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Abstract—Evolution and learning are two of the fundamental mecha-
nisms by which life adapts in order to survive and to transcend limita-
tions. These biological phenomena inspired successful computational
methods such as evolutionary algorithms and deep learning. Evolution
relies on random mutations and on random genetic recombination. Here
we show that learning to evolve, i.e. learning to mutate and recombine
better than at random, improves the result of evolution in terms of
fitness increase per generation and even in terms of attainable fitness.
We use deep reinforcement learning to learn to dynamically adjust
the strategy of evolutionary algorithms to varying circumstances. Our
methods outperform classical evolutionary algorithms on combinatorial
and continuous optimization problems.
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1 INTRODUCTION

MOST problems in engineering and the natural sciences
can be formulated as optimization problems. Evo-

lutionary computation is inspired by the powerful mech-
anisms of natural evolution. While other methods might get
easily stuck when optimizing rugged objective functions,
evolutionary algorithms can escape local optima, explore
the solution space through random mutation and combine
favorable features of different solutions through crossover,
all while being simple to implement and parallelize.

Consequently, evolutionary algorithms have been ap-
plied to a range of engineering problems, from designing
steel-beams [1] and antennas for space-missions [2], to more
large-scale problems, like the design of wind parks [3],
water supply networks, or smart energy grids.

Evolution and learning are two optimization frame-
works that in living systems work at different scales with
different advantages. Appropriate combinations of the two
provide complementarity, and are a crucial part of the suc-
cess of living systems. Here we propose new combinations
of these optimization principles.
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We propose using deep reinforcement learning to dy-
namically control the parameters of evolutionary algo-
rithms. The goal is finding better solutions to hard optimiza-
tion problems and facilitating the application of evolution-
ary algorithms.

Our deep learning for evolutionary algorithms is not to be
confused with evolutionary algorithms for deep learning, such
as neuroevolution [4] or population-based training [5].

This section provides a brief explanation of the used
terms and definitions. Section 2 provides an overview of
previous work dedicated to enhancing evolutionary algo-
rithms through reinforcement learning. Section 3 explains
how we aim to do away with the shortcomings of previous
work, as well as the experimental setup used to provide
initial evidence of the feasibility of our approach. Section 4
is dedicated to the results of our experiments and their
discussion. Section 5 provides high-level conclusions to our
experimental results.

1.1 Evolutionary Computation
Evolutionary computation is an umbrella term for optimiza-
tion methods inspired by Darwinian evolutionary theory.
In natural evolution, individuals strive for survival and re-
production in a competitive environment. Those with more
favorable traits, acquired through inheritance or mutation,
have a higher chance of succeeding.

Evolutionary algorithms are specific realizations of the
concept of evolutionary computation. Evolutionary algo-
rithms solve computational problems by managing a set
(population) of individuals. Each individual encodes a can-
didate solution to the computational problem in its genome.
To explore the solution space, offspring is generated from
the parent population through recombination operators that
combine properties of the parents. Additionally, mutation
operators are applied to introduce random variations with
the goal of enhancing exploration and preventing premature
convergence. A new population is created by selecting a
set of individuals from the parent population and from
the offspring. This process of recombination, mutation and
survivor selection comprises one generation and is repeated
multiple times throughout a run of the algorithm. To guide
the process towards better solutions, evolutionary pressure
is applied through a fitness function. Fitter individuals are
given a higher chance of reproducing, surviving, or both.
Due to its well parallelizable design and their suitability for
solving high-dimensional problems with a complex fitness
landscape, evolutionary computation is a valuable tool in
engineering applications or other domains where classical
optimization methods fail or no efficient exact solver is
available. Fig. 1 shows the data flow of evolutionary algo-
rithms, and the role we propose therein for reinforcement
learning.

1.2 Adaptation in Evolutionary Computation
A key problem in the application of evolutionary algorithms
is selecting evolution parameters. Even simple implementa-
tions have a considerable number of parameters.

The choice of parameter values has a considerable im-
pact on the performance of an evolutionary algorithm for
different problems and even different problem instances.

Furthermore, utilizing fixed parameters over the course of
all generations can be sub-optimal, as different stages of the
search process might have different requirements.

To account for this, it is desirable for evolutionary al-
gorithms to be adaptive. In this context, adaptation refers to
dynamic control of evolution parameters (not to be confused
with the biological term adaptation).

The following taxonomy, taken from Ref. [6], describes
the different levels on which adaptation can be used in
evolutionary algorithms.

1) Environment-Level Adaptation changes the way in which
individuals are evaluated by the environment, for ex-
ample by altering the fitness function.

2) Population-Level Adaptation modifies parameters that af-
fect the entirety or some subset of the population, for
example by changing the population size.

3) Individual-Level Adaptation makes parameter choices for
specific individuals in the population, for example by
increasing the mutation probability of individuals with
a low fitness value.

4) Component-Level Adaptation changes parameters that are
specific to a certain part of an individual’s genome, for
example by managing per-gene mutation probabilites.

In Section 3.4, we propose adaptation methods for each
of these levels of adaptation.

1.3 Deep Reinforcement Learning

Artificial neural networks are a popular machine learning
technique and connectionist model, inspired by neurobiol-
ogy.

A single neuron is parameterized by weights that model
how its inputs relate to its output. By combining multiple
neural layers that perform (nonlinear) data transformations,
highly complicated functions can be approximated. In order
to model a mapping with desired properties, the network
weights are modified to minimize a loss function. This
minimization is usually implemented using some form of
gradient descent.

Artificial neural networks have seen a surge in pop-
ularity in the past few years and have been successfully
applied in a variety of fields, like computer vision, natural
language processing, biology, medicine, finance, marketing
and others.

Reinforcement learning is an area of artificial intelligence
concerned with training a learning agent by providing
rewards for the actions it takes in different states of its
environment. The ultimate goal is for the agent to follow
a policy that maximizes these rewards.

The key limiting factor in the application of older re-
inforcement learning methods is the complexity of rep-
resenting policies for large state and action spaces. Deep
reinforcement learning is the idea of using artificial neural
networks as function approximators that replace tabular or
other representations used in classic reinforcement learning
algorithms. One additional benefit of deep reinforcement
learning is that it made the use of reinforcement learning
for continuous control feasible (see, for example [7]).
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Fig. 1: Data flow in evolutionary algorithms. Operator generation, process control and fitness estimation can either be
entirely predefined by the user, or follow some algorithmic approach and receive feedback from the population. We
propose using deep reinforcement learning instead of classical process controllers or fitness estimators.

2 RELATED WORK

To our knowledge, there has been no previous work on the
application of deep reinforcement learning to evolutionary
computation. However, there have been several publications
on using classic reinforcement learning techniques for adap-
tation in evolutionary algorithms.

Most previous work has been concerned with
population-level adaptation. In 2002, Müller et al. enhanced
a (1 + 1) evolution strategy (i.e. an evolutionary algorithm
for continuous optimization with population size 1) by
controlling the step-size (i.e. standard deviation) through
reinforcement learning [8]. Later work [9], [10] extended the
use of reinforcement learning to the simultaneous control of
multiple numerical evoluton parameters. Aside from this,
reinforcement learning has also been used to dynamically
select from a set of available evolutionary operators [11],
[12]. Techniques for multi-armed bandits (i.e. reinforcement
learning with a single state) have also been utilized for this
purpose, both in single-objective [13] and multi-objective
optimization [14].

Reinforcement learning has also been successfully ap-
plied to environment-level adaptation. In their 2011 pa-
per [15], Afanasyeva and Buzdalov used reinforcement
learning to select from a set of handcrafted auxiliary fitness
functions that can be added to the main objective function,
in order to reshape the fitness landscape. This approach was
later expanded on to deal with non-stationary problems, in
which the objective function changes over time [16].

As individual- and component-level adaptation requires
larger action spaces, with which classic reinforcement learn-
ing algorithms struggle, there has been little research into
learning such strategies through reinforcement learning.
The only paper we were able to find used reinforcement
learning to control two numerical evolution parameters per

individual in the local search strategy of a memetic algo-
rithm [17] (i.e. a combination of an evolutionary algorithm
with a local search strategy). To our knowledge, there has
been no previous work on reinforcement-learning based
component-level adaptation.

A limiting factor in all of these approaches is that
they employ reinforcement learning methods like Q-
Learning [18] that represent the policy of the learning agent
in a discretized fashion. Practical application of these older
reinforcement learning methods is limited to learning low-
dimensional mappings with a small number of state-action
pairs.

Consequently, only a small, coarsely discretized subset
of the potentially useful information about the optimization
problem and the state of the evolutionary algorithms is
used. Likewise, the action space is discretized coarsely, even
though many of the controlled parameters are continuous
in nature. There has been an attempt to address the problem
of action space discretization by dynamically adapting the
discretization bins [19], but this does resolve the problem
that the underlying reinforcement learning algorithm is ill-
suited to continuous control.

It should also be noted that all aforementioned work is
concerned with learning on the fly (i.e. during the execu-
tion of an evolutionary algorithm) for a specific problem
instance, whereas our method is designed to learn over the
course of multiple runs of the evolutionary algorithm, as
explained in the next section.

