
Variational Optical Flow from Alternate Exposure Images
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Abstract

Traditional optic flow algorithms rely on consec-

utive short-exposure images. In contrast, long-

exposed images contain integrated motion informa-

tion directly in form of motion blur. In this paper,

we show how the additional information provided

by a long exposure image can be used to improve

robustness and accuracy of motion field estimation.

Recently, an image formation model was introduced

[23] that relates a long-exposure image to preceding

and succeeding short-exposure images in terms of

dense 2D motion and occlusion. We formulate the

original two-step problem for motion and occlusion

timings as a joint minimization problem and derive

a global TV-L1 energy functional that can be min-

imized efficiently and accurately. The approach is

able to calculate highly accurate motion fields, as-

signing motion to occluded and disoccluded image

regions in one joint optimization procedure.

1 Introduction

Estimating the dense motion field between two con-

secutive images is an old but still heavily investi-

gated field of research. In order to solve the classi-

cal optical flow equation, the local time derivative

needs to be numerically evaluated. Hence, most op-

tical flow algorithms work best with pinpoint-sharp

images as input, which depict a dynamic scene at

two discrete points in time. If regarded individually,

however, short exposed images capture no motion

information.

From sampling theory, it is well known that this

approach leads to temporal aliasing if maximum

displacement exceeds one pixel [11]. The straight-

forward approach to avoid aliasing is to increase

sampling rate, as has been done by calculating op-

tical flow from high-speed camera recordings [18].

If no high speed video equipment is available, ad-

equate temporal pre-filtering is necessary. Since

the motion field is a-priori unknown, instead, multi-

scale optical flow methods pre-filter the images

globally in the spatial domain [7]. This way, the en-

tire image is low-pass filtered which is not the same

as correct temporal filtering: high spatial frequen-

cies should be suppressed only in those Fourier-

domain regions where aliasing actually occurs, i.e.,

only in the direction of local motion.

Fortunately, there exists a simple way to achieve

correct temporal pre-filtering: exposing images for

an extended period of time. For moving objects,

high frequencies in motion direction are suppressed

in long exposure images. Reconstructing these high

spatial frequencies in case of unknown motion is

called blind image deblurring. Methods for blind

image deblurring are probably as heavily investi-

gated as those for motion detection [16].

Apart from circumventing the problem of tempo-

ral aliasing, long exposure images bear the advan-

tage that occlusion enters into the image formation

process. A scene point and its motion contribute to

a motion-blurred image exactly for as long as the

point is not occluded.

In [23] these observations were used to deal with

optical flow estimation. Dense 2D motion fields

were obtained by using three images with two dis-

tinct exposure times: the method requires images

taken with alternating exposure intervals such that

an intermediate, long-exposed image is enframed

by two short-exposure images, Fig. 1. Already the

straightforward pointwise L2 optimization scheme

of [23] is able to calculate promising motion fields

from these informations.

In this paper, we build on the idea of [23] and

extend it to achieve more robust results. The main
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Figure 1: Alternately exposed images: (a) exposure timing diagram of (b) a short exposure image I1 fol-

lowed by (c) a long-exposed image IB and (d) another short-exposed image I2.

contribution of this paper is to embed the alternate

exposure image formation model in a global TV-L1

energy formulation framework and to estimate mo-

tion and occlusion time jointly. The L1 norm of the

data-term ensures more robustness of the minimiza-

tion to noise in the intensity values of the images,

while still being a convex functional. The addi-

tional TV regularization of the motion field restricts

the solution space and favors the piecewise constant

fields typical for moving objects in a scene. Finally,

the joint formulation is not only more elegant, but

increases efficiency and accuracy.

In our experiments we show that this yields bet-

ter results than both the pointwise optimization on

alternate exposure images [23] and the state-of-the-

art TV-L1 approach on short exposure images [27].

We also provide results of real world recordings, as

commercially available video cameras can be read-

ily programmed to alternate between different ex-

posure times and gain settings for every frame.

2 Related Work

The number of articles on computing the optical

flow is tremendous, which indicates the significance

of the problem as well as its severity [1, 5, 19]. Re-

lated to our work, scale-space approaches obtain re-

liable optical flow results in the presence of dispar-

ities larger than a few pixels [7, 22]. Alternatively,

Lim et al. circumvent the problem by making use of

high-speed camera recordings [18]. Alvarez et al.

determine occluded regions by calculating forward

and backward optical flow and checking for con-

sistency [2]. Areas with large optical flow discrep-

ancies are considered occluded and are simply ex-

cluded from further computations. Xiao et al. pro-

pose interpolating motion into occluded areas from

nearby regions by bilateral filtering [25]. This ap-

proach is refined by Sand and Teller [22] in the con-

text of particle video.

