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A Coding Cost Framework for
Super-resolution Motion Layer Decomposition

Thomas Schoenemann and Daniel Cremers

Abstract—We consider the problem of decomposing a video
sequence into a superposition of (a given number of) moving
layers. For this problem we propose an energy minimization
approach based on coding cost. Our contributions affect both
the model (what is minimized) and the algorithmic side (how it
is minimized).

The novelty of the coding cost model is the inclusion of a
refined model of the image formation process, known as super-
resolution. This accounts for camera blur and area averaging
arising in a physically plausible image formation process. It
allows to extract sharp, high-resolution layers from the video
sequence.

The algorithmic framework is based on an alternating min-
imization scheme and includes the following innovations: (1)
Instead of optimizing a video labeling we optimize the layer
domains. This allows to regularize the shapes of the layers and a
very elegant handling of occlusions. (2) We present an efficient,
parallel algorithm for extracting super-resolved layers, based on
TV-filtering.

I. INTRODUCTION

The decomposition of videos into a superposition of moving
layers is of central importance to scene interpretation, video
coding and movie compression. In this paper, we present an
energy minimization framework that allows to partition a given
video into a set of super-resolved moving layers. Figure 1
shows an example result of this algorithm: Given an input
image sequence, the algorithm reconstructs moving layers
corresponding to the foreground tree and the background in a
higher resolution than the individual input frames. That is, we
show that by more accurately modeling the image formation
process we obtain sharp, fine-detailed layer images where
previous methods produced blurry ones. Moreover, we propose
a graph cut based algorithm to estimate layer domains, where
we show how to derive appropriate expansion moves in order
to efficiently perform the layer partitioning.

A. Related Work

Motion layer decomposition builds on a rich literature in
motion analysis. We briefly sketch the main lines of research
to organize the abundance of existing approaches.

1) Motion Estimation: Given a sequence of consecutive
frames, motion estimation aims at computing for each frame
of the sequence a velocity vector associated with each point
relating it to a corresponding point in the subsequent frame.
Optionally one can identify points that are occluded in the
subsequent frame, yet this is rarely done.
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Fig. 1. We propose an energy minimization approach to decompose a
video into a sequence of super-resolved moving layers. In this example, a
high-resolution background layer is recovered despite constant occlusion and
despite a lower resolution of the individual input images.

The two major approaches to motion estimation are the
local and the global one. Local approaches [24], [35], [4], [36]
determine a single parameter vector to describe the motion in
a fixed, usually rectangular sub-region of the image. By using
overlapping regions each pixel is assigned its own velocity.

In contrast, global approaches determine a single velocity
field for each frame, taking into account the entire image in-
formation at once [16]. These methods regularize the gradient
of the velocity field in a variational framework. State-of-the-
art methods use robust M-estimators [26], [28], [42] - a trend
that arose earlier for local approaches [4]. With regularizers
adapted to rigid body motion and strong contrast edges these
global approaches were shown to provide some of the most
accurate optic flow fields [38] on established benchmarks. The
algorithms are by now rather mature, providing high-quality
motion fields for 640 × 480 images at more than 60 frames
per second.

2) Motion Segmentation: By motion segmentation we mean
the estimation of motion as well as the determination of
the boundaries of differently moving objects. Respective al-
gorithms have been developed in a spatially discrete MRF
formulation [26] or in a spatially continuous level set formu-
lation [9], [8]. Motion segmentation is generally considered a
chicken-and-egg-problem: It is easy to determine an accurate
segmentation for a given motion field, or vice versa to de-
termine accurate motion models for a given segmentation. To
solve for both at once has however proven to be a very difficult
problem. State-of-the-art methods solve this by minimizing a
single energy functional via alternating optimization schemes
[3], [9], [8], [11], [32]. Precursors include methods based on
pixel-flipping [27] or thresholding soft decisions [1].

Since both motion estimation and segmentation are based
on intensity comparisons of consecutive frames only, they
typically suffer from two limitations: Firstly, they do not
exploit long-range temporal consistency - the fact that the
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same intensity layer is deformed over the entire sequence is
not taken into account. Secondly, they do not account for the
fact that pixels may be occluded in certain frames and reappear
at later stages.

3) Layered Motion Segmentation: Approaches for layered
motion segmentation [40], [10] augment the framework of
motion segmentation by occlusion reasoning. Dupont et al.
[10] introduce a sophisticated occlusion model into traditional
motion segmentation and minimize it using graph cuts and
expansions moves. Xiao and Shah [40] compare each frame
in the sequence to a reference frame. They introduce an
occlusion order constraint which holds approximately for short
sequences and – after a sophisticated initialization stage –
minimize using graph cuts on three-state pixel graphs.

Although these methods improve over traditional motion
segmentation, they do not fully resolve the aforementioned
problems, because they are still based on comparing intensi-
ties across frames and because occlusion models are merely
heuristic, not arising from a consistent image formation model.

4) Layer Decomposition: By layer decomposition we refer
to the decomposition of a video sequence into a superposition
of moving objects – the layers. In contrast to motion seg-
mentation, this involves to determine the appearance of the
objects in addition to their shape. Rather than an image-to-
image comparison of the input video frames, we compare each
video frame to a set of colored layers. Such a fully generative
approach allows to model occlusions accurately.

Wang and Adelson [37] set out with the aim to decompose
a sequence into a set of images. Yet, instead of treating a
single model (or energy functional), they perform a multi-step
optimization involving the clustering of non-parametric veloc-
ity fields. Subsequent methods managed to minimize a single
energy functional [19], [39], sometimes with a sophisticated
initialization [23].

Jojic and Frey [19] introduce a multi-layer decomposition
method with an accurate occlusion model. They model the
video as a real-valued superposition of layer images and
solve this via generalized expectation maximization. Despite
convincing results the method suffers from the lack of spatial
smoothness and does not favor hard decisions to determine
which video pixel belongs to which layer - two important
issues to get a true decomposition. These limitations also apply
to the subsequent works of Frey et al. [13] and Williams and
Titsias [39] who use robust estimators.