3 METHODS

To do away with the limitations of older approaches (see
the end of Section 2), we propose using deep reinforcement
learning to learn adaptation strategies for evolutionary al-
gorithms.
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The novelties of our approach include:

• Learning adaptation strategies for an entire problem
class, instead of optimizing for a specific problem in-
stance

• Using more information about problem instances and
the state of the evolutionary algorithm

• Utilizing modern deep reinforcement learning tech-
niques in order to
operate in large, continuous state and action spaces.
This allows us to:
– Learn complex adaptation strategies
– Entirely replace hand-crafted components of an

evolutionary algorithm (e.g. parent selection) with
learned strategies

While many other use cases are possible (see Section 5),
we limit ourselves to learning adaptation that generalizes to
previously unseen problem instances, using only a limited
number of instances of the same problem class for train-
ing, and always running the evolutionary algorithms for a
fixed number of generations. Within these constraints, we
consider two distinct use cases:

1) The time/resources for training are large. In this case,
the user can account for possible instabilities of the
training process by selecting the best out of multiple
trained agents.

2) The time/resources for training are limited, only allow-
ing for the training of one or very few agents. In this
case, it is important that the average performance of
trained agents is high and the variance in performance
among them is low, so that the user is likely to arrive at
a good solution within the limitations of this use case.

The rest of the Methods section is structured as follows.
We first explain our used reinforcement learning approach
(Section 3.1) and reward function (Section 3.1.3). We then
define three benchmark problem sets (Section 3.2) and ba-
sic evolutionary algorithms that can be used to optimize
these problems (Section 3.3). Next, we propose different
trainable adaptation methods to enhance these evolutionary
algorithms (Section 3.4) and specify the neural network
architecture used for performing the underlying calculations
(Section 3.5). Finally, we define the experimental setup and
performance metrics used for evaluating the different pro-
posed adaptation methods (Section 3.6).

We will release the code at https://github.com/
jan-schuchardt/learning-to-evolve.

3.1 Choice of Reinforcement Learning Algorithm

To allow us to perform both discrete and continuous actions
– depending on the application – we propose the use of
so-called stochastic policy gradient methods, which take
actions by sampling from a probability distribution, param-
eterized by a neural network. Most state-of-the-art deep
reinforcement learning algorithms fall into this category.

In this section, we first provide a more formal definition
of reinforcement learning (Section 3.1.1), before explaining
the specifics of our used reinforcement learning algorithm
(Section 3.1.2).

3.1.1 Basics of Reinforcement Learning
Reinforcement learning is a field of study concerned with
training intelligent agents through rewards or penalties,
based on actions taken in an environment.

Reinforcement learning problems are typically specified
as a Markov decision process, defined by:
• a set S of states,
• an initial state s0 or a probability distribution p(S0)

over a set S0 of initial states,
• a set A of actions,
• the transition function Pa(s′|s), which describes the

probability of reaching state s′ from state s by taking
action a,

• the reward function Ra(s′, s) which assigns scalar re-
wards (larger is better) to a state transition,

• the Markov property P (st+1|st, st−1, . . . , s0) =
P (st+1|st), meaning that the state transitions at time
t are independent of the prior sequence of states.

The goal of reinforcement learning is to learn a policy
π : S,A → [0, 1] that describes a probability distribution
over actions, given a state. The learning has to be achieved
solely based on the observed rewards and state transitions,
without prior knowledge of the environment. The policy
should maximize the expected value of some reward-based
return function R. A typical choice is the discounted sum of
accumulated rewards:

R =

∞∑
t=0

γtrt,

with r being the sequence of received rewards, and γ ∈
[0, 1) being a discount factor that ensures convergence of
the series. A smaller γ means that short-term rewards are
favored over long-term rewards.

3.1.2 Proximal Policy Optimization
Proximal policy optimization [20] is a stochastic policy
gradient method that aims to enhance training stability by
using trust-region optimization of the policy.

In stochastic policy gradient methods, the gradient of
expected future rewards with respect to the parameters θ
of a stochastic policy πθ is used for learning. Each state is
mapped to a probability distribution over actions. An action
is selected by sampling from this probability distribution.

Proximal policy optimization uses the following clipped
loss function for training:

Lclip = −E[min(rt(θ)Ât, clip(rt(θ), [1− ε, 1 + ε])Ât)], (1)

with rt(θ) =
πθ(at|st)
πθold(at|st)

, (2)

where E is the average over a set of training samples,
πθ(at|st) is the probability of performing action at in state
st under the probability distribution described by the policy
πθ , θold are the parameters of the policy during collection of
the training samples and θ are the parameters of the policy
as it undergoes optimization. The advantage estimator Ât
describes how much higher than expected the reward for
following action at at time t was. The clipping function
clip(rt(θ), [1−ε, 1+ε]) maps rt(θ) to the interval [1−ε, 1+ε],

https://github.com/jan-schuchardt/learning-to-evolve
https://github.com/jan-schuchardt/learning-to-evolve


SCHUCHARDT et al.: LEARNING TO EVOLVE 5

i.e. clip(rt(θ), [1−ε, 1+ε]) := min{max{rt(θ), 1−ε}, 1+ε}.
The benefit of this formulation is that it does not encourage
increasing the probability of an advantageous at (Ât > 0)
or decreasing the probability of a worse-than-expected at
(Ât < 0) by more than ε, thus stabilizing the learning pro-
cess and allowing for training samples to be reused without
perturbing the policy, which increases sample efficiency.

Algorithm 1 Proximal policy optimization for multiple
problem instances

for iteration=1,2, . . . ,#iterations do
for problem instance=1,2, . . . , K do

for actor=1,2, . . . ,N do
Run policy πθold for T timesteps
Calculate Â1, Â2 . . . , ÂT
Store training samples

end for
end for
for epoch=1,2, . . . ,#epochs do

Optimize clipped loss on samples w.r.t. θ, using
minibatch size M ≤ KNT

end for
πθold ← πθ
Discard training samples

end for

Algorithm 1 specifies how we use proximal policy op-
timization to optimize a policy for multiple problem in-
stances. In each training iteration, the evolutionary algo-
rithm is applied to each problem instances for a fixed
number of times, in order to gather samples for subsequent
training.

3.1.2.1 Advantage Estimation: We use generalized
advantage estimation (see [21]) for calculating the advan-
tage estimate Â while ensuring a good trade-off between
variance and bias.

Assuming an estimator V̂ (st) (value function) of the
discounted future rewards V (st) =

∑∞
i=0 γ

irt+i, the advan-
tage for a trajectory (i.e. sequence of state transitions, actions
and rewards) of length T is calculated as an exponential
moving average over temporal differences:

Ât =

T−t+1∑
i=0

(γλ)iδt+i, (3)

with δt = γV̂ (st+1) + rt − V̂t(st), (4)

where the parameter λ ∈ [0, 1] controls the trade-off be-
tween variance and bias of the advantage estimate. With
higher λ, the sequence of rewards is given a higher weight,
thus reducing the bias caused by the estimate V̂ (st). How-
ever, the variance of the estimate increases with T , due to
the randomness of the underlying Markov decision process.

3.1.2.2 Time-Awareness: In our approach, the evo-
lutionary algorithm is run for a limited number of genera-
tions. Consequently, learned adaptation methods should try
to maximize the fitness within this given time frame.

For simplicity, we treat the entire run of the evolutionary
algorithm as a single episode of length T . To account for
the time-limited nature of the environment, we make the
following adjustments, based on [22]:

1) We enforce V̂ (sT ) = 0 in the generalized advantage
estimation, as no further rewards can be gathered after
the episode has ended.

2) We add a relative encoding of the remaining number
of generations, (T − t)/T , to the state. This way, the
policy can account for optimization problems in which
the potential for gathering rewards might be consid-
erably higher at the earlier state and adapt its behavior
accordingly. By using a relative encoding, we scale T−t
into the [0, 1] range, with the goal of better generaliza-
tion when applying the evolutionary algorithm under
varying T .

3.1.2.3 Actor-Critic Framework: There are a variety
of ways to calculate the value approximator V̂ (st), one of
which is approximating V through a neural network with
parameters θc. We optimize V̂θc by minimizing

LV = E

∥∥∥∥∥V̂θc(st)−
T−t∑
i=0

γirt+i

∥∥∥∥∥
2
 . (5)

This neural network is typically referred to as a critic,
rating the actions taken by the actor πθ . Since both operate in
the same environment, it is common practice to merge them
into one network and only keep two separate output layers,
so that they can operate on shared lower-level features. In
this case, the loss for the entire network is Lclip + αvLV ,
with the hyper-parameter αv controlling the ratio between
the actor and critic losses.

3.1.2.4 Entropy-Based Exploration: In order to learn
a good policy and avoid bad local optima, it is vital to
explore a variety of actions and states. To this end, the
negative information-theoretical entropy S[πθ] of πθ can
be added to the loss function [23]. By minimizing this
term (maximizing the entropy), actions are taken with
less certainty, thus discouraging premature convergence
to local optima. This leads to the complete loss function
L = Lclip+αvLV +αeS[πθ],with the exploration-controlling
coefficient αe.

3.1.3 Reward Calculation
The goal of a reinforcement learning algorithm is to maxi-
mize rewards over the course of multiple state transitions
(see Section 3.1.1), while the goal of an evolutionary algo-
rithm is to find a solution of maximum fitness over the
course of multiple generations (see Section 1.1). To unify
these two goals, we associate the state st with the population
of the evolutionary algorithm in generation t.

