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Abstract. We prove stability of rank two tautological bundles on the Hilbert square of a surface

(under a mild positivity condition) and compute their Chern classes.

Let S be a smooth, complex projective surface, let Hilb2(S) be the Hilbert scheme parametrizing
subschemes of S of length 2. It is known by a classical theorem of Fogarty [Fo] that Hilb2(S) is
a smooth, projective variety of dimension 4. Let Z ⊂ S × Hilb2(S) be the universal subscheme,
denote by p : Z → S and by q : Z → Hilb2(S) the projections. Given a line bundle L on S, the
sheaf L[2] := q∗p

∗L is a rank two vector bundle on Hilb2(S), called the tautological vector bundle
associated with L.

In this note we prove the following

Theorem. Assume that h0(S,L) ≥ 2. Then for N � 0, the vector bundle L[2] is µHN
-stable on

Hilb2(S).

Here, HN is a polarization of the form Sym2(NH) − E where H is an ample divisor on S and
E ⊂ Hilb2(S) denotes the exceptional divisor of the Hilbert–Chow morphism.

The proof of the theorem relies upon the fundamental short exact sequence for tautological vector
bundles on the blowup of S ×S and upon the corresponding result for curves which was proved by
Mistretta [Mi].

Originally, our interest in this result came from the desire to produce vector bundles on Hilbert
schemes of K3 surfaces with interesting metrics and with interesting Chern classes. For this reason
we give a formula for the Chern classes of L[2] in terms of the symmetric product of c1(L), of [E]
and of the characteristic classes of Hilb2(S).

Moduli spaces of stable sheaves on K3 surfaces have been studied extensively in the literature (cf.
e.g. [Mu], [OG], [HL], [Ma]). These spaces are particularly interesting because they are among the
few examples of compact Hyperkähler manifolds (cf. Huybrechts’ chapter in [GHJ]). In analogy it
seems to be promising to study moduli spaces of stable sheaves on higher-dimensional Hyperkähler
manifolds. In this note we present examples of stable sheaves on the second Hilbert scheme of a
K3 surface which is one of the two prototypes of four-dimensional compact Hyperkähler manifolds.

After introducing some notation in Section 1 we prove the theorem in Section 2. Finally we
calculate the Chern classes of L[2] in Section 3.
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1. Some notation

Let ι∆ : ∆ ↪→ S × S be the diagonal. Denote by σ : S̃ × S → S × S the blowup of S × S in ∆.
The natural action of the symmetric group S2 on S ×S extends to a holomorphic action on S̃ × S
and Hilb2(S) = S̃ × S/S2. Let ιD : D ↪→ S̃ × S be the exceptional divisor of σ.

In the following diagram we summarize the situation and, at the same time, give names to the
various natural maps.

D
ιD //

σD

��

S̃ × S

er1





er2

��

σ

��

π // Hilb2(S)

��
S ' ∆ ι∆

// S × S

r1
||zz

zz
zz

zz
z

r2
""DD

DD
DD

DD
D

// Sym2(S)

S S

Given an ample hypersurface H ⊂ S, for N sufficiently large the divisor H̃N := N(r̃∗1H+r̃∗2H)−D
is ample on S̃ × S. Moreover, this divisor is invariant under the action of S2 on the divisor class
group of S̃ × S, hence it is of the form π∗HN for an ample divisor HN on Hilb2(S).

Finally we recall the notion of µ-stability. Let Y be a smooth, projective variety, polarized by
an ample divisor H. Let E be a torsion-free coherent OY -module. Then the slope of E with respect
to H is defined as

(1) µH(E) :=

∫
Y c1(E)[H]dim(Y )−1

rk(E)
.

The sheaf E is called µH-stable if for any subsheaf F ⊂ E with 0 < rk(F) < rk(E) we have
µH(F) < µH(E).

2. Proof of the Theorem

If L[2] had a destabilizing subsheaf, then by passing to the reflexive hull we see that there would
exist a destabilizing line bundle. Thus, any destabilizing subsheaf of L[2] on Hilb2(S) with respect
to HN induces a destabilizing sub-line bundle of E := π∗L[2] on S̃ × S with respect to H̃N . We will
show that E is µ eHN

-stable. This will finish the proof of the theorem.