There has been some previous work on calcu-

lating motion fields from a single, motion-blurred

image based on Fourier analysis [21] or auto-

correlation [20] assuming spatially invariant mo-

tion. A recent approach [12] is able to calculate

parametric and non-parametric motion fields for-

mulating a constraint on the alpha channel of the

blurred image. Motion estimation from a single

motion-blurred image is one step of blind image de-

blurring approaches. Because deconvolution is in

general ill-posed, these approaches are usually re-

stricted to spatially invariant point spread functions

(PSF) [14, 15, 16] or a locally invariant PSF [17].

To simplify the problem of blind image deblurring,

many approaches use additional images to estimate

the motion and to reconstruct the image: Yuan et al.

use pairs of blurred and noisy images not only to es-

timate the spatially invariant blur kernel but also to

reduce ringing artifacts during deconvolution [26].

The hybrid camera of Ben-Esra and Nayar takes a

long-time exposure of the scene, while a detector

with a much lower spatial and a higher temporal res-

olution takes a sequence of short-time exposures to

detect camera motion [6]. From the camera motion,

a global PSF can be reconstructed which is used to

deblur the image. A recent extension of the hybrid

camera [24] permits the kernel to be a local mixture

of predefined basis kernels, which can be handled

by modern deblurring methods. The motion-from-

smear approach [10] focuses on motion detection

from two motion-blurred images, using deconvolu-

tion techniques and thus relying on locally constant

motion. In an extension [9], a short and a long ex-

posed image are used to calculate the parameters of

an affine motion model. The approach of Bar et al.

considers two motion-blurred images to segment an



image into static background and a foreground that

moves with constant velocity [4]. In a similar ap-

proach [13], at least two motion-blurred images are

used to determine local motion, the corresponding

segmentation and depth information of the scene re-

stricting the motion to be a sideways translation par-

allel to the image plane.

Using short-long-short exposures, Fig. 1, our ap-

proach substantially improves on preliminary work

[23]. Based on an image formation model that is

able to handle occlusions as well as large displace-

ments, the approach estimates dense motion fields

directly without previous deblurring. In this paper,

we investigate total variation regularized optimiza-

tion instead of pointwise optimization, yielding

considerably improved optical flow results. We can

propagate motion information into textureless re-

gions and achieve robustness against noise, a major

limitation of the previous approach. By embedding

the resulting energy formulation into the duality-

based approach of [27], we show that exchanging

an intermediate short exposure for a motion-blurred

image improves dense motion field estimation.

3 Image Formation Model

In order to exploit the information provided by the

long-time exposed image, we review the image for-

mation model of [23] that relates the acquired im-

ages via a dense 2D motion field. As input, we as-

sume two short exposure images I1, I2 : Ω → R

which are taken before and after the exposure time

of a third, long exposure input image IB : Ω → R.

We look for a description of a motion blurred image

B : Ω → R in terms of I1, I2 and the motion.

To simplify the model, we assume that the short

exposures are free of motion blur, that the short and

long exposed images are brightness-adjusted such

that in case of no motion, all images are identical.

We assume that scene surface appearance does not

change considerably over time.

3.1 Without Occlusion

In the simplest case, one considers a moving scene

without any occluded or disoccluded scene points,

which implies that all scene points contributing to

B are visible in I1 as well as I2. Parametrizing by

time t ∈ [0, 1] we obtain

B(x) =

Z

1

0

I1(p1(x, t)) dt =

Z

1

0

I2(p2(x, t)) dt.

(1)

where p1(x, ⋄) : [0, 1] → Ω and p2(x, ⋄) :
[0, 1] → Ω are spatially varying, planar curves on

the image plane, Fig. 2. In the case without occlu-

sion, the entire curves are visible in both images, so

that the values of both integrals are equal.

For ease of computation, we adopt a linear model

for the motion curves:

p1(x, t) = x−t w1(x) and p2(x, t) = x+t w2(x),
(2)

where wi : Ω → R
2. This turns out to be a suffi-

cient approximation also for different types of mo-

tion considered in the experimental section. How-

ever, it should be noted that the model and algo-

rithm are not inherently limited to the linear case.
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Figure 2: Without occlusion, a contiguous path of

scene surface points between y1 and y2 contributes

to pixel x in the long-exposure image. The projec-

tion of the path onto the image plane forms a planar

curve in the preceding (a) and in the succeeding (b)

short exposure. For an occluded point the path is

no longer contiguous and only partly visible in the

projection (c).