Let fmax(st) be a function that returns the fitness value
of the fittest individual in the population associated with st.
On a generation-to-generation level, the goal of finding a
solution of maximum fitness then translates to maximizing
the ratio fmax(st+1)/fmax(st).

Multiple smaller improvements should have the same
effect as one large improvement that leads to the same final
solution. We therefore define the reward function as

Ra(st, st+1) = αr log10

fmax(st+1)

fmax(st)
, (6)

assuming positive fitness functions. We use the coefficient
αr to scale rewards approximately into the range [−1, 1].
The logarithm is taken, so that the sum of rewards over
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one run of the evolutionary algorithm equals the loga-
rithm of the ratio between the initial and terminal fitness,
αr log10

fmax(sT )
fmax(s0)

.

3.2 Benchmark Problems
Three different problem classes are used to investigate the
usefulness of different reinforcement learning adaptation
mechanisms. We use the 0-1 knapsack problem and the
traveling salesman problem as examples for combinatorial
optimization, and a set of two-dimensional objective func-
tions as examples for continuous optimization. As explained
in the beginning of Section 3, we only use a limited number
of problem instances for training.

This section gives a brief explanation of the different
optimization problems and how we define their respective
fitness functions.

3.2.1 0-1 Knapsack Problem
An instance of the 0-1 Knapsack Problem is defined
by a weight limit wmax and a set I of n items: I =
{(wi, vi) | w, v ∈ R, i ∈ [n]}, with weights w and values v.
The optimization objective is

max
S⊆I

∑
(w,v)∈S

v subject to
∑

(w,v)∈S

w < wmax. (7)

For training, we generated 20 training instances with
wmax = 10, with weights and values uniformly sampled
from [0, 1], and ten more instances for validation.

3.2.2 Traveling Salesman Problem
The traveling salesman problem is another type of com-
binatorial optimization problem. We consider the case of
finding a Hamiltonian cycle of maximum weight within a
fully connected, weighted, undirected graph. We formulate
it as a maximization problem (this is equivalent via a trans-
formation of edge weights to the common formulation as a
minimization problem).

For training, we use 40 different graphs with weights
uniformly sampled from [0, 1]. For evaluation, another 10
problem graphs are used.

3.2.3 Continuous Function Optimization
For continuous optimization, nineteen standard benchmark
R2 7→ R objective functions, as defined in Ref. [24], are
used. The goal in each case is to find the global minimum.
The Ackley function, Beale function and Levy function
#13 are used for validation. The following functions are
used for training: Rastrigin, Rosenbrock, Goldstein–Price,
Bukin #6, Matyas, Cross-in-Tray, Eggholder, Holder, Mc-
Cormick, Schaffer #2, Schaffer #4, Styblinski-Tang, Sphere,
Himmelblau, Booth, Three-Hump Camel. While the Beale
function is plateau-shaped, except for its steep borders,
the Ackley function and the Levy function #13 are highly
rugged with a considerable number of local optima.

For data normalization purposes, we rescale and trans-
late the functions so that their domain is [−1, 1] × [−1, 1]
and subtract their minimum value. Obviously, this nor-
malization is only possible because the minimum value is
already known. While this is not representative of real-
world problems, it is still sufficient for investigating whether
evolutionary algorithms with deep reinforcement learning
can be applied in continuous problem domains at all.

3.3 Baseline Evolutionary Algorithms

To solve the three types of benchmark problems, we use
baseline evolutionary algorithms, which we shall later en-
hance through deep reinforcement learning.

The following paragraphs give a brief explanation of
the specifics of these baseline algorithms, their configurable
parameters, and how the fitness of individuals is defined.

3.3.1 Baseline Algorithm for the 0-1 Knapsack Problem

In the evolutionary algorithm used for the knapsack prob-
lem, solutions are encoded as binary vectors. Fitness is
defined as the sum of weights of the selected items.

The initial population is created by randomly generating
binary vectors with equal probability for 0 and 1. To ensure
that the weight limit is not exceeded, items are randomly re-
moved from invalid candidate solutions until the constraint
is fulfilled.

Parent selection is performed through tournament selec-
tion with tournament size 2. In a tournament, two individ-
uals are randomly taken from the population and the fitter
one is selected as parent. Two tournaments are performed
for each pair of parents. The winner of the first tournament
does not participate in the second one, but can again be
selected in any future pair of tournaments.

Recombination is performed through uniform crossover.
With a probability of 1 − crossover_rate the parents
are directly copied into the offspring generation. Else, two
children are created by combining the parent genomes. For
each gene (i.e. entry of the binary vector), there is a 50%
chance of child 1 inheriting from parent 1 and child 2
inhering from parent 2. Else, child 1 inherits from parent
2 and child 2 inherits from parent 1.

All children then undergo mutation. Each bit is flipped
with a probability of mutation_rate.

Survivor selection is performed using an elitism mech-
anism, which ensures that the fitness of the best indi-
vidual in a population never degrades. The elite_size
fittest individuals from the parent population and the
population_size − elite_size fittest offspring indi-
viduals are selected for survival into the next generation.

3.3.2 Baseline Algorithm for the Traveling Salesman Prob-
lem

In the evolutionary algorithm used for the traveling sales-
man problem, integer-valued genes are used. For a graph
with n nodes, a solution is encoded as a permutation
(a0, a1, . . . , an−1) of (0, 1, . . . , n − 1). The fitness of a so-
lution is calculated as

n−1∑
i=0

wai,ai+1 mod n
, (8)

where wi,j is the weight of the edge between nodes i and j.
The initial population is a set of random permutations.

Like in the evolutionary algorithm for the knapsack
problem, parents are chosen via tournament selection (see
Section 3.3.1). The different crossover operators (described
below) only generate one child for each pair of parents, so
twice the number of tournaments have to be performed for
the same population size.
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We use the traveling salesman problem to evaluate the
ability of a reinforcement learning agent to select from a set
of different operators. To this end, we employ the follow-
ing seven crossover operators: one-point crossover, two-point
crossover, linear-order crossover, cycle crossover, position-based
crossover, order-based crossover, and partially mapped crossover,
as explained in Ref. [25]. Depending on the crossover oper-
ator, children inherit sub-paths, the relative order of nodes,
the position of nodes, or a combination thereof, from their
parents. The probability of performing crossover, instead of
directly copying the parents into the offspring population,
is defined by the crossover_rate parameter.

Mutation is performed through inversion, as follows.
Each child is mutated with a probability defined by
mutation_rate. If the child is mutated, two positions in
its genome are randomly chosen. The order of all the genes
between these two positions is then inverted.

Survivor selection is performed with the same elitism
mechanism used for the 0-1 knapsack problem.

3.3.3 Baseline Algorithm for Continuous Function Mini-
mization
The evolutionary algorithm for minimization of R2 → R
functions represents candidate solutions as real-valued vec-
tors. For self-adaptive mutation, each genome also encodes
a positive, real-valued step-size υ. The fitness of a solution
(x1, x2) evaluated on a function g is defined as

1/max(g(x1, x2), 10−20). (9)

Taking the reciprocal value turns the minimization into a
maximization problem, so that our definitions from pre-
vious sections are consistent across all problem classes.
The max-operator prevents problems with floating point
calculations.

The initial population is generated by uniformly sam-
pling from the function domain. The step-size of each indi-
vidual is first set to initial_step_size.

Evolutionary pressure is induced by only selecting the
parent_percentage×population_size fittest individ-
uals as a set of parents for mutation. No crossover operator
is used.

For each offspring individual, a parent from the parent
set is randomly selected and then mutated through one-step
self-adaptive mutation, as follows: First, the step-size υi of
individual i is multiplied with max(υi,min_step_size),
where υi a sample from the log-normal distribution eN (0,τ),
with self-adaptation strategy parameter τ . Then, a sample
from N (0, υi) is taken for each gene and added onto the
current value. If mutation leads an individual to leave the
function’s domain, it is re-initialized at a uniformly sampled
random coordinate, and υ is reset to initial_step_size.

The same elitism mechanism as in the other baseline
algorithms is used for survivor selection.

3.4 Adaptation Methods
Now that we have established the baseline algorithms, we
propose different ways of enhancing them through rein-
forcement learning. Each of the proposed adaptation meth-
ods replaces or enhances one component of the evolutionary
algorithm (parent selection, crossover, mutation, or survivor

selection, as explained in Section 1.1). To show the range
of possibilities for applying deep reinforcement learning to
evolutionary algorithms, we propose methods for all levels
of adaptation explained in Section 1.2).