Kumar et al. [23] propose a seven-step approach to min-
imize a model including motion blur and changes in light-
ing. This involves a combination of graph cuts and belief
propagation and leads to good results for articulated motion.
Yet, in this paper we show that for rigid and piecewise
smooth motion one can do better. Another related approach
to video decomposition for the purpose of video editing was
independently and simultaneously proposed in [29].

5) Relation to the Layer Approach of Jackson et al.: The
closest work to ours is the work of Jackson et al. [17], [18]
which – regrettably – we only became aware of after publica-
tion of our CVPR paper [33]. There the authors also propose
an energy minimization approach to layer decomposition. The
proposed method differs from [17], [18] in several ways:

• We propose a more robust regularization of layer inten-
sities to better preserve discontinuities in the estimation
of layer intensities.

• We incorporate a super-resolution model of the layer
intensity which allows for layers which are significantly
sharper than both the input images and the typical layer
estimates obtained by an averaging process. Solving for
the intensity layers amounts to a variant of total variation
deblurring. In particular, we experimentally demonstrate
that sharp super-resolution layers can be estimated for
numerous challenging real-world sequences.

• The proposed optimization scheme is fundamentally dif-
ferent. While Jackson et al. kept the layer domains fixed
and thus heavily relied on the local evolution of the de-
formation field, we introduce graph-cut based expansion
moves which allow to efficiently solve the geometric
optimization problem of layer partitioning. The authors
of [17], [18] admit that their approach only approximates
the desired energy model (due to the regularization of
the motion fields) and that they can only handle simply
connected shapes. In contrast, we also estimate the layer
domains and we can efficiently determine layers of ar-
bitrary topology by means of a more global inference
procedure based on expansion moves in the layer space.

B. Contribution
We present a framework to decompose a video sequence

into a given number of layers, minimizing a single energy
reflecting the cost of encoding the sequence. We show how
to obtain sharp, fine-detailed layer images where previous
methods produced blurry ones. This is based on a physically
consistent model of the image formation process – known
as super-resolution – which includes camera blur and area
averaging. To solve for the super-resolved layer images we
apply a variant of multiple-image total variation deblurring
[30], [41], [12], implemented on a GPU. To solve for the
shapes of the layers we formulate a binary labeling problem
on the layers.

A preliminary version of this paper appeared in [33]. The
present paper contains a more in-depth discussion of both
the model and the optimization algorithm. We include several
novelties for the super-resolution part. In particular we show
that on real-world data using absolute differences in the data
term provides substantially better results than the squared
differences we used in [33].

II. FROM LAYERS TO VIDEOS AND BACK

We are given a video sequence consisting of T frames with
X × Y pixels each. This sequence is denoted

I : X→ IR ,

where X = {1, . . . , T}×{1, . . . , X}×{1, . . . , Y } denotes the
set of spatio-temporal pixels. Layer decomposition approaches
model this sequence in a generative way: as a superposition
of layers moving in front of the camera. Layers are planar
images of arbitrary shape and deform non-rigidly over time.
The task is to infer the images together with their shapes and
their motion.
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Fig. 2. Illustration of layer order (here for N = 2 layers), motion functions
and labelings. White regions are not in the support of the layer. The following
equations hold: (x, t) = h1(ŷ, t) = h2(ẑ, t) and ŷ = h−1

1 (h2(ẑ, t), t).

A. Discrete vs. Continuous

An important aspect of this paper is a physically consistent
model of the image formation process, which explictly states
that real-world cameras produce pixel images. For this reason
we choose to treat the input sequence as a discrete set of pixels.
The quantities that are sought are all real-world entities and
therefore modeled continuously.

B. The Basic Setup

The aim is to represent the input sequence I as a superpo-
sition of N layer images

Ii : Ωi → IR, i = 1, . . . , N ,

where N is given by the user. The domains Ωi ⊆ IR2 are
themselves unknown - they define the shapes of the layers.
In the illustrative example in Figure 2 they correspond to the
shaded areas.

Layers and video are from different spaces, and to improve
readability we will denote points in the layer space by vari-
ables with a hat, e.g. x̂. Points in the video space are denoted
without hat. Later we will represent the layer domains in terms
of their characteristics functions li : IR2 → {0, 1}, where
li(x̂) = 1 means that x̂ ∈ Ωi. The layers are moving in front
of the camera and their motion is described by functions

hi : Ωi × [0, T )→ IR2 .

These functions describe where a layer position appears in
the video at a certain time. Ideally they should be families
of diffeomorphisms. That is, when fixing a time t the arising
function should be invertible and differentiable. We impose
this condition for most of the paper, but will relax it in Section
IV. Slightly abusing notation, the inverse mapping (from the
video to the layer) for each time t will be denoted h−1

i (·, t).
We require that hi(x, 0) = x for all i, i.e. at time 0 the

layer i maps directly to the video, without distortion. Without
this condition all entities (motion functions, layer domains and
layer images) could only be determined up to a translation.

An important part of layer approaches is an occlusion
model. In this work we assume that the layers are ordered

and that layer i occludes layer j only if i < j. Which layer
is visible at a video pixel (x, t) is now determined by the
shapes Ωi and the motion hi of the layers. These quantities
therefore induce a video labeling defining the visible layer for
each image pixel:

l : X→ {1, . . . , N}.

l(x, t) = min{i | h−1
i (x, t) ∈ Ωi} (1)

For this expression to make sense one has to impose the
constraint that the above set be non-empty:

∀(x, t) ∈ X : {i | h−1
i (x, t) ∈ Ωi} 6= ∅ . (2)

In case of a violation the moving layers would not generate the
video. One of the novelties of the present paper is to impose
this constraint algorithmically.