3.2 With Occlusion

The long exposed image also permits incorporating

occlusion effects into the image formation model.

One assumes that a point changes its visibility at

most once. If a scene surface becomes occluded,

the integral is partitioned so that part of the bright-

ness B(x) observed in x is due to brightness along

curve p1, while the remaining part is due to bright-

ness along p2,

B(x) =

Z s

0

I1(p1(x, t)) dt+

Z

1−s

0

I2(p2(x, t)) dt.

(3)



Here, s = s(x) ∈ [0, 1] denotes the moment during

exposure where an object previously visible at x in

I1 becomes occluded by an object visible at x in I2,

or vice versa.

Note that in the case of no occlusion, any choice

of s yields the same brightness B(x). One conse-

quence is that s is not suitable to decide whether

a point is occluded / disoccluded or remains visi-

ble. Instead, it is a mean to calculate truthful motion

curves in occluded or disoccluded regions. The fact

that s is indeterminate in the case of no occlusion

has yet another consequence. One can then con-

sider a fixed x and differentiate (3) with respect to

s, arriving at the brightness constancy assumption

of traditional optical flow computation. The alter-

nate exposure approach is more general because it

incorporates the additional information provided by

the motion-blurred image IB , and explicitly takes

occlusion into account.

3.3 With Temporal Offset

We also allow for exposure gaps between the im-

ages I1 and B as well as between B and I2. Gaps

between exposures can occur, e.g., due to camera

hardware constraints. To account for gaps, we in-

clude a temporal offset in (3), i.e., we change the

integration limits by constants corresponding to the

relative lengths of the gaps.

3.4 From Motion Curves to Displacement

Fields

The motion curves considered describe the motion

centered on the motion-blurred image. Since for

many applications a displacement field is needed,

we warp the motion curves p1 and p2 according to

the estimated motion and occlusion parameters and

thus obtain a displacement field for pixels in I1 or

I2, respectively.

4 Energy Formulation

The image formation model for a motion-blurred

image B considered in the previous section pro-

vides us with a pointwise error measure for esti-

mates of w1,w2 and s as follows. Given two short

exposures I1, I2 and a long exposed image IB , we

can compare the blurred image IB , i.e. the ac-

tual measurement to the result B predicted by the

model. We choose to consider the differences of

the images in L1 norm, as this norm is more robust

against outliers in intensity values as the L2 norm

considered in the approach of [23].

ρ1(w1, w2, s) = |IB(x) − B(x)| . (4)

For the sake of increased subpixel accuracy we also

consider a differentiated version, i.e. the brightness

constancy assumption

ρ2(w1, w2, s) = |I1(x − sw1) − I2(x + (1 − s)w2)| .
(5)

Integrating the weighted sum of the pointwise errors

over the image domain, we obtain a data term

Edata(w1, w2, s) =

Z

Ω

ρ1 + γρ2 dx. (6)

Instead of minimzing the pointwise error, we

can increase stability and performance in texture-

less regions by considering global relationships of

scene movements: Neighboring points belonging

to the same object typically exhibit similar motion.

This observation suggests including a regularization

term in the energy functional. As demonstrated in

previous work, using the total variation as a regular-

izer for flow fields produces very desirable results

[27]. It favors piecewise constant motion fields,

thus smoothing out undesired outliers and avoid-

ing oversmoothing at motion boundaries at the same

time. We also regularize the occlusion time, as

neighboring pixels, if they are occluded at all, are

occluded at related instants in time. The result-

ing energy which depends on the unknown motion

curves w1, w2 and occlusion time s can be written

as

Edata+

Z

Ω

α

 

2
X

i=1

|∇w1,i| + |∇w2,i|

!

+β |∇s| dx.

(7)

Here, α, β ≥ 0 are free parameters of our method,

controlling the desired smoothness of the flow fields

and of the moment of occlusion, respectively.

4.1 Minimization Method

Our minimization scheme is based on the primal-

dual algorithm used for TV-L1 Optical Flow [27],

whose variants currently rank in the top of the

Middlebury benchmark [3]. We briefly review the

method here and show how we use this framework

to minimize our more complex energy functional in



For each level of the image pyramid
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by dual approach
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Figure 3: The workflow of our algorithm.

section 4.2 by replacing the general variable with

w1, w2 and s in turn and keeping the others fixed.