Recall that our reinforcement learning algorithm learns
a stochastic policy (see Section 3.1), meaning that actions
are taken by sampling from a probability distribution con-
ditioned on the neural network’s parameters θ and its input.
We use the following probability distributions, which have
different definition domains and are therefore useful for
taking different types of actions:

• Bernoulli trials are used for discrete binary actions, as
sampling from them returns either 0 or 1. The neural
networks outputs a probability pθ ∈ [0, 1] to parame-
terize the distribution. We use Bernoulli trials to:
– select subsets of the population as parents (Sec-

tion 3.4.3.4),
– decide which bits should be mutated in the evo-

lutionary algorithm with binary encoding. (Sec-
tion 3.4.4.1)

• Beta distributions can be used for real-valued, con-
strained policies, as proposed in Ref. [26]. Sampling
from them yields a number between 0 and 1. For a
unimodal beta distribution, the neural network has
to output two scalars αθ, βθ ∈ (1,∞). We use beta
distributions to:
– control the mutation rate (explained in Section 3.3.1)

for the entire population (Section 3.4.2.1),
– control the mutation rate of each individual sepa-

rately (Section 3.4.3.1).
• Categorical distributions are useful for selecting a sin-

gle action from a finite set of k discrete actions. The
distribution is parametrized by probabilities (pθ)i for
each element i to be selected. We use a categorical
distribution to:
– select from a set of different crossover operators

(listed in Section 3.3.2) on the fly (Section 3.4.2.3).
• Normal distributions are utilized for real-valued, un-

bounded actions. Normal distributions are parameter-
ized by a mean µθ ∈ R and a standard deviation
σθ ∈ R+. We use normal distributions to:
– alter (multiplicatively) the fitness of individuals to

influence the selection of parents (Section 3.4.1.1),
– alter (overwrite) the strategy parameter τ (explained

in Section 3.3.3) for the entire population (Sec-
tion 3.4.2.2),

– alter (overwrite) the strategy parameter τ separately
for each individual (Section 3.4.3.2),

– alter (overwrite) the step-size υ (explained in Sec-
tion 3.3.3) of each individual in the population (Sec-
tion 3.4.3.3),

– alter (overwrite) step-sizes for each gene of each
individual (Section 3.4.4.2)

– alter (overwrite) the fitness value of individuals to
influence survivor selection, in order to select a fixed
number of survivors (Section 3.4.1.2).

In some cases, we apply a function (exp or softplus) to
the samples from a normal distribution. Note that in the
context of the proximal policy optimization algorithm, we
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treat the sample from the normal distribution as the action.
The subsequent transformations are part of executing the
action and are not considered in the gradient calculation.

The following sections explain the details of how these
probability distributions are used by the different adap-
tation methods, on an implementation-independent level.
In Section 3.5 we then define how the neural network
that controls the distributions operates, how its inputs are
encoded and how the constraints on its output domains are
enforced.

Note that sampling from a random distribution parame-
terized by the neural network means that the network uses
information about the current situation (see Section 3.5),
i.e. the randomness is intelligently constrained rather than
arbitrary.

3.4.1 Environment-Level Adaptation

On the environment level, we let an agent alter or replace
the fitness function without using handcrafted auxiliary
functions. Altering the fitness landscape could allow for
more diverse populations, which could help in exploring
more of the solution space.

3.4.1.1 Fitness Shaping: In fitness shaping, we
sample a vector ε ∈ Rpopulation_size from a set of
population_size normal distributions parameterized by
the neural network, and multiply it elementwise with the
population’s fitness values, before applying the parent se-
lection mechanism of the baseline algorithm. On the contin-
uous problem set, we multiply fitness values with exp(ε), as
the difference in fitness values is typically much larger.

3.4.1.2 Survivor Selection: In survivor selection,
we assign each individual from the parent and off-
spring population a fitness value by sampling from 2 ·
population_size independent normal distributions pa-
rameterized by the neural network. We then select the
population_size individuals with the highest fitness
value for survival. Unlike in fitness shaping, the learned
fitness function does not merely alter the objective function,
but replaces it entirely.

3.4.2 Population-Level Adaptation

On the population level, we propose two methods that
dynamically control the mutation rate / strategy parameter
of the baseline evolutionary algorithms. This could – for
example – enable a coarse-to-fine approach to optimization,
in which the amount of mutation decreases over time. We
also propose a method for selecting from the set of crossover
operators for the traveling salesman problem, which could
allow the evolutionary algorithm to explore along better
trajectories in the solution space, as different operators let
children inherit different features from their parents. These
methods work as follows:

3.4.2.1 Mutation Rate Control: To control the muta-
tion rate on the population level, we sample a value ∈ [0, 1]
from a single beta distribution parameterized by the neural
network.

3.4.2.2 Strategy Parameter Control: To control the
strategy parameter of the evolutionary algorithm for con-
tinuous optimization on the population level, we sample

a value τ ′ ∈ R from a single normal distribution param-
eterized by the neural network, and use the softplus non-
linearity to calculate the positive-valued strategy parameter
τ = softplus(τ ′) = log(1 + eτ

′
).

3.4.2.3 Operator Selection: To select from the set
of available crossover operators for the traveling salesman
problem, we sample from a categorical distribution pa-
rameterized by the neural network (where each category
corresponds to a crossover operator).

3.4.3 Individual-Level Adaptation
The first two methods for individual-level adaptation use
the same continuous mutation parameters as on the popu-
lation level, but control them separately for each individual.
Next, we propose an alternative way of controlling self-
adaptation in evolution strategies. Controlling mutation per
individual could increase the capability of the evolutionary
algorithm to deal with diverse populations, for example
by mutating low-fitness individuals more. Finally, we in-
troduce a way of letting a learning agent directly perform
the parent selection processes of an evolutionary algorithm.
This could allow us to guide the population through the fit-
ness landscape more deliberately than the baseline methods
do. These methods work as follows:

3.4.3.1 Mutation Rate Control: To control
the mutation rate per individual, we sample from
population_size independent beta distributions
parameterized by the neural network.

3.4.3.2 Strategy Parameter Control: To control the
strategy parameter per individual, we sample values
(τ ′1, . . . , τ

′
population_size) from a set of independent normal

distributions parameterized by the neural network, and
then calculate the strategy parameter for individual i as
τi = softplus(τ ′i).

3.4.3.3 Step-Size Control: Instead of controlling
strategy parameters to indirectly influence the evolution of
step-sizes,

the step-size control method lets the neural network
output multipliers for the step-sizes more directly. To do so,
the step-size υi of individual i is changed multiplicatively
via υi ← softplus(ξi)υi, where ξi is a sample from a normal
distribution parameterized by the neural network. The step-
sizes are then used to mutate the genes of the individuals,
as in the baseline algorithm.

3.4.3.4 Parent Selection: To select a subset of par-
ents, we sample a binary vector x ∈ {0, 1}population_size
from a set of independent Bernoulli distributions param-
eterized by the neural network. Iff xi = 1, individual i
becomes a parent candidate for the offspring population.In
the evolutionary algorithm for the knapsack problem, we let
the agent perform a pre-selection of parent candidates, and
then apply the baseline parent selection method to create
pairings. In the evolutionary algorithm for continuous opti-
mization there is no parent-pairing step, so this adaptation
method directly controls which parents produce offspring.

3.4.4 Component-Level Adaptation
The last class of proposed adaptation methods is
component-level adaptation. We propose a method for mu-
tating binary genes and a method for mutating real-valued
genes. Component-level mutation could allow the agent to
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Fig. 2: The overall neural network architecture. P , G and
C are the population size, genome size and the number
of channels, respectively. The dimensionality of the output
action can be further reduced through max-pooling, de-
pending on the adaptation method. Actor and critic operate
on the same low-level features extracted by the ”Pool,
Replicate, Conv” substructure visualized in Fig. 3.

more directly control the direction in which individuals
move through the solution space.

3.4.4.1 Binary Mutation: To directly
control binary mutation, we sample a matrix
∈ {0, 1}population_size×genome_size from independent
Bernoulli distributions parameterized by the neural
network. Each element corresponds to a gene in one specific
individual of the population. If an entry of the matrix is 1,
the gene value is inverted.

3.4.4.2 Step-Size Control: For component-level
adaptation in the evolutionary algorithm for continu-
ous optimization, we assign each individual i a vector
(υi,1, . . . , υi,genome_size) of step-sizes. These step-sizes are
multiplicatively mutated via υi,j ← softplus(ξi,j)υ, where
ξi,j is a sample from a normal distribution parameterized
by the neural network. Each solution-encoding gene k of in-
dividual i is then mutated by adding a value sampled from
N (0, υi,k), similarly to the baseline algorithm. Through
this mechanism, offspring is sampled from a multivariate
Gaussian distribution with a diagonal covariance matrix.
Alternatively, this can be interpreted as a trainable diagonal
preconditioner, learning to rescale the fitness landscape
around each parent individual to facilitate optimization.
This could allow the evolutionary algorithm to make more
deliberate decisions regarding the direction of mutation,
compared to using the same step size along all problem
dimensions or altering step sizes through a random process
with static parameters (as in the baseline algorithm).

3.5 Network Architecture
To perform the calculations for our adaptation methods,
we propose the use of a 2D convolutional neural network
(see Figs. 2 and 3). This section describes the requirements
that a neural network architecture should fulfill in our
application as well as a specific network architecture that
fulfills these requirements.

3.5.1 Requirements
Instead of relying on hand-crafted features, the neural net-
work should be offered as much information as possible
about the state of the evolutionary algorithm and the prob-
lem instance, so that it can then extract the relevant features
itself.

Replicate

Replicate

P × G × Cin

Max-Pooling

1 × G × Cin P × G × Cin 

P × 1 × Cin P × G × Cin 

P × G × 3Cin 
P × G × Cout

Max-Pooling

2D ConvConcatenate

Fig. 3: The ”Pool, Replicate, Conv”-substructure of the neu-
ral network. P and G are the population and genome size,
respectively. Cin and Cout are the numbers of input and
output channels, respectively. Global features are extracted
by pooling along either of the two “spatial” dimensions.
They are then replicated along the same dimension, com-
bined with local features through concatenation, and pro-
cessed by a 2D convolutional layer with kernel size 1 × 1.
This architecture “broadcasts” parts of global information
to each individual and each gene, and is equivariant under
permutations of individuals and of genes, i.e. treats them
equally.

