentation. Starting from a general multi-dimensional Gaussian to approximate
region information of the feature channels, we have simpli�ed and specialized the
model so as to get a robust segmentation process. The robustness of this approach
allows to �x all appearing parameters, so our technique is completely parameter free.
The comparison of our method to some recent approaches was very convincing. It
was possible to reproduce or even improve the former results. Of course, there still
exist several examples where our method is not appropriate. One problem is caused
by textures that only di�er in their scale. Another limitation is given by the fact

INRIA
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Figure 9: Zoom on result (a) Left: Result from [16]. (b) Right: Our result.

Figure 10: (a) Top: Curve evolution with �rst initialisation (wide recangle). (b)
Bottom: Curve evolution with second initialisation (one small circle).

that we only consider two regions. Our future research will focus on resolving these
problems.

RR n° 4695



16 Rousson & Brox & Deriche

Figure 11: (a) Top: Curve evolution for a synthetic image composed where the
regions have same means but di�erent variances. (b) Bottom: Curve evolution for
the wood image.

A Derivation details

To simplify the notations we note 
 the (bounded and open) domain of integration
which is moving. Actually 
 is either 
1 or 
2, and � will be the boundary of 
.
Using the shape derivative tool [3], we want to di�erenciate the functional:

F (
) =

Z


log

�
1

j
j

Z


g�(u1(x)� u1(x̂)) dx̂

�
dx (16)

We introduce some notations:

F (
) =
R

 f(x;
) dx =

R

 log

G1(x;
)
G2(
)

dx

with G1(x;
) =
R

 g�(u1(x)� u1(x̂)) dx̂

and G2(
) = j
j =
R

 dx̂

The Gâteaux derivative of F (
) in the direction of V (a vector �eld) is:

< F 0(
); V >==
R

 fs(x;
; V )dx
�
R
� f(x;
)(V (x):N(x))da(x)
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where fs(x;
; V ) is the shape derivative of f(x;
). This can be expressed as:

fs(x;
; V ) = fG1
< G0

1(x;
); V > +fG2
< G0

2(
); V >

Each term can be calculated:

fG1
= 1=G1; fG2

= �1=G2

< G0
1(x;
); V >= �

R
� g�(u1(x)� u1(x̂))(V (x̂):N(x̂)) dx̂

< G0
2(
); V >= �

R
�(V (x̂):N(x̂)) dx̂

Putting everything together we get the following shape derivative:

< F 0(
); V > = �
R
�

�
log p1(u(x))

+ 1
j
j
R



g�(u1(x)�u1(x̂))
p1(u(x̂))

dx̂

�
(V (x):N(x)) dx

(17)

Note that this result could be related to the one obtained in [11] through a di�erent
approach.
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