For i = 1, 2, put Li := r̃∗iL and let LD := ιD,∗σ
∗
DL. Consider the fundamental short exact

sequence (see e.g. the proof of [D, Prop. 2.3])

(2) 0→ E → L1 ⊕ L2 → LD → 0
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where the surjection on the right is given by (s1, s2) 7→ s1|D − s2|D. This sequence shows that
c1(E) = c1(L1) + c1(L2)− [D]. Moreover, we deduce that E contains the line bundles L1(−D) and
L2(−D).

Let now A ⊂ E be an arbitrary sub-line bundle. Then A has one of the following three properties:
1.) A ⊂ L1(−D),
2.) A ⊂ L2(−D),
3.) A 6⊂ L1(−D) and A 6⊂ L2(−D).
We will prove that there exist N1, N2, N3 ∈ N such that for all A ⊂ E with property i = 1, 2 or

3 and for all N ≥ Ni we have

(3) µ eHN
(A) < µ eHN

(E).

Assume first that we are in case 1.), i.e. that A ⊂ L1(−D). Choose a natural number N1 ≥ 4 (this
will be useful in (11) below) such that H̃N is ample for all N ≥ N1. Then µ eHN

(A) ≤ µ eHN
(L1(−D))

for all N ≥ N1. Let αi := c1(Li). Then c1(E) = α1 + α2 − [D] and therefore

(4)

µ eHN
(E)− µ eHN

(A) ≥ µ eHN
(E)− µ eHN

(L1(−D))

=
∫
S̃×S

(
α1 + α2 − [D]

2
− (α1 − [D])

)
[H̃N ]3

=
∫
S̃×S

α2 − α1

2
[H̃N ]3 +

∫
S̃×S

[D]
2

[H̃N ]3

= 0 +
∫
S̃×S

[D]
2

[H̃N ]3

> 0

for all N ≥ N1 because D is effective and H̃N is ample.

An analogous reasoning applies in case 2.) with N2 = N1.

In case 3.) we proceed in two steps. First we show that

(5) µF (A) < µF (E),

where F = r̃∗1H + r̃∗2H and µF is the slope with respect to the nef divisor F , defined as in (1).
Then we use an asymptotic argument to complete the proof.

To prove (5), we will consider two divisors in |MF | for an appropriate M > 0 which intersect
along a reducible surface. Then we reduce our computation to the irreducible components of these
surfaces.

Choose M sufficiently positive such that the linear system |MH| contains two distinct, smooth
curves C and C ′ which intersect transversely and which satisfy

(6) deg(L|C) = deg(L|C′) =
∫
S

c1(L)[MH] ≥ 2.
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Denote by
G1 := (C × S) ∪ (S × C ′) and by G2 := (C ′ × S) ∪ (S × C),

let G̃1 and G̃2 be their strict transforms under σ : S̃ × S → S × S. Note that G̃i ∈ |MF | because
each component of Gi meets the center of the blowup, namely the diagonal of S×S, along a curve.
The intersection G̃1 ∩ G̃2 is the disjoint union of the four smooth surfaces

T1 := ˜(C ∩ C ′)× S, T2 := ˜S × (C ∩ C ′),

T3 := C̃ × C, T4 := C̃ ′ × C ′,

where for any subvariety Y ( S×S we write Ỹ for the strict transform of Y under σ : S̃ × S → S×S.
Then for the MF -slope of any coherent sheaf F we find

µMF (F) :=

∫
S̃×S c1(F)[MF ]3

rk(F)
=

4∑
i=1

degTi
(F)

rk(F)

where degTi
(F) :=

∫
Ti

c1(F|Ti
)[MF ]|Ti

. We will show that

degTi
(A) ≤

degTi
(E)

2
for i = 1, . . . , 4 with strict inequality for i = 3, 4. This will conclude the proof of (5).

i = 1: The surface T1 is a disjoint union of surfaces of the form Sp := ˜{p} × S, p ∈ S running
over the finite set C ∩ C ′. Since the fundamental class of Sp does not vary for different p ∈ S, we
fix an arbitrary point p0 ∈ S and we get for any coherent sheaf F on S̃ × S

degT1
(F) = ](C ∩ C ′) degSp0

(F).