The order in which individuals are stored in the com-
puter should not affect the results. More specifically, there is
no fixed index i reserved for individuals that across all prob-
lem instances have a specific special role; in other words, the
meaning of the order of individuals is not persistent across
problem instances. Hence, treatment of individuals should
depend only on their features and not their order; in other
words, the operations performed by the network should be
equivariant under permutation of this order.

Since in the case of our problem classes the same holds for
the order of genes, the network should also be equivariant
under permutation of the gene order.

A learned adaptation strategy should be useable with
varying values of population_size and (in the case of
our problem classes, where no chromosome index has a
special role across all problem instances) varying values of
genome_size.

Information about the entire population might be rele-
vant for taking good actions. Hence, the network should
extract and use features of the entire population. These fea-
tures should be permutation-invariant, for the same reasons
as the permutation-equivariance explained above. Similarly,
information about all genes might be relevant, so that the
network should also extract and use features of entire
genomes (permutation-invariant features in the case of our
problem classes; see above).

As described in Section 3.1.2.3, there are likely features
that are relevant to both the actor and critic element. To
avoid redundancy and facilitate training, the actor and critic
should operate on the same low-level features.

We use different types of probability distributions for
the different adaptation methods introduced in Section 3.4.
Each distribution type has different parameters and there-
fore requires different output nonlinearities. For example, a
categorical distribution requires probabilities in [0, 1].

Depending on the level of adaptation that a method op-
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erates on, the neural network has to output the parameters
of a probability distribution for each gene, each individual
or for the entire population. The dimensionality of the
neural network’s output is chosen accordingly.

3.5.2 Realization
The following input representation and architecture fulfill
the aforementioned requirements:

The network input is defined as a 4D array of size
population_size × genome_size × num_channels
(and a batch_size dimension). Population-wide infor-
mation (e.g. the number of remaining generations) is
replicated across the two trailing dimensions. Information
about individuals (e.g. their fitness) is replicated along the
genome_size dimension. We use the following feature
channels for the knapsack problem and continuous opti-
mization:
• Knapsack problem: Individual genomes, fitness values,

the remaining number of generations, the weight limit,
the weight of each item, and the value of each item.

• Continuous optimization: Individual genomes, loga-
rithm of fitness values, the remaining number of gener-
ations, and individual step-sizes.

On the traveling salesman problem, we control the selection
of crossover operators. Therefore, the input is based on pairs
of parent individuals. Parents of a pair are assigned an
arbitrary order. The input channels for a traveling salesman
problem instance with N nodes are:
• Individual genomes of first parents,

individual genomes of second parents, fitness of first
parents, fitness of second parents, the remaining num-
ber of generations, N distance information channels
for first parents, N distance information channels for
second parents. In each block ofN distance information
channels, entry (i, j) of channel k contains the distance
from node gi,j to node k, with gi,j being the the value
of gene j (i.e. the jth visited node) of individual i. We
plan a different representation for a future version of
this work.

We then extract shared hidden features for the actor and
critic through 2D convolutional layers with kernel size 1×1.
To propagate global information, we perform the following
operation before each convolutional layer separately along
the population_size and genome_size dimension: For
each channel, the maxima along the respective dimen-
sion are calculated. The resulting vector is then replicated
along the same dimension, yielding a new matrix of size
population_size × genome_size. The global features
extracted through successive pooling and replication can
then be processed together with local features by the next
convolution filter. This process of pooling, replication and
convolution is illustrated in Fig. 3.

For the critic’s output, we eliminate the genome_size
dimension through max-pooling. We then add population-
wise features through max-pooling and replication along
the population_size dimension and apply one more
convolutional layer with one 1×1 filter. The resulting scalars
are summed up to calculate the value estimate.

For the actor, we simply apply one more step of global
pooling, replication and convolution to the shared hid-
den features. This is followed by max-pooling along the

genome_size dimension or both the genome_size and
population_size dimension, if a vector or scalar output
is required. To fulfill the constraints on the output domain
for the different adaptation methods, we use the following
output nonlinearities
• Bernoulli distribution: A single channel for p ∈ [0, 1]

with the nonlinearity sigmoid(z) = 1
1+e−z .

• Normal distribution: One channel for µ ∈ R without
any nonlinearity. One channel for σ ∈ R+ with the
nonlinearity softplus(z) = ln(1 + ez).

• Beta distribution: Two channels for α, β ∈ [1,∞), with
the nonlinearity softplus(z) + 1.

• Categorical distribution: One channel for each of the k
category probabilities pi ∈ [0, 1] :

∑k−1
i=0 pi = 1, using

the softmax nonlinarity

pi =
ezi

k−1∑
j=0

ezj
, (10)

where (z0, . . . , zk−1) are the network activations before
the nonlinearity.

3.6 Evaluation Methods

To evaluate the usefulness of the different proposed adapta-
tion methods, they are compared to the baseline algorithms.
To do so, we use the performance metrics and the evaluation
procedure defined in the following sections.

3.6.1 Performance Metrics
We use two performance metrics to evaluate our evolution-
ary algorithms: mean best fitness (MBF) and mean best
function value (MBFv):
• Mean best fitness is the fitness value of the fittest

individual in the population, per generation, averaged
over multiple runs of the evolutionary algorithm.

• Mean best function value is the lowest objective func-
tion value found by an individual in the population,
per generation, averaged over multiple runs of the
evolutionary algorithm.

We use MBF to assess the performance in combinatorial
optimization and MBFv to assess the performance in con-
tinuous optimization. We use the mean best function value
because we want to assess the quality w.r.t. to the objective
function, not the clipped fitness function from Eq. (9).

We refer to the average fitness / function value achieved
in the final episode as terminal mean best fitness (tMBF) /
terminal mean best function value (tMBFv).

3.6.2 Evaluation Procedure
Each experiment is about optimizing one evolution parame-
ter for one of the three problem classes (knapsack, traveling
salesman, continuous optimization). A fine-grained search
for an optimal (but static) value of that evolution parameter
within the baseline algorithm is compared to our methods
that learn to (dynamically) control that evolution parameter.

During each experiment on one evolution parameter, all
other evolution parameters are held fixed at their default
values. These default values are determined in advance by a
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coarse grid-search with the baseline algorithms. The coarse-
ness of the search allowed a reasonable runtime (about 2
days). The coarseness of the search also means that the
thereby determined default evolution parameters are not
perfect. However, this is okay, because our algorithms and
the baseline algorithms work with the same set of fixed
values for the evolution parameters (except the parameter
on which static vs. dynamic fine-tuning is compared). We
deliberately chose to set the default elite size to 0 (i.e. the
entire population is replaced in each generation), as we
found this to magnify the impact of the remaining param-
eters, allowing for a better assessment of the quality of
different adaptation methods. The default evolution param-
eter values are listed in Table S2. The fine-tuned evolution
parameter values are listed in Table S3.

When fine-tuning the discrete parameters (elite size,
number of parents, crossover operators), we tested all pos-
sible values.

For the mutation rate parameter (values in [0, 1],
we searched the best-performing range of parameters
[0.005, 0.013] with a step size of 0.0001. For the mutation
parameter for continuous optimization (values in R+), we
searched in the best-performing range [0, 1] with an accu-
racy of 2 decimal digits. This accuracy appears sufficient,
as we observed little to no difference in MBF(v) around the
discovered optima.

For each adaptation method, we use a separate training
set to train 21 agents using the same evolution parameters,
which allows us to assess how reliably good policies can be
learned. Each agent is trained for 500 iterations.

The deep learning hyperparameter values we use are
summarized in Table S1:

After training, we evaluate the mean best fitness / func-
tion value achieved by each agent on a separate validation
set and compare it to that of the baseline algorithm.

Mean best fitness is calculated over 100 runs of the evo-
lutionary algorithm. Mean best function value is calculated
over 500 runs of the evolutionary algorithm.

When using beta or normal distributions, actions are not
taken by random sampling during validation. Instead, the
mean of the distribution is taken deterministically. We found
that this improves performance after the limited number of
training iterations, as one does not have to wait for the loss
function to decrease the distribution entropy after conver-
gence of the policy and value estimate (see Section 3.1.2.4).

4 RESULTS AND DISCUSSION

Following the evaluation procedure defined in Section 3.6.2,
we first tuned the evolution parameters of the baseline evo-
lutionary algorithms, before benchmarking our proposed
adaptation methods against them.