III. A CODING COST FORMULATION

In this work we propose to measure the quality of a layer
decomposition by the cost for encoding it. We give coding
cost for two different models of the image formation process.

When imposing a layer order as in (1) a video is encoded
by coding the layer domains Ωi, the intensities Ii inside the
layer domains and the motion functions hi. To get back the
original input video one finally needs to code some remaining
reconstruction noise, i.e. the differences between the observed
and the reconstructed video. This principle is the basis of both
cost functions.

A. A Basic Coding Cost Formulation

In the first model we closely follow [17] and assume that the
input images are captured by a pin-hole camera, i.e. a perfect
perspective projection free of camera blur. Furthermore, the
intensity of a pixel reflects a single point in the scene - in our
case the respective point on the visible layer.

Under this model the intensity of a video pixel (x, t) is
predicted by the intensity of the respective position in the
visible layer l(x, t). To get back the original input images
the remaining differences

I(x, t)− Il(x,t)
(
h−1
l(x,t)(x, t))

need to be coded. We assume that a Gaussian model – with
fixed variance – gives suitable code lengths to code these
differences.

To code the layer domains it suffices to encode their
boundaries ∂Ωi. It is reasonable to assume that the code length
increases linearly with the boundary length |∂Ωi|. The cost of
encoding the layer intensities inside the layer domains depend
on the compressibility of the intensity profiles - a constant
image would result in a very short code. The compressibility
is well reflected by the total variation of the signal :∫

Ωi

|∇Ii(x̂)| dx̂ . (3)

The cost to encode the motion functions hi are denoted
R(hi). In this paper we consider both parametric and non-
parametric motion models. For most of the paper we use a
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simple parametric motion model that is affine in space and
quadratic in time:

hi(x̂, t) = x̂ + S(x̂, t)ϑi, (4)

S(x̂, t) =

(
x̂t ŷt t t2 0 0 0 0
0 0 0 0 x̂t ŷt t t2

)
,

where x̂ = (x̂ ŷ)> and ϑi ∈ IR8 is a parameter vector. The
coding cost here are negligible, so we set R(hi) = 0.

The parametric model satisfies the requirement of invert-
ibility for each time t, but for real-world motion it is often
too simple an approximation. Hence, we optionally allow to
add nonparametric velocity fields to the parametric motion. As
these are generally not invertible we only model the direction
from video frames to layers:

h̃−1
i (x, t) = h−1

i (x, t) + vti(x) , (5)

where vti(x) : IR2 → IR2 are nonparametric velocity fields.
In analogy to the layer intensities, for this model we choose
the regularity term

R(h̃−1
i ) = α

∑
(x,t)∈X

∣∣∇vti(x)
∣∣ ,

where
∣∣∇vti(x)

∣∣ is a common but somewhat loose notation:
to be precise one takes the gradient of each of the two
components of vti separately, then sums the absolutes of both
gradients.

The arising coding cost, with weighting factors ν, λ > 0, is

Motion Layer Decomposition

E({Ωi, Ii,hi}) =
∑
(x,t)

(
I(x, t)− Il(x,t)

(
h−1
l(x,t)(x, t)

))2
+
∑
i

R(hi) + ν
∑
i

∣∣∂Ωi
∣∣

+λ
∑
i

∫
Ωi

|∇Ii(x̂)| dx̂ (6)

subject to (2)

B. A Refined Coding Cost Formulation

In the previous section we presented a coding cost func-
tional based on the assumption of a pin-hole camera. Min-
imizing the cost usually results in blurry layer images as
demonstrated in Figure 3. To a large extend this is due to
the inaccurate camera model: real-world cameras induce lens-
blur and pixels collect the intensity inside a certain area on
the sensor chip. Models which account for these effects are
common in the areas of image deblurring and super-resolution.
In the latter field a video sequence is reduced to a single image.
In this paper we extend this idea to a superposition of layer
images.

Mathematically the lens-blur is expressed as a convolution
with a Gaussian kernel b. Its variance is set by the user. If the
scene is generated by a single layer, the recorded intensities
can be predicted as

Isyn(x, t) =

∫
A(x)

b(x′) ∗ I1(h−1
1 (x′, t)) dx′ , (7)

where A(x) is the pixel area on the sensor element. To model
the input sequence as a superposition of N layers we introduce
a function expressing whether a layer is visible at a given video
pixel or not:

χi
(
x, t
∣∣ {Ωj}, {hj}) =

{
1 if i = min {j |h−1

j (x, t) ∈ Ωj}

0 else.
(8)

The image formation process for the case of N layers is now
given as

Isyn(x, t) (9)

=

∫
A(x)

b(x′) ∗

[∑
i

χi
(
x′, t

∣∣ {Ωj}, {hj})Ii(h−1
i (x′, t))

]
dx′

≈
∫

A(x)

∑
i

χi
(
x′, t

∣∣ {Ωj}, {hj}) [b(x′) ∗ Ii(h−1
i (x′, t))

]
dx′

where for computational simplicity we have neglected camera
blur across motion boundaries in the camera image. For the
coding cost this simply implies that different difference images
have to be coded:

Super-resolution Motion Layer
Decomposition

E({Ωi, Ii,hi})=
∑
(x,t)

∣∣I(x, t)− Isyn(x, t)
∣∣

+
∑
i

R(hi) + ν
∑
i

∣∣∂Ωi
∣∣

+ λ
∑
i

∫
Ωi

|∇Ii(x̂)| dx̂ (10)

subject to (2)

This time we take the Laplacian distribution to code the
difference images. The reason is discussed in the following
section. Minimizing the cost functional (10) results in the
desired sharp, fine-detailed images, as shown in Figure 3.

C. Discussion of the Cost Functions

We have motivated the layer decomposition functionals (6)
and (10) in terms of coding cost. From a computer vision
perspective there are two important points to note here.