Note that Sp0 is isomorphic to the blow-up of S in p0. Denote by σp0 : Sp0 → S the blow-down and
by Ep0 ⊂ Sp0 the exceptional divisor. Then

c1(E|Sp0
) = σ∗p0

c1(L)− [Ep0 ]

because c1(E) = r̃∗1 c1(L) + r̃∗2 c1(L)− [D] and because r̃∗1L|Sp0
= OSp0

. Now suppose that

(7) 2 degT1
(A) > degT1

(π∗L[2]).

Then we would get

2
∫
Sp0

c1(A|Sp0
)[MF ]|Sp0

>

∫
Sp0

(
σ∗p0

c1(L)− [Ep0 ]
)
[MF ]|Sp0

≥ 0

because [MF ]|Sp0
is a nef class on Sp0 and because σ∗p0

L⊗O(−Ep0) is the line bundle of an effective
divisor on Sp0 . Indeed, since h0(L) ≥ 2, there exists a divisor K ∈ |L| with p0 ∈ supp(K). Then
the strict transform K̃ of K is in the linear system |σ∗p0

L ⊗ O(−kEp0)| for some k ≥ 1. Thus,
K̃ + (k − 1)Ep0 is an effective divisor with line bundle σ∗p0

L ⊗O(−Ep0).
By (2), A|Sp0

⊂
(
L1 ⊕ L2

)
|Sp0

= OSp0
⊕ σ∗p0

L. Now, since A|Sp0
has positive F|Sp0

-slope, the
composition A|Sp0

→ OSp0
⊕ σ∗p0

L → OSp0
must be zero. Since we chose p0 ∈ S randomly,
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assumption (7) implies that this composition is zero for all p ∈ S. On the other hand, all x ∈ S̃ × S
lie on some Sp. This shows that the composition

A → L1 ⊕ L2 → L1

is zero. But then the short exact sequence (2) implies that A ⊂ r̃∗2L(−D), because the surjection
L1 ⊕L2 → LD is given by (s1, s2) 7→ s1|D − s2|D. This is a contradiction to the assumption that A
satisfies 3.).

i = 2: analogous to i = 1.

i = 3: Note that C̃ × C is isomorphic to C × C and that

MF|C̃×C = M(p∗1H|C + p∗2H|C)

where pi : C × C → C are the projections. Moreover, it is easily checked that

(π∗L[2])|C̃×C = π∗CL
[2]
|C

where πC : C × C → Hilb2(C) is the natural projection and L[2]
|C is the tautological vector bundle

associated with L|C on Hilb2(C). Using (6), we can apply [Mi], Cor. 4.3.3 which says that π∗CL
[2]
|C

is a stable vector bundle on C × C. This concludes the case i = 3.

i = 4: analogous to i = 3.

Thus, we have proved (5). To conclude the proof of (3) we define for n ∈ N the linear function

ϕn : K0(Coh(S̃ × S))→ Q, F 7→
2∑
i=0

ni
3!

i!(3− i)!

∫
S̃×S

c1(F)[F ]i[H̃N1 ]3−i.

Then noting that H̃n+N1 = nF + H̃N1 , we get for all F ∈ Coh(S̃ × S)

(8) µ eHn+N1
(F) = n3µF (F) +

ϕn(F)
rk(F)

.

Inequality (5) implies that there exists a positive constant k ∈ R>0 such that for all sub-line bundles
A ⊂ E with property 3.) we have

(9) µF (E)− µF (A) ≥ k.

This is because µF takes integer values on line bundles.
We will now show that ϕn(A) < ϕn(E). To see this, we first prove that A∩L1(−D) = 0. Indeed,

otherwise the torsion-free sheaf A + L1(−D) would be of rank 1 as follows from the short exact
sequence

0→ A∩ L1(−D)→ A⊕L1(−D)→ A+ L1(−D)→ 0.
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Then the reflexive hull A′ of A+L1(−D) would be a sub-line bundle of E which again would have
property 3.) because A ⊂ A′. From (5) we deduce µF (A′) < µF (E). On the other hand

µF (L1(−D)) =
∫
S̃×S

(α1 − [D])[F ]3

=
∫
S̃×S

α1[F ]3

=
∫
S̃×S

α1 + α2

2
[F ]3

=
∫
S̃×S

α1 + α2 − [D]
2

[F ]3

= µF (E).