In general, we found that agents could learn behavior
with properties that compare favorably to the baseline algo-
rithms: Achieving a better MBF(v) in fewer generations, not
stagnating in fitness prematurely, or at least matching the
performance of hand-crafted heuristics. We were successful
in training agents both for discrete (e.g. parent selection)
and continuous (e.g. mutation probability) action spaces, as
well as for discrete and continuous optimization problems.
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Fig. 4: MBFv (smaller is better) of 21 agents trained for fit-
ness shaping, evaluated on the Levy #13 function, compared
to the baseline algorithm. All trained agents achieved better-
than-baseline performance up to a factor of 12. This shows
that learning to evolve improves the results evolutionary
algorithms. After a single training run, the user can expect
above-baseline performance, but choosing the best out of
multiple agents is likely to yield even better results.
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Fig. 5: MBF (larger is better) of 21 agents trained for
crossover operator selection on the traveling salesman prob-
lem, compared to the best-performing single operator, as
well as random operator selection with uniform probability.
All trained agents performed better than baseline from
generation 55 onward. The user can thus expect better-than-
baseline performance even after training only one agent.
tMBF varied between 16.422 and 15.757, i.e. selecting the
best out of multiple trained agents is likely to yield even
better results.
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Fig. 6: MBFv (smaller is better) of 21 agents trained for
parent selection, evaluated on the Ackley function, com-
pared to the baseline algorithm. All but one of the trained
agents outperform the baseline algorithm by factors of up to
2.5 · 106 but tMBFv varies by multiple orders of magnitude
among agents. The best agent exhibits a nearly exponen-
tial improvement in fitness across all generations. After
a single training run, the user can expect above-baseline
performance, but choosing the best out of multiple agents
is likely to yield even better results.
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Fig. 7: MBFv (smaller is better) of 21 agents trained for
survivor selection, evaluated on the Ackley function, com-
pared to the baseline algorithm. The baseline algorithm was
outperformed by up to four orders of magnitude, but the
variance in tMBFv values among agents was large. After
a single training run, the user can expect above-baseline
performance, but choosing the best out of multiple agents
is likely to yield even better results.

Furthermore, methods from all different levels of adaptation
were able to outperform the baseline algorithms.

However, the adaptation methods differed considerably
in their performance. In some cases, there were also large
performance differences between agents belonging to the
same method. We can distinguish between the following
four cases, which relate to the suitability of the adap-
tation methods for the two considered use cases: Train-
ing with limited time/resources and training with much
time/resources (see the beginning of Section 3):

Case 1) All agents achieve similar or better performance
than the baseline algorithm and the variance among agents
is small. This is favorable for the use case with limited
training time/resources, as one can expect to achieve good
performance after training a single agent. The following
adaptation methods belong to this case:
• Population-level mutation rate control (Fig. S1a): All

trained agents matched the performance of the baseline
algorithm with an optimized mutation rate. This is re-
markable, as the mutation rate only yields good results for
a small range of parameter values (around 2% of the valid
interval [0, 1]), as determined experimentally). Despite
this difficulty, our reinforcement learning algorithm was
able to learn a well-performing policy.

• Survivor selection, knapsack problem (Fig. S2): While all
agents ended with slightly below-baseline tMBF values
(average of 15.81, compared to 15.86 of the baseline algo-
rithm), they exhibited slightly higher MBF values during
the first 40 generations. Most importantly, they consis-
tently learned a meaningful survivor selection mechanism
that performed much better than replacing the population
in each generation (tMBF of 15.43).
Case 2) (Nearly) all trained agents achieve similar or

better performance than the baseline algorithm, but the vari-
ance in performance among well-performing agents is large.
One can expect to achieve good performance after training
a single agent. But if more time/resources are available for
training, selecting the best-performing agent out of several
trained agents is likely to lead to even better results. The
following adaptation methods pertain to this case:
• Fitness shaping, knapsack problem set (Fig. S3a): Most

of the 21 trained agents matched the performance of
the baseline algorithm, but two out of 21 trained agents
achieved noticeably higher tMBF values.

• Fitness shaping, continuous problem set: Nearly all agents
outperformed the baseline algorithm. The best agents
were better by factors of up to approximately 103, 2, and
10 on the Ackley (Fig. S4a), Beale (Fig. S4b) and Levy #13
(Fig. 4) function, respectively.

• Operator selection (Fig. 5): From generation 55 onward,
all trained agents achieved higher MBF values than the
deterministic application of the best crossover operator
(two-point crossover) and than random operator selection
with uniform probability.

• Parent selection, knapsack problem set (Fig. S3b): Ex-
cept for one outlier, all agents reached baseline or
above-baseline performance, with the highest tMBF being
15.732, compared to 15.432 for the baseline algorithm.

• Parent selection, continuous problem set: On the Ackley
function (Fig. 6), 19 out of 21 trained agents reached
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tMBFv values that were better than the baseline algo-
rithm’s by a factor of up to 106. The majority of agents
improve their MBF near-exponentially across all genera-
tions, while the baseline algorithm stagnated after gen-
eration 20. On the Levy #13 function (Fig. S5b), 17 out
of 21 trained agents performed better than the baseline
algorithm by up to one order of magnitude. On the Beale
(Fig. S5a) function, the impact of the method was smaller,
but many trained agents reached near- or better-than-
baseline performance.

• Survivor selection, continuous problem set: Nearly all
agents reached better MBFv than the baseline algorithm.
On the Ackley (Fig. 7) and Levy #13 (Fig. S6b) function,
the baseline algorithm was in many cases outperformed
by several orders of magnitude. On the Beale function
(Fig. S6a), the best agent reached tMBFv that were smaller
by a factor of 2.
Case 3) A minority of the trained agents outperform

the baseline algorithm and the variance in performance is
large. In the use case with much training time/resources,
these methods are still valuable, as one can select the best-
performing out of several trained agents. The following
adaptation methods pertain to this case:
• Population-level strategy parameter control: Most trained

agents performed worse than the baseline algorithm.
Nevertheless, on the Ackley (Fig. S7a) function, a single
trained agent achieved a tMBFv that is approximately 105

times better than that of the baseline algorithm. On the
Beale (Fig. S7b) function, two out of 21 trained agents
outperformed the baseline algorithm.

• Individual-level step-size control: This method performed
better than the individual-level strategy parameter con-
trol method, confirming our idea that eliminating one
level of stochasticity by directly controlling step-sizes
facilitates the learning of useful policies. On the Ackley
(Fig. S8a) and Beale (Fig. S8b) function, three out of 21
trained agents outperformed the baseline algorithm by
more than one order of magnitude. On the Levy #13
function (Fig. S8c), three agents were able to match its
performance.

• Component-level step-size control (Fig. S9): On all ob-
jective functions, approximately one third of the trained
agents outperformed the baseline algorithms, in some
cases by multiple orders of magnitude. This is better than
individual-level step-size control, where only one seventh
of the trained agents exhibited good performance. These
better results are likely due to the method’s ability to con-
trol mutation along both problem dimensions separately,
thus being able to better adapt to the fitness landscape.

• Component-level binary mutation (Fig. S1c): Despite the
increase in action-space dimensionality, four out of 21
agents noticeably outperformed the baseline algorithm.
The best agent was able to reach a tMBF of 15.931, com-
pared to the 15.488 of the baseline algorithm. However,
the majority of trained agents were unable to perform any
optimization whatsoever so careful selection of the best
agents out of many is particularly important.
Case 4) Only few trained agents match the performance

of the baseline algorithm and the variance in performance
is large. In this case, static tuning of the parameters of

the baseline algorithm is likely more sensible than training
many agents just to achieve the same level of performance.
The following adaptation methods pertain to this case:
• Individual-level mutation rate control (Fig. S1b): Only a

single trained agent out of 21 was able to slightly outper-
form the baseline algorithm (tMBF of 15.538 compared
to 15.488). A possible explanation is that learning to keep
multiple parameters (one per individual) in a very narrow
range of feasible values is considerably harder than doing
so with a single parameter, as in the population-level
method.

• Individual-level strategy parameter control: On the Ack-
ley (Fig. S10a) and Beale (Fig. S10b) function, only a
single trained agent reached a tMBF close to that of the
baseline algorithm, exhibiting a faster convergence in the
beginning of the optimization process. On the Levy #13
function (Fig. S10c), all trained agents were outperformed
by the baseline algorithm.

5 CONCLUSIONS

The goal of this paper was to investigate whether deep
reinforcement learning can be used to improve the effective-
ness of evolutionary algorithms and facilitate their applica-
tion. To this end, we developed an approach for learning
optimization strategies off-line through deep reinforcement
learning.

For experimental evaluation of our approach, we con-
sidered use cases in which strategies for previously unseen
problem instances have to be learned from a limited set of
training instances.

Adaptation methods trained using our approach were
in many cases able to outperform classical evolutionary
algorithms on combinatorial and continuous optimization
tasks. We also showed that the use of reinforcement learning
for evolutionary algorithms is not limited to controlling
single numerical parameters of an evolutionary algorithm,
but can also be used for both continuous and discrete multi-
dimensional control. Furthermore, we achieved promising
results with methods that do not merely control existing
parameters of evolutionary algorithms, but learn entirely
new dynamic fitness functions or selection operators that
intelligently guide evolutionary pressure.

However, we noticed that for some of the investigated
methods, training was more unstable and results varied
more heavily. A more thorough experimental evaluation
is required to discern whether this has to be attributed
to ill-chosen hyperparameters, the limited size of the used
training sets, or the design of the methods. Nevertheless, we
demonstrated that deep reinforcement learning can be used
to improve the effectiveness of evolutionary algorithms.