The first point concerns the data term: for the basic
functional we choose squared differences, but for the super-
resolved version we use absolute differences. The reasons for
this are twofold: to get a good (but slightly imperfect) notion
of the layers from a poor initialization, the squared differences
are better suited as the optimization algorithm is less likely to
end in a poor local minimum.

However, to get fine-detailed, super-resolved layer images
from a good initialization, the absolute differences are much
better suited. In the experimental section we show on real-
world data that absolute differences handle difficulties such
as specular reflections and imprecise motion models much
better than squared differences. The robustness of absolute
differences to outliers is often discussed in the literature. Yet,
its usefulness is usually demonstrated on synthetic data.
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3/30 images close-up of input frame layer estimated
with pin-hole camera model

layer estimated
with super-resolution model

Fig. 3. Under the assumption of the pin-hole camera the extracted layers are more blurry than the input frames. In contrast, with super-resolution one
recovers fine details that are not visible in any of the input frames.

The second point concerns the regularity terms in the layer
space, as introduced by Jackson et al. [17]. As shown in
the first author’s thesis such terms are crucial to remove the
otherwise occurring1 trivial minima: often, regularity terms
are skipped altogether [19], [39] or affect the length of the
segmentation boundary in the video [23]. In both cases one
can show that the global optimum has cost zero and is given
by a single layer, obtained by unrolling the sequence - see
Figure 4. Note that the associated motion function is

h1(x̂, t) =

(
tX
0

)
+ x̂ ,

where X is the width of the rectangular domain Ω. The layer
is given by

I1(

(
tX
0

)
+ x̂) = I(x̂, t) .

IV. OPTIMIZING THE CODING COST

To optimize either of the coding cost (6) or (10), the
algorithm must solve for the shapes (or domains) Ωi of the
layers, their appearance Ii and their motion hi. In some cases
one also wants to optimize the occlusion order. The number
of layers is assumed to be given.

A. Initialization

In the following we present an alternating optimization
scheme for minimizing first the coding cost (6) and later
(10). The algorithm finds a local minimum of each cost
functional and is dependent on initialization. Yet, finding a
good initialization is outside the scope of this paper, and it is
one of our aims to show that the proposed method works even
with standard initializations.

Our simple initialization scheme first chops the input video
into N horizontal stripes. We then initialize the motion models
using the method of Lucas and Kanade [24] in each segment.
This is carried out for the frames 1 and 2, assuming a
translatory motion. We then recompute the visibility such that
it respects the layer order, and solve for the arising layer
domains and intensity profiles.

1This affects layer decomposition, but not layered motion segmentation.

B. Outline of the Algorithm

To optimize the functionals (6) and (10) we use an alternat-
ing minimization framework: iteratively the motion models,
the layer domains and the layer appearances are updated.
The process is continued until no further energy decrease is
possible, i.e. a local minimum is found.

For the layer domains and intensities globally optimal
solutions are given when fixing the other quantities, the motion
models are locally refined using Taylor expansions of the video
intensities. To robustify the optimization we use a multi-scale
scheme, starting from a coarse scale (we take 92 pixels in
x-direction), which is successively enlarged (by a factor of
1.025). When reaching the full scale the alternation process is
continued until a local minimum is found.

To optimize the refined cost (10) we start from the solution
of the basic cost. Here we fix the motion parameters ϑi and
only estimate the nonparametric velocity components.

V. ALTERNATING MINIMIZATION FOR THE CODING COST

We now give an in-depth description of how each quantity
is updated in the alternating minimization scheme.

A. Update of the Motion Models

For the update of motion models we distinguish two phases:
for the basic cost, only the parametric model is estimated. For
the refined cost this model is held fixed and optionally the
nonparametric component is estimated.

1) Updating the Parametric Models: To update the param-
eters of the motion parameters, we use the relation∑

t

∫
IR2

(
I(x, t)− Il(x,t)

(
h−1
l(x,t)(x, t)

))2
dx (11)

=
∑
i,t

∫
IR2

χi
(
hi(x̂, t), t

)
·
(
I(hi(x̂, t), t)− Ii

(
x̂
))2 ∣∣∣∣dhidx̂

∣∣∣∣ dx̂ ,

where we switch from the video space to the layer space. For
our discrete sensor model this holds only approximately but
gives good enough results in practice. We can now apply the



SCHOENEMANN AND CREMERS: A CODING COST FRAMEWORK FOR SUPER-RESOLUTION MOTION LAYER DECOMPOSITION 6

input sequence

→

globally optimal layer when choosing inappropriate regularity terms

Fig. 4. When choosing inadequate regularity terms, layer decomposition provides meaningless solutions: the global optimum is then a single layer obtained
by unrolling the sequence.

Gauss-Newton method where for a given parameter vector ϑ0
i

one performs a first-order Taylor expansion on the image:

I(x̂ + S(x̂, t) (ϑ0
i + ∆ϑi), t)

≈ I(x̂ + S(x̂, t)ϑ0
i , t) +∇I(x̂ + S(x̂, t)ϑ0

i , t)
>∆ϑi .

Inserting this into (11) yields a functional that is quadratic
in ∆ϑi, but generally not convex. To ensure that the energy
does not increase we follow Levenberg and Marquardt [25]
and add a term ρ‖∆ϑi‖2 where the factor ρ is multiplied
by 10 whenever the update increases the energy, otherwise
divided by 10. The resulting updates are given by

∆ϑi = M−1
i ·

(∑
x̂,t

χi(hi(x̂, t), t) ·(
Ii(x̂)− I(hi(x̂, t), t)

)
S(x̂, t)>∇I(hi(x̂, t), t)

)
with

Mi=ρ I +
∑
x̂,t

[
χi(hi(x̂, t), t) ·

S(x̂, t)>∇I(hi(x̂, t), t)∇I(hi(x̂, t), t)
>S(x̂, t)

]
and where I is the identity matrix.