Here, we used that the integral over a cohomology class of degree 6 on D which is pulled back from
∆ vanishes. Using that L1(−D) ⊂ A′ and that F is nef, we get a chain of inequalities

µF (E) = µF (L1(−D)) ≤ µF (A′) < µF (E).

This is a contradiction, whence A ∩ L1(−D) = 0.
Then we have a short exact sequence

(10) 0→ A⊕L1(−D)→ E → Q→ 0

where Q is a torsion sheaf. It follows that c1(Q) is either zero or effective. Since ϕn involves only
products of the nef divisor F and the ample divisor H̃N1 , this implies that ϕn(Q) ≥ 0.

We claim that there exists n1 ∈ N such that for n ≥ n1 we have ϕn(L1(−D)) > 0. To see this,
it is enough to show that the n2-term of ϕn(L1(−D)) is positive. We have

c1(L1(−D))[F ]2[H̃N1 ] = (α1 − [D])[F ]2(N1[F ]− [D])

= N1α1[F ]3 + [F ]2[D]2 − [D](N1[F ]3 + α1[F ]2).

If q denotes the intersection product on S, then we obtain

(11)

∫
S̃×S

N1α1[F ]3+ [F ]2[D]2 − [D](N1[F ]3 + α1[F ]2) = N1

∫
S×S

r∗1 c1(L) (r∗1[H] + r∗2[H])3

+
∫
D

[F ]2ξ − σ∗D
{(
r∗1[H] + r∗2[H]

)2(
N1(r∗1[H] + r∗2[H]) + r∗1c1(L)

)}
|∆︸ ︷︷ ︸

=0

= 3N1

∫
S×S

r∗1c1(L)r∗1[H]r∗2[H]2 − 2
∫
S

(2[H])2

=
(

3N1q
(

c1(L), [H]
)
− 4
)
q([H], [H])

> 0.
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Here, ri : S × S → S are the projections and ξ = [D]|D = c1(OP(N∆|S×S)(−1)). We use that∫
D(σ∗Dα)ξ = −

∫
S α for α ∈ H∗(S,Q), that N1 ≥ 4 and that c1(L) is an effective class on S. This

proves the existence of n1 with ϕn(L1(−D)) > 0 for all n ≥ n1.
Now by (10) we have

(12) ϕn(A) = ϕn(E)− ϕn(Q)− ϕn(L1(−D)) < ϕn(E)

for all n ≥ n1.
Putting together (8), (9) and (12) we find for n ≥ n1 and for all line bundles A ⊂ E with property

3.)

µ eHn+N1
(E)− µ eHn+N1

(A) = n3(µF (E)− µF (A)) +
ϕn(E)

2
− ϕn(A)

> n3k − ϕn(E)
2

.

Now since k > 0 and since ϕn(E) is a polynomial of degree 2 in n, there exists n2 ≥ n1 such that
n3k − ϕn(E)

2 > 0 for all n ≥ n2. Therefore, with N3 := N1 + n2, inequality (3) is satisfied for i = 3.
This completes the proof. �

3. The Chern character

In this section we express the Chern classes of L[2] in terms of c2(Hilb2(S)), of the symmetric
product of c1(L) and of the fundamental class of the exceptional divisor of the Hilbert–Chow
morphism Hilb2(S) → Sym2(S). Since Hilb2(S) ' S̃ × S/S2, via pullback along the quotient
morphism π we get an identification H∗(Hilb2(S),Q) ' H∗(S̃ × S,Q)S2 (see [G]) and we are
reduced to calculate the Chern classes of π∗L[2]. By the short exact sequence (2) we get

π∗ c1(L[2]) = α1 + α2 − [D] and

π∗ c2(L[2]) = c2(L1 ⊕ L2)− c2(LD)− c1(L[2]) c1(LD) = α1α2 −
1
2

(α1 + α2)[D],

where as above αi = r̃∗i c1(L) and where we used the Grothendieck–Riemann–Roch theorem to
calculate c2(LD).