Further investigation of evolutionary algorithms en-
hanced by deep reinforcement learning could lead to better
population-based optimization algorithms that can more
easily be applied to a wide range of problems. To explore
the suitability of reinforcement-learning-based adaptation
methods to different application domains, future work
could consider a wider range of use cases than we did in
our experiments, for example:
• unlimited training set (e.g. problem instances can be

randomly generated),
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• various degrees of availability of training
time/resources,

• training to optimize performance on [not necessarily
finite] problem instances known at training time (as op-
posed to generalization to unseen problem instances),

• training for multiple problem classes at once (to learn
problem-class-independent meta-optimization behav-
ior),

• optimization for a variable number of generations.
Future work should also benchmark against a wider

range of methods, and especially combine our approach
with a wider range of evolutionary algorithms.

ACKNOWLEDGMENTS

The authors would like to thank Paolo Notaro for valuable
discussions.

REFERENCES

[1] E. Kameshki and M. Saka, “Optimum design of non-
linear steel frames with semi-rigid connections using
a genetic algorithm,” Computers & Structures, vol. 79,
no. 17, pp. 1593–1604, 2001. DOI: 10 . 1016 / s0045 -
7949(01)00035-9.

[2] J. D. Lohn, G. S. Hornby, and D. S. Linden, “An
evolved antenna for deployment on NASA’s Space
Technology 5 mission,” in Genetic Programming Theory
and Practice II, Springer-Verlag, pp. 301–315. DOI: 10.
1007/0-387-23254-0 18.

[3] G. Mosetti, C. Poloni, and B. Diviacco, “Optimization
of wind turbine positioning in large windfarms by
means of a genetic algorithm,” Journal of Wind En-
gineering and Industrial Aerodynamics, vol. 51, no. 1,
pp. 105–116, 1994. DOI: 10.1016/0167-6105(94)90080-9.

[4] K. O. Stanley, J. Clune, J. Lehman, and R. Miikku-
lainen, “Designing neural networks through neu-
roevolution,” Nature Machine Intelligence, vol. 1, no. 1,
pp. 24–35, 2019. DOI: 10.1038/s42256-018-0006-z.

[5] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M.
Jaderberg, W. M. Czarnecki, A. Dudzik, A. Huang,
P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M.
Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard,
D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy,
T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang,
T. Pfaff, T. Pohlen, Y. Wu, D. Yogatama, J. Cohen, K.
McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps,
K. Kavukcuoglu, D. Hassabis, and D. Silver, AlphaS-
tar: Mastering the Real-Time Strategy Game StarCraft II,
https://deepmind.com/blog/alphastar- mastering-
real-time-strategy-game-starcraft-ii/, 2019.

[6] R. Hinterding, Z. Michalewicz, and A. Eiben, “Adap-
tation in evolutionary computation: A survey,” in
Proceedings of 1997 IEEE International Conference on
Evolutionary Computation (ICEC ’97), IEEE. DOI: 10 .
1109/icec.1997.592270.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.
Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous
control with deep reinforcement learning,” ArXiv e-
prints, 2015. arXiv: 1509.02971v5 [cs.LG].

[8] S. Müller, N. Schraudolph, and P. Koumoutsakos,
“Step size adaptation in evolution strategies using
reinforcement learning,” in Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600), IEEE. DOI: 10.1109/cec.2002.1006225.

[9] A. E. Eiben, M. Horvath, W. Kowalczyk, and
M. C. Schut, “Reinforcement learning for online
control of evolutionary algorithms,” in Engineering
Self-Organising Systems, Springer Berlin Heidelberg,
pp. 151–160. DOI: 10.1007/978-3-540-69868-5 10.

[10] G. Karafotias, A. E. Eiben, and M. Hoogendoorn,
“Generic parameter control with reinforcement learn-
ing,” in Proceedings of the 2014 conference on Genetic
and evolutionary computation - GECCO ’14, ACM Press,
2014. DOI: 10.1145/2576768.2598360.

[11] J. E. Pettinger and R. M. Everson, “Controlling ge-
netic algorithms with reinforcement learning,” in Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, ser. GECCO ’02, San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002, pp. 692–,
ISBN: 1-55860-878-8. [Online]. Available: http : / / dl .
acm.org/citation.cfm?id=646205.682951.

[12] A. Buzdalova, V. Kononov, and M. Buzdalov, “Select-
ing evolutionary operators using reinforcement learn-
ing,” in Proceedings of the 2014 conference companion
on Genetic and evolutionary computation companion -
GECCO Comp ’14, ACM Press, 2014. DOI: 10 . 1145 /
2598394.2605681.

[13] L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag,
“Adaptive operator selection with dynamic multi-
armed bandits,” in Proceedings of the 10th annual confer-
ence on Genetic and evolutionary computation - GECCO
’08, ACM Press, 2008. DOI: 10.1145/1389095.1389272.

[14] K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adap-
tive operator selection with bandits for a multiobjec-
tive evolutionary algorithm based on decomposition,”
IEEE Transactions on Evolutionary Computation, vol. 18,
no. 1, pp. 114–130, 2014. DOI: 10 . 1109 / tevc . 2013 .
2239648.

[15] A. Afanasyeva and M. Buzdalov, “Choosing best fit-
ness function with reinforcement learning,” in 2011
10th International Conference on Machine Learning and
Applications and Workshops, IEEE, 2011. DOI: 10.1109/
icmla.2011.163.

[16] I. Petrova, A. Buzdalova, and M. Buzdalov, “Im-
proved selection of auxiliary objectives using rein-
forcement learning in non-stationary environment,” in
2014 13th International Conference on Machine Learning
and Applications, IEEE, 2014. DOI: 10.1109/icmla.2014.
99.

[17] P. Bhowmik, P. Rakshit, A. Konar, E. Kim, and A. K.
Nagar, “DE-TDQL: An adaptive memetic algorithm,”
in 2012 IEEE Congress on Evolutionary Computation,
IEEE, 2012. DOI: 10.1109/cec.2012.6256573.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Ma-
chine Learning, vol. 8, no. 3-4, pp. 279–292, 1992. DOI:
10.1007/bf00992698.

[19] A. Rost, I. Petrova, and A. Buzdalova, “Adaptive
parameter selection in evolutionary algorithms by
reinforcement learning with dynamic discretization of
parameter range,” in Proceedings of the 2016 on Genetic

https://doi.org/10.1016/s0045-7949(01)00035-9
https://doi.org/10.1016/s0045-7949(01)00035-9
https://doi.org/10.1007/0-387-23254-0_18
https://doi.org/10.1007/0-387-23254-0_18
https://doi.org/10.1016/0167-6105(94)90080-9
https://doi.org/10.1038/s42256-018-0006-z
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1109/icec.1997.592270
https://doi.org/10.1109/icec.1997.592270
https://arxiv.org/abs/1509.02971v5
https://doi.org/10.1109/cec.2002.1006225
https://doi.org/10.1007/978-3-540-69868-5_10
https://doi.org/10.1145/2576768.2598360
http://dl.acm.org/citation.cfm?id=646205.682951
http://dl.acm.org/citation.cfm?id=646205.682951
https://doi.org/10.1145/2598394.2605681
https://doi.org/10.1145/2598394.2605681
https://doi.org/10.1145/1389095.1389272
https://doi.org/10.1109/tevc.2013.2239648
https://doi.org/10.1109/tevc.2013.2239648
https://doi.org/10.1109/icmla.2011.163
https://doi.org/10.1109/icmla.2011.163
https://doi.org/10.1109/icmla.2014.99
https://doi.org/10.1109/icmla.2014.99
https://doi.org/10.1109/cec.2012.6256573
https://doi.org/10.1007/bf00992698


SCHUCHARDT et al.: LEARNING TO EVOLVE 15

and Evolutionary Computation Conference Companion -
GECCO ’16 Companion, ACM Press, 2016. DOI: 10 .
1145/2908961.2908998.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
and O. Klimov, “Proximal policy optimization algo-
rithms,” ArXiv e-prints, 2017. arXiv: 1707 . 06347v2
[cs.LG].

[21] J. Schulman, P. Moritz, S. Levine, M. Jordan, and
P. Abbeel, “High-dimensional continuous control us-
ing generalized advantage estimation,” ArXiv e-prints,
2015. arXiv: 1506.02438v5 [cs.LG].

[22] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev,
“Time limits in reinforcement learning,” ArXiv e-
prints, 2017. arXiv: 1712.00378v2 [cs.LG].

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley,
T. P. Lillicrap, D. Silver, and K. Kavukcuoglu, “Asyn-
chronous methods for deep reinforcement learning,”
in Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, ser. ICML’16, New York, NY, USA, 2016, pp. 1928–
1937. [Online]. Available: http://dl.acm.org/citation.
cfm?id=3045390.3045594.

[24] S. Surjanovic and D. Bingham, Virtual library of simu-
lation experiments: Test functions and datasets, Retrieved
May 8, 2019, from http://www.sfu.ca/∼ssurjano.

[25] E. Anand and R. Panneerselvam, “A study of
crossover operators for genetic algorithm and pro-
posal of a new crossover operator to solve open shop
scheduling problem,” American Journal of Industrial and
Business Management, vol. 06, no. 06, pp. 774–789, 2016.
DOI: 10.4236/ajibm.2016.66071.

[26] P.-W. Chou, D. Maturana, and S. Scherer, “Improving
stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribu-
tion,” in Proceedings of the 34th International Confer-
ence on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 70, PMLR, 2017, pp. 834–843.
[Online]. Available: http ://proceedings .mlr.press/
v70/chou17a.html.