2) Updating the Nonparametric Models: Updating motion
models when using super-resolution is a difficult problem and
to our knowledge so far nobody managed to give gradient-
based solutions. The only solution we know of is an exhaustive
search over some putative motion models [15]. This breaks
down if – as in our case – the motion models are high
dimensional.

To update the nonparametric fields, we compute a proposal
solution by warping the layer to each input frame according
to the current motion model, then applying the method of
Papenberg et al. [28]. The obtained velocity field may have
higher cost than the previous one, in which case it is discarded.

B. Update of the Layer Intensities

For optimizing the layer intensities, again we differentiate
between the two functionals. In both cases the functional is
convex with respect to the layer intensities, so gradient descent
leads to the globally optimal layer appearance. Also, both
functionals allow to estimate the intensities for each layer
separately.

1) Layer Intensities for the Basic Functional: With respect
to the layer intensities functional (6) is an instance of the ROF-
model [30] - a point-wise quadratic data term in combination
with a total variation regularity term. Numerous methods
exist to minimize such functionals, including duality-based
approaches [7], [43] which make use of Gauss-Seidel solvers
or gradient descent.

In the special case where the total variation term is turned
off (λ = 0) or replaced by e.g. area, the intensities are given
as the average of the intensities along the trajectory of each
point. Since we use the functional (6) only to initialize (10),
we neglect the total variation term for the update of the layer
intensities. Note that this term is still used for the optimization
of the layer domains.

2) Layer Intensities for Super-resolution: In combination
with super-resolution, the layers are estimated in a higher
resolution than the input frames. We usually use a factor of
3 in each dimension, which increases the number of intensity
variables by a factor of 9. The huge number of variables makes
regularization terms like the total variation (3) essential: as
long as there are 8 or less input frames, one has more variables
to estimate than input data, so additional terms are needed to
guarantee a single solution.

We smooth the absolutes in the data term, i.e. instead of
|x| we use the function Ψ(x) =

√
x2 + ε, with ε = 0.05.

The arising sub-problem of (10) is still convex in Ii, but now
has a more complicated structure. Where previously Gauss-
Seidel schemes were applicable, now we use gradient descent
to obtain the global minimum. The functional derivative in the
direction of an image η : IR2 → IR is defined as

∂E

∂Ii

∣∣∣∣
η

= lim
ε→0

1

ε

[
E(Ii + εη)− E(Ii)

]
.

This leads to gradient descent with the gradient

∂E

∂Ii
(ŷ)=

[∑
x,t

χi(x, t)χA(x)(hi(ŷ, t)) ∗ b(hi(ŷ, t))

·Ψ′
(∫
A(x)

b(x′) ∗ Ii(h−1
i (x′, t))−I(x, t)dx′

)]∣∣∣∣dhi(ŷ, t)dŷ

∣∣∣∣
−λ div

(
∇Ii(ŷ)

|∇Ii(ŷ)|

)
.

where χA(x) is the indicator function for the area of pixel
x. For the simpler case of squared differences, a detailed
derivation is given in [31].
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This evolution equation can be interpreted as follows:
the first term drives the layer intensities (after blurring) to-
wards the observed intensities, whereas the second leads to
a nonlinear, discontinuity preserving diffusion. The practical
implementation is close to the book chapter [44]. For details
see also the first author’s thesis [31].

In practice gradient descent is not the best choice to solve
for the layer intensities. Instead we resort to a primal-dual
algorithm [43] where one simultaneously performs a gradi-
ent descent on the original (primal) functional and its dual
formulation. The latter affects only the total variation term.
This algorithm results in a speed-up of at least an order of
magnitude.

To deal with the large number of intensity variables we
resort to a GPU-based implementation and perform 250 itera-
tions of the primal dual algorithm. Each of the layers in Figure
7 is now estimated in 25 seconds on a GTX 280 graphics
card. This is for 30 input frames of size 350 × 240. Layers
are estimated in triple super-resolution.

3) Estimating Intensities Outside the Layer Domains: The
procedure discussed so far only gives layer intensities inside
the current layer domains. Yet, for the update of layer domains
we need the layer intensities to be defined everywhere –
the decision whether or not a layer is defined in a certain
place depends upon whether the intensity at this place is in
accordance with the input video.

To define the intensities outside the layer domain, we relax
the formulation a bit. To be precise, we relax the visibility
term (8) such that each layer is partially visible in each video
position. To this end, the else-case in (8) is modified from 0
to a small positive ε. In the case of the basic cost functional
(6) (where the data term is rewritten as in (10)) we are able to
compute the limit of ε→ 0: the intensities inside the domains
are as before inside the domains, outside they are given as
the average over all video points along the respective motion
trajectory.

For the super-resolution cost (10) we use ε = 0.01 and
apply gradient descent. In practice this choice is small enough
not to influence the intensities inside the domains.

C. Update of the Layer Domains

It remains to solve for the layer domains Ωi. This procedure
is virtually the same for both energies (6) and (10), so we
exemplarily detail it for the basic cost (6).

We cast the problem as a binary labeling problem where the
variables denote the characteristic functions li(·) of the layer
domains. Solving this is intricate since the layer domains affect
four terms in the functional:
• the data term, since the layer domains determine which

layer is visible at each video position. This is actually a
complex dependence: all N layers have to be considered
to determine the visibility at a given video pixel.

• the boundary length, which obviously depends on the
layer domains.

• the total variation term since the domain of the each
integral is the respective layer domain. This is one of the
key factors to remove the mentioned trivial global optima.

• the constraint (2) demands that for each video pixel there
is some associated layer.

This last point – to ensure the constraint – is resolved by
minimizing the functional

E({Ωi, Ii,hi}) + γ
∑
x,t

(
1−

∑
i

χi(x, t)
)
, (12)

where γ is set to the last determined energy.
The second major difficulty, caused by the data term, is not

so easy to handle: since visibility depends on all N layers at
once, we get a term of order N (also called N -ary) in the
objective labeling function. For the case of 2 layers we give
a globally optimal solution, based on graph cuts. For the case
of N > 2 layers such a solution generally does not exist: for
N = 3 layers the (ternary) data term for a single pixel does
not satisfy the submodularity conditions in [14], [2], [21] and
this property remains when flipping the roles of 0 and 1 for
any number of variables2.