Using the tangent bundle sequence for the ramified covering π : S̃ × S → Hilb2(S)

0→ T
S̃×S → π∗THilb2(S) → OD(2D)→ 0

we get

(13)
π∗c1(Hilb2(S)) = c1(S̃ × S) + c1(OD(2D))

π∗c2(Hilb2(S)) = c2(S̃ × S) + c2(OD(2D)) + c1(S̃ × S)c1(OD(2D)).
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Now the formulae for Chern classes of blow-ups (cf. [Fu, Ex. 15.4.3]) yield

(14)

c1(S̃ × S) = σ∗c1(S × S)− [D]

c2(S̃ × S) = σ∗(c2(S × S))− (ιD)∗σ∗Dc1(∆)− [D]2

= σ∗c2(S × S)− 1
2
σ∗c1(S × S)[D]− [D]2.

By the Grothendieck-Riemann-Roch formula

(15)
c1(OD(2D)) = [D]

c2(OD(2D)) = − [D]2.

Combining (13), (14) and (15) we obtain

π∗c1(Hilb2(S)) = σ∗c1(S × S)

and

π∗c2(Hilb2(S)) = σ∗c2(S × S)− 1
2
σ∗c1(S × S)[D]− [D]2 − [D]2 + σ∗c1(S × S)[D]− [D]2

= σ∗c2(S × S) +
1
2
σ∗c1(S × S)[D]− 3[D]2

= − σ∗ch2(S × S) +
1
2
σ∗c2

1(S × S) +
1
2
π∗c1(Hilb2(S))[D]− 3[D]2

= −
∫
S

ch2(S) · (σ∗[∆]4,0 + σ∗[∆]0,4) + π∗
(c1(Hilb2(S)δ + c2

1(Hilb2)(S)
2

− 3δ2
)
.

Here, [∆]i,j refers to the (i, j)-th Künneth factor of fundamental class of the diagonal ∆ ⊂ S × S
and δ ∈ H2(Hilb2(S),Q) is the class with π∗δ = [D]. If

∫
S ch2(S) 6= 0, this implies that

α1α2 =
1
2
(
(α1 + α2)2 − α2

1 − α2
2

)
=

1
2
(
(α1 + α2)2 − q(c1(L), c1(L)) · σ∗([∆]4,0 + [∆]0,4)

)
=

(α1 + α2)2

2
+
q(c1(L), c1(L))

2
∫
S ch2(S)

{
c2(Hilb2(S))− c2

1(Hilb2(S)) + c1(Hilb2(S))δ
2

+ 3δ2
}
.

As above, q denotes the intersection product on H2(S,Q).
Let ϕ : H2(S,Q)→ H2(Hilb2(S),Q) be the homomorphism which is determined by

π∗ϕ(β) = r̃∗1β + r̃∗2β for all β ∈ H2(S,Q).

Summarizing the above discussion we have achieved an expression of the Chern classes of L[2] in
terms of c1(Hilb2(S)) and c2(Hilb2(S)), of ϕ(c1(L)) and of δ:

Proposition. i) Assume that
∫
S ch2(S) 6= 0. Then the Chern classes of L[2] are

c1(L[2]) = ϕ(c1(L))− δ and

c2(L[2]) =
ϕ(c1(L))2 − ϕ(c1(L))δ

2

+
q(c1(L), c1(L))

2
∫
S ch2(S)

{
c2(Hilb2(S))− c2

1(Hilb2(S)) + c1(Hilb2(S))δ
2

+ 3δ2
}
.
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ii)For N � 0, the bundle L[2] satisfies the strict Bogomolov–Lübke inequality, that is

∆(L[2])H2
N =

(
4 c2(L[2])− c2

1(L[2])
)
H2
N > 0.

In particular, L[2] is not projectively flat.

Proof. It remains to show ii). Using the above calculations we find

π∗∆(L[2]) = 2α1α2 − α2
1 − α2

2 − [D]2 = ∆(L1 ⊕ L2)− [D]2.

Now, L1 ⊕ L2 is µ eHN
-polystable, thus

∆(L1 ⊕ L2)H̃2
N ≥ 0.

On the other hand,

−[D]2H̃2
N = −

∫
D
H̃2
Nξ = 4N2q(H) +O(N) > 0 for N � 0.

Thus
∆(L[2])H2

N = π∗∆(L[2])H̃2
N > 0

for N � 0. �

References
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