APPENDIX
SUPPLEMENTARY FIGURES AND TABLES

https://doi.org/10.1145/2908961.2908998
https://doi.org/10.1145/2908961.2908998
https://arxiv.org/abs/1707.06347v2
https://arxiv.org/abs/1707.06347v2
https://arxiv.org/abs/1506.02438v5
https://arxiv.org/abs/1712.00378v2
http://dl.acm.org/citation.cfm?id=3045390.3045594
http://dl.acm.org/citation.cfm?id=3045390.3045594
http://www.sfu.ca/~ssurjano
https://doi.org/10.4236/ajibm.2016.66071
http://proceedings.mlr.press/v70/chou17a.html
http://proceedings.mlr.press/v70/chou17a.html


SCHUCHARDT et al.: LEARNING TO EVOLVE 16

0 20 40 60 80 100
Generation

11

12

13

14

15

16

M
ea

n 
be

st
 fi

tn
es

s

Population-level mutation rate control
Baseline

(a) Population-level mutation rate control
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(b) Individual-level mutation rate control
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(c) Component-level binary mutation

Fig. S1: MBF (larger is better) of 21 agents trained for the different mutation-controlling adaptation methods (namely on the
population level, individual level, and component level) for the knapsack problem, compared to the baseline algorithm. On
the population level, all agents matched the performance of the baseline algorithm with an optimized mutation rate. On
the individual level, the majority of learned policies lead to a stagnation in fitness. Only one out of 21 agents was slightly
better than the baseline algorithm. On the component level, four trained agents outperformed the baseline algorithm, but
the majority of learned policies lead to a stagnation in fitness. Given much training time/resources, the user can select
the best-performing component-level agent to outperform the baseline algorithm. Component-level methods have outputs
with more degrees of freedom, and thus achieve better solutions but are also more difficult to train.
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Fig. S2: MBF (larger is better) of 21 agents trained for survivor selection on the knapsack problem, compared to the baseline
with an optimal elite size of 1 and an elite size of 0. The learned policy performed much better than replacement of
the population in each generation (i.e. elite size 0). Given limited time/resources for training, the user can expect good
performance after training a single agent.
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(a) Fitness shaping
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(b) Parent selection

Fig. S3: MBF (larger is better) of 21 agents trained for parent selection and fitness shaping on the knapsack problem,
compared to the baseline algorithm. Except for one outlier, all trained agents of both methods matched the MBF of the
baseline algorithm or exceeded it. However, the impact of parent selection is larger, with more agents outperforming the
baseline algorithm, most noticeably during the first 20 generations. With both methods, the user can expect above-baseline
performance after a single training run, but choosing the best out of multiple agents is likely to yield even better results.
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(a) Optimization of the Ackley function
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(b) Optimization of the Beale function

Fig. S4: . MBFv (smaller is better) of 21 agents trained for fitness shaping, evaluated on the Ackley and Beale functions,
compared to the baseline algorithm (see also Fig. 4 for the Levy #13 function). Nearly all trained agents achieved better-
than-baseline performance – especially on the Ackley function, where the tMBFv of the best trained agent is lower by a
factor of more than 103. After a single training run, the user can expect above-baseline performance, but choosing the best
out of multiple agents is likely to yield even better results.
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(a) Optimization of the Beale function

0 20 40 60 80 100
Generation

10 2

10 1

100

101

M
ea

n 
be

st
 fu

nc
tio

n 
va

lu
e

Parent selection
Baseline

(b) Optimization of the Levy #13 function

Fig. S5: MBFv (smaller is better) of 21 agents trained for parent selection, evaluated on the Beale and Levy #13 functions,
compared to the baseline algorithm (see also Fig. 6 for the Ackley function). Many of the trained agents outperformed the
baseline algorithm on the Levy #13 function, but tMBFv varies by multiple orders of magnitude among agents. In both
methods, the user can expect above-baseline performance after a single training run, but choosing the best out of multiple
agents is likely to yield even better results.
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(a) Optimization of the Beale function
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(b) Optimization of the Levy #13 function

Fig. S6: MBFv (smaller is better) of 21 agents trained for survivor selection, evaluated on the Beale and Levy #13 functions,
compared to the baseline algorithm (see also Fig. 7 for the Ackley function). The majority of trained agents performed
better than the baseline algorithm, but the variance in tMBFv values among agents was large. After a single training run,
the user can expect above-baseline performance, but choosing the best out of multiple agents is likely to yield even better
results.
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(a) Optimization of the Ackley function
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(b) Optimization of the Beale function
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(c) Optimization of the Levy #13 function

Fig. S7: MBFv (smaller is better) of 21 agents trained for population-level strategy parameter control for continuous
optimization, evaluated on the validation set, compared to the baseline algorithm. On the Ackley- and Beale function,
one and two agents, respectively, outperformed the baseline algorithm. On the Levy #13 function, two agents reached
near-baseline tMBFv values. Although most agents performed worse on all three functions, the best ones performed either
better or not much worse than baseline, so that the method could be useful for the use case with much time/resources for
training several agents.
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(a) Optimization of the Ackley function
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(b) Optimization of the Beale function
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(c) Optimization of the Levy #13 function

Fig. S8: MBFv (smaller is better) of 21 agents trained for individual-level step-size control for continuous optimization,
evaluated on the validation set, compared to the baseline algorithm. On the Ackley and Beale function, three out of 21
trained agents outperformed the baseline algorithm. On the Levy #13 function, three trained agents achieved baseline levels
of performance. This adaptation method also performed much better than strategy parameter control (see Fig. S10). While
both methods control the mutation step-sizes, this method does so deterministically, whereas strategy-parameter control
only alters parameters of a random process that changes step-sizes. Reducing this level of stochasticiy likely facilitates
training. This method appears well suited for the use case with much training time/resources, in which the user can select
the best out of multiple trained agents to improve upon the baseline algorithm.

Method Problem Learning rate Batch size #epochs αe #actors
Fitness shaping Knapsack 1 · 10−4 200 8 10−4 4
Fitness shaping Continuous 5 · 10−4 400 8 10−4 4

Survivor selection Knapsack 1 · 10−4 400 4 10−4 4
Survivor selection Continuous 1 · 10−4 800 8 10−4 4

Population-level mutation rate control Knapsack 1 · 10−4 800 4 10−4 4
Population-level strategy parameter control Continuous 1 · 10−4 400 4 10−4 4

Operator selection TSP 1 · 10−4 400 8 10−2 2
Individual-level mutation rate control Knapsack 5 · 10−4 400 4 10−4 4

Individual-level strategy parameter control Continuous 1 · 10−4 400 4 10−4 4
Individual-level step-size control Continuous 1 · 10−3 400 8 10−4 4

Parent selection Knapsack 1 · 10−4 400 8 10−3 4
Parent selection Continuous 1 · 10−4 800 8 10−3 4

Component-level binary mutation Knapsack 5 · 10−4 200 4, 8 10−4 8
Component-level step-size control Continuous 5 · 10−4 800 8 10−4 8

TABLE S1: Hyperparameter values used for training the different adaptation methods. Some additional hyperparameters
were set to the same value across all experiments: λ = γ = 0.99, ε = 0.2, αv = 0.5. The reward-scaling factor αr was set to
100 for the knapsack and travelling salesman problem and to 1 for continuous optimization. We used a network depth of
3 with 64 filters per layer.
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(a) Optimization of the Ackley function
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(b) Optimization of the Beale function
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(c) Optimization of the Levy #13 function

Fig. S9: MBFv (smaller is better) of 21 agents trained for component-level step-size control for continuous optimization,
evaluated on the validation set, compared to the baseline algorithm. Approximately one third of the agents outperformed
the baseline algorithm, in many cases by multiple orders of magnitude. This method appears well suited for the use case
with much training time/resources, in which the user can select the best out of multiple trained agents to improve upon
the baseline algorithm.
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(a) Optimization of the Ackley function
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(b) Optimization of the Beale function
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(c) Optimization of the Levy #13 function

Fig. S10: MBFv (smaller is better) of 21 agents trained for individual-level strategy parameter control for continuous
optimization, evaluated on the validation set, compared to the baseline algorithm. Some agents outperformed the baseline
algorithm in early generations, but none in late generations.

Hyperparameter
Problem Continuous Knapsack TSP

population size 10 10 10
parent percentage 20%, (50%) 1 – –

elite size 0 0 1
crossover rate – 0.9 1
mutation rate – 0.01 0.01

strategy parameter 0.5 – –
initial step size 0.1 – –
min step size 1 · 10−8 – –

TABLE S2: Default evolutionary parameter values used in benchmarking our adaptation methods on the different problem
classes. When evaluating the impact of elite size, the survivor selection adaptation method or the fitness shaping adaptation
method, parent percentage is set to 50%

Hyper-parameter
Problem Ackley Beale Levy #13 Knapsack TSP

parent percentage 20% 20% 10% – –
elite size 6 2 9 1 –

mutation rate – – – 0.0082 –
strategy parameter 0.19 0.11 0.22 – –
crossover operator – – – – Two-point

TABLE S3: Optimized evolutionary parameter values used in benchmarking our adaptation methods on the different val-
idaton problem sets. Evolutionary algorithms run with these optimized parameter values were compared to corresponding
adaptation methods.
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