1) Graph Cut-based Optimization: The arising labeling
problem is formulated on the layer domains. To this end, for
each layer i a discretized a set of spatial positions that could
potentially belong to the layer is set up (from the current
motion models) and denoted Di. The task is now to determine
a binary variable li(x̂) for each x̂ ∈ Di and each layer i.

With the mentioned representation it is easy to include the
notions of length and region integrals into the graph. The
length of each layer boundary is approximated as in [5] –
each layer pixel x̂ is connected to a set of neighbors (we take
the set N8(x̂) of the 8 closest neighbors) via an edge with a
suitable edge weight:

|∂Ωi| ≈
∑
x̂∈Di

∑
ŷ∈N8(x̂)

ν

‖x̂− ŷ‖
(1− δ(li(x̂), li(ŷ))) ,

where δ(·, ·) is the Kronecker-δ. The region integrals are
approximated by a sum of unary terms (at the cost of a slight
imprecision along the region boundary):∫

Ωi

|∇Ii(x̂)| dx̂ ≈
∑
x̂∈Di

li(x̂) |∇Ii(x̂)| .

Both the region and the length terms are submodular and hence
easy to minimize. A key factor in the following will be that
these terms remain submodular when the roles of 0 and 1 are
flipped for an entire labeling function li (here the formulation
of the region term needs to be adapted).

The remaining terms – the data terms (including visibility
reasoning) and the constraint – are sums over video pixels, not
layer variables. For the implementation they are grouped to-
gether, resulting in one N -ary term per video pixel (x, t). This
term depends on one variable in each layer. The corresponding
spatial position in layer i is denoted x̂i=h−1

i (x, t) for given
(x, t). Here we round to the nearest pixel position to get the
corresponding layer variable, but use subpixel interpolation to

2This implies that for a video consisting of a single pixel the arising function
cannot be optimized with graph cuts. It is unlikely that for larger videos the
functional is submodular when it contains terms that are not.



SCHOENEMANN AND CREMERS: A CODING COST FRAMEWORK FOR SUPER-RESOLUTION MOTION LAYER DECOMPOSITION 8

determine the layer intensity. The terms are then written as∑
x,t

[∑
i

χi(x, t
∣∣ {Ωi}, {hi}) (I(x, t)− Ii(x̂i))2

+ γ
(

1−
∑
i

χi(x, t
∣∣ {Ωi}, {hi}))] (13)

where we have explicitly indicated the dependence of the
visibility χi(·, ·) on the layer domains: this dependence makes
optimization difficult. In the implementation we differentiate
between the two layer case and the multi layer case.

2) The Two Layer Case: For two layers each term in (13)
can be written as a binary submodular term depending on
the variables l1(x̂1) and l2(x̂2) for the respective (x, t). The
constraint term simply serves to prevent that both variables are
labeled as 0, which would leave the visibility undefined. This
constellation is consequently penalized with γ. For the remain-
ing three constellations one chooses the intensity difference to
I1(x̂1) if l(x̂1)=1, otherwise the difference to I2(x̂2):

Ex̂1,x̂2(0, 0) γ

Ex̂1,x̂2(0, 1)
[
I(x, t)− I2(x̂2)

]2
Ex̂1,x̂2(1, 0)

[
I(x, t)− I1(x̂1)

]2
Ex̂1,x̂2(1, 1)

[
I(x, t)− I1(x̂1)

]2
In this form the term is not submodular, but it can be

made so by invert the labeling l2(·). The function (12) is now
written as a sum of submodular, binary terms and can hence
be optimized globally via graph cuts [14], [21].

3) The Multi Layer Case: In the case of N > 2 layers, the
function (12) becomes a non-submodular function of binary
variables which contains terms of order N .

The key idea of our approach is to exploit the related multi-
label problem given by the labeling (1). Multi-label problems
are often addressed by expansion moves [6]. We adopt this
approach to our binary labeling problem and, starting from a
consistent labeling, design one move for each layer i. Each
move is a binary submodular labeling problem containing
unary and binary terms. Note that since problem (12) is not
of metric form, we cannot give the usual factor guarantee for
expansion moves [6].

In the move for layer i all variables x̂ ∈ Di in layer i are
allowed to join the layer, i.e. li(x̂) may either be set to 1 or
kept at its previous value. Simultaneously all variables ŷ ∈ Dj

for all layers j 6= i are allowed to leave the support of layer
j. That is, lj(ŷ) may either be set to 0 or kept at its previous
value. It is important to consider all layers at once: otherwise,
once a layer j becomes visible at a video position, it could
never be replaced by a layer i > j.

For each video position (x, t) there are two possibilities in
the move for layer i: either layer i becomes visible or the
previously visible layer, say j, remains visible. This decision
is reflected by an additional variable l̃(x, t). These variables
allow to represent the data terms as unary terms, where a value
of 1 signals that i becomes visible, 0 that j remains visible.

It remains to ensure that the variables l̃(x, t) reflect the
visibility as induced by the layer labelings l1, . . . , lN . This
means that three constraints have to be ensured:

1) If i becomes visible (l̃(x, t) = 1), then the respective
layer point x̂i must be in the support of layer i, i.e.
li(x̂i) must be 1.

2) If j remains visible (l̃(x, t) = 0) and i < j, then x̂i
may not be in the support of i, i.e. li(x̂i) must be 0.
Otherwise the occlusion order would be violated.

3) If i becomes visible (l̃(x, t) = 1) and i > j, then for all
j ≤ k < i the variable lk(x̂k) must be set to 0, again to
respect the occlusion order.

Each constraint can be written as (sums of) binary terms
combining a video variable with a layer variable, with the
cost of 0 for one constellation and γ for all others. The terms
are submodular if we invert all labelings for layers j 6= i.

4) Alternative: In principle, much of the cost can also be
optimized in the video space. The total variation term would
then be encoded as a concave potential with one breakpoint
[20]. It turns out that the introduced auxiliary variable cor-
responds to a layer variable in our setting. These variables
are needed explicitly to encode the boundary regularization in
the layer space. They are also very helpful for a simple and
memory-saving implementation of enforcing the layer order
consistency.

D. Optimizing the Layer Order

The presented occlusion model depends heavily on which
layer is deemed to have the number 1, 2 and so forth. In
practice it is sensible to optimize this order rather than fix it
beforehand. Yet, we know of no better solution than a brute-
force search over all N ! permutations. For two layers this
search is included in the alternating minimization scheme: The
multi-scale scheme is run for both orders up to the original
scale. Then the order with lower energy is chosen. We also
tried to optimize the order at each individual level. Yet, this
leads to wrong decisions early on which are never corrected
in later stages.

For more than 2 layers the computational cost become too
high since optimization is already based on iterating graph
cuts. Instead we assume that faster moving layers correspond
to lower occlusion orders, i.e. we update the order after every
iteration. This assumption includes, but is not limited to, all
cases with a static scene and a moving camera.

VI. EXPERIMENTS

The presented contributions and improvements will now be
evaluated on four real-world sequences containing up to 30
frames each.

The stated coding cost include three parameters: λ, ν and
the width of the blurring kernel. We found λ = 275T and
ν = 0.33T to give consistently good results3, where T is the
number of input frames. Yet, in the end the choice is heuristic.
We have therefore indicated the one case where we differed
from these parameters.

The width of the blurring kernel was adjusted manually for
each sequence. For off-the-shelf usage we recommend a width

3These parameters are for the basic coding cost. For the refined cost they are
divided by 50 to account for the switch from squared to absolute differences
in the data term.
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of σ = 0.5L, where L is the super-resolution factor in each
dimension.

A first experiment is given in Figure 5 for the coastguard
sequence. This sequence is difficult because of the floating
water which does not agree with the model assumptions. Still,
the boat as well as the correct layer order are identified.

A. Super-resolved Layer Decompositions

We start by giving results for the refined coding cost
functional. We tested three different sequences, each with its
own difficulty: for the Pickup Sequence4 in Figure 35, one
deals with specularities on the can. In the Avengers Sequence
shown in Figure 6 the background is moving faster than the
foreground. In both cases the algorithm determines the correct
layer order.

The last sequence is the Flower Garden Sequence, where
input images and resulting layers are shown in Figures 1
and 7. Here some layers contain objects with mixed depths,
which requires a non-parametric motion model. The sequence
also demonstrates that more than two layers can be handled:
we initialized with 4 layers, one of them vanished during
optimization.

Both the Pickup Sequence and the Flower Garden Sequence
are long sequences with 31 and 30 frames respectively. Still it
is possible to decompose them into just 2 or 3 layer images.
Also, in all cases very precise motion boundaries were found.
This is due to the physically consistent occlusion model.

B. Robustness of Parameters

Since the blurring kernel is set by the user, the proposed
cost function involves effectively two free parameters, λ and
ν. While above we have given a setting that works well for
all considered sequences, we now also evaluate how changing
the parameters affects the results.

Figure 8 evaluates the effect of changes in λ and ν on the
Avengers Sequence. Here it can be seen that small λs result
in speckled regions, but that otherwise the value is not very
critical. For ν the results are quite similar within a range of a
factor of 100. Large values result in only one layer (but note
that it is not the unrolled image sequence).

C. Basic Cost, Refined Cost and Robust Data Terms

In this paper, we have proposed two different cost func-
tionals. As Figure 9 shows, the basic cost suffices to get tight
region boundaries with consistent occlusion reasoning.

Yet, if one also wants a precise reconstruction of the scene,
the refined cost become crucial: by modeling physical details
of the image formation process, one can infer very small
details that are not visible in any of the input frames.

When introducing the refined cost, we argued that the abso-
lute differences in the data term robustify the layer estimation

4Image data courtesy of Michael Black, http://www.cs.brown.edu/˜black/ .
We use frames 90− 120. The Flower Garden Sequence is obtained from the
same source.

5To get optimal super-resolved layers, we use ν = 500T . The standard
settings produce nearly the same layer shapes, but more noise in the layer
images.

process. Indeed, it is well known throughout the literature that
absolute differences are robust to outliers, whereas for squared
ones already a single outlier can lead to arbitrarily bad results.
Yet, such effects are usually demonstrated on synthetic data,
e.g. by adding salt-and-pepper noise.

In this paper we justify the robust terms on real-world data.
Figure 10 shows two reconstructions for the Pickup Sequence.
Since in one frame a specularity on the metal can is visible, the
squared differences produce artifacts. In this case they might
still be acceptable.

This is different when using the nonparametric motion
models: as shown in Figure 11 the squared data terms produce
severe artifacts when the velocity estimates are imperfect.
Once present, these effects cannot be compensated by iterating
the processes. To be consistent with the model, for the squared
differences we used the method of Horn and Schunck to
compute proposal velocity fields (this also changes the terms
R(hi) which now takes the squared gradient absolute). We
checked that the same proposals do not cause artifacts when
using absolute differences.

D. Parametric vs. Nonparametric Motion

Above we have already shown that the use of nonparametric
velocities results in fine-detailed layer images for the Flower
Garden Sequence. Figure 12 demonstrates the influence of
these motion models: with the parametric part alone, many
parts remain blurry. The reason is that the layer contains
objects of different depths. E.g. the trees actually stand in
front of the houses. With the nonparametric model it is still
possible to obtain a single, sharp layer image.

E. Comparison to Alternative Approaches

Finally, we compare our method to other approaches on
motion analysis: In Figure 13 we show results for the layer de-
composition approach of Kumar et al. [23] and two approaches
to motion segmentation: the space-time motion segmentation
of Cremers and Soatto [9] and an extension of the graph cut
motion segmentation [32] which includes image warping.

These results demonstrate that near occlusions motion seg-
mentation does not provide tight region boundaries. In partic-
ular, none of the two methods identifies the region between
the fingers.

This is different for layer decomposition. While our method
can handle the entire 31 frames, the method of Kumar et
al. suffers from significant drift [22] when run on more than
10 frames. Moreover, it splits the thumb into two parts. For
fairness it must be noticed that this method was designed for
articulated motion.

VII. DISCUSSION

While this paper has made a number of interesting con-
tributions, the problem of layer decomposition as a whole is
certainly not solved yet. We now discuss a number of issues:

Robustness of Parameters. We have given a parameter
setting that works well on all tested sequences. In addition, it
was shown above that the algorithm is fairly robust against the
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Fig. 5. Induced video regions for frame 1, 15 and 30 of the coastguard sequence.

3/9 input images super-resolved background layer super-resolved foreground layer

Fig. 6. Input frames and obtained super-resolved layers for the Avengers sequence. The algorithm correctly determines that the background is moving faster
than the foreground.

3/30 input images super-resolution layer 1 super-resolution layers 2 & 3

Fig. 7. Layers and induced region boundaries obtained for the Flower Garden Sequence (three of the 30 input frames are shown in Figure 1): the combination
of the absolute differences in the data term and the nonparametric velocity fields allows to get a fine-detailed notion of the scene.
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ν = 100T ν = 1000T ν = 2000T

λ = 0.0333T λ = 3.33T λ = 33.333T

Fig. 8. The choice of parameters affects the results only mildly.

segmentation basic cost layer 1 refined cost layer 1 refined cost layer 2

Fig. 9. The basic cost provides tight region boundaries, the refined cost adds precise layer images.

squared differences: absolute differences:
artifacts caused by reflections no artifacts

Fig. 10. Effect of robust and non-robust data terms, demonstrated on real-world data: robust terms improve the results in the presence of lighting changes.
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with squared differences, incorrect absolute differences are robust
velocities cause severe artifacts. against erroneous velocities.

Fig. 11. In combination with nonparametric motion models, the robust data term proves crucial to get acceptable layer images.

with parametric motion: with non-parametric motion:
blurry where objects stand out. sharp everywhere.

Fig. 12. Non-parametric motion models are needed when there are objects with different depths in the same layer.

choice of parameters. In fact, it is well known that problems
tend to become more robust when several frames of a video
sequence are considered at once. Still, there is the issue of local
minima that is present in virtually all approaches to motion
estimation (with reasonably large displacements).

Adjusting the blurring kernel. Currently the variances of
the blurring kernel are set by hand. In practice this is not much
of a hindrance since it has to be repeated only if the camera
or the focal length is changed. Moreover, we have given a
parameter for off-the-shelf usage. Strategies to automatically
derive this parameter have been considered, e.g. [41], but are
outside the scope of this work.

Choosing the number of layers. At present the number of
layers is considered given, and our attempts to automatically
select it were discouraging. We note however, that there is a
large body of literature devoted to this subject, and we do not
mean to claim that our work renders these approaches obsolete.
On the contrary, we consider these topics to be orthogonal and
are confident that the ideas can be combined.

Initialization. We have chosen a simple initialization to
demonstrate the power of our contributions, which are based
on a rigorous energy minimization framework. More refined
initializations can of course easily be included, and again we
refer to the large body of literature available.

Length Regularity. Virtually all works combining motion
estimation and shape optimization that include a regularity
term make use of some kind of length regularity. It is well
known that such terms have difficulties to recover long and
elongated structures. Recently, researchers have considered
curvature regularity to remove this shrinking bias [34]. The
inclusion of such terms is left for future work.

VIII. CONCLUSION

We have introduced a layer decomposition approach based
on minimizing coding cost functionals. Compared to other
approaches to motion analysis – motion estimation, motion
segmentation and layered motion segmentation – layer decom-
position is based on a fully generative model and therefore
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Cremers, Soatto [9] with Space-time affine motion
translational motion on frames 90 and 91 segmentation by graph cuts [32]

Kumar et al. [23] Region boundaries induced by
run on frames 90–99 the proposed layer partitioning

Fig. 13. Comparison on the Pickup Sequence: with the proposed method, the tightest boundaries are obtained.

incorporates a natural treatment of occlusion. Moreover, the
proposed layer formulation is based on a physically more
realistic model of the image formation process (including lens
blur and downsampling). As a result of this, we obtain a more
detailed scene structure than any single input frame would
allow.

We have presented a number of contributions concerning the
model as well as the optimization procedure. For the model,
we have first shown that the formulation by Jackson et al.
removes trivial optima that arise with previous formulations.
Further, an image formation model which is more realistic than
that of previous layer approaches – including lens blurring
and downsampling – allows for layer images of a resolution
superior to that of the individual input images.

Optimization of the coding cost functional is done by alter-
nating the estimation of geometry, intensity and motion of all
layers. The geometry estimation integrates spatial smoothness
and region-based priors. It is solved by means of graph cuts in
the layer domain (rather than the input domain). The optimiza-
tion of layer intensities gives rise to a convex total variation
deblurring, providing crisp high-resolution layer images. And
the motion estimation is solved by either high-order parametric
(in space and time) motion models, or by state-of-the-art
nonparametric variational optic flow techniques.

In numerous experiments, we demonstrated that a given
video can be decomposed into a superposition of super-
resolved moving layers by minimizing the proposed coding
cost. In general this is a very large computational effort, where
most of the runtime is spent on estimating the layer intensities.
GPU implementations lead to acceptable runtimes.
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