In the very general case that one wants to mini-

mize a total variation energy of the form

E(u) = λ

Z

Ω

|ρ(u)| dx +

Z

Ω

k
X

i=1

|∇ui| dx (8)

for a k-dimensional function u on Ω with a point-

wise error term ρ, one can introduce an auxiliary

vector field v and instead consider the convex ap-

proximation

Eθ(u, v) =

Z

Ω

λ |ρ(v)|+
1

2θ
‖u−v‖2+

k
X

i=1

|∇ui| dx.

(9)

If θ is small, v will be close to u near the minimum,

and thus E will be close to Eθ . The key result of

[27] is that the above energy can be minimized very

efficiently using an alternating scheme, where one

iterates between solving TV image denoising prob-

lems for each ui, keeping v fixed

argmin
ui

Z

Ω

1

2θ
(ui − vi)

2 + |∇ui| dx, (10)

and a minimization problem for v with fixed u

argmin
v

λ |ρ(v)| +
1

2θ
‖u − v‖2

, (11)

which can be solved point-wise with a thresholding

scheme. Details and a proof of convergence can be

found in [8, 27].

4.2 Application of the Framework

In our case, we use some slight modifications,

adapted to our problem of minimizing the energy in

terms of w1, w2 and s. First, we employ the above

scheme, i.e. iterating between (10) and (11), with

u = w1, u = w2 or u = s, respectively, to solve

for each of our unknowns, given a fixed approxi-

mation of the two others. Then, if we use only the

pointwise error ρ = ρ1 in (11) we can directly ap-

ply the thresholding scheme detailed in [27]. Yet, if

we want to incorporate ρ2, this scheme is no longer

directly applicable and we therefore apply a descent

scheme for (11), substituting the L1 norm with its

regularized variant |ρi|ǫ =
q

|ρi|
2 + 0.001.

4.3 Implementation

Since the techniques for the actual minimization are

well known, we only point the reader towards the

references where details on the numerical imple-

mentation of each step can be found [27].

In order to speed up convergence, we implement

the algorithm on a scale pyramid of factor 0.5, ini-
tializing with s = 0.5 for occlusion timings, and

zero motion curves on the coarsest level. On each

level of the pyramid we perform several warping

iterations where in each iteration we solve for s,

w1 and w2. For each variable an instance of (10)

and (11) has to be solved, Fig. 3.

For (10), we employ the dual formulation de-

tailed in [27], Prop. 1, using 5 iterations and a time

step of τ = 0.1225.

Suitable values for the parameter α, β, γ and θ

were found experimentally.

Figure 4: The color code used to display motion

fields in Fig. 5 and Fig. 6.
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Figure 5: Scenes Ben, windmill and corner: Input images I1, IB and I2 (a)-(c), motion field calculated with

our method (d).

5 Experiments

To evaluate our method we consider synthetic im-

ages as well as real-world recordings: We calcu-

late motion fields for synthetic scenes with known

ground-truth motion fields and compare the mean

angular error (MAE) of the motion field with re-

lated approaches [23, 22, 27]. Note that we cannot

evaluate our method on standard test data because

the blurred image is not available. We also show

results for real world recordings. The recordings

were made with a commercially available Point-

Grey Flea2 camera that is able to acquire short and

long exposed images alternatingly.

For all experimental results we use a 5-level im-

age pyramid, 10warping iterations and 10 iterations
to solve Eqs. (10) and (11). For normalized inten-

sity values we found θ ∈ (0, 1], α, β ∈ (0, 0.1] and
γ ∈ [0, 0.5] to be suitable parameter values.

5.1 Synthetic Test Scenes

We consider synthetic test scenes containing differ-

ent kinds of motion. The scene Ben contains trans-

lational motion of up to 14 pixels, the scene wind-

mill depicts rotational motion approximately par-

allel to the image plane, while the scene corner

exhibits rotation of objects around a vertical axis,

Fig. 5. In all three cases, many images were ren-

dered at short time intervals and averaged to obtain

the motion-blurred images IB . The first and the last

rendered image represent the short-time exposures

I1 and I2.

To evaluate the advantage of the global optimiza-

tion framework, we compare the results of our al-

gorithm to the results of the pointwise algorithm

of [23]. We also compare to state-of-the-art opti-

cal flow algorithms. For fair comparison, besides

images I1 and I2 we provide the competing opti-

cal flow algorithms with the image I1.5, depicting

the scene half way between I1 and I2. We calcu-

late the motion fields between I1 and I1.5 as well

as between I1.5 and I2. The two results are then

concatenated before comparing them to the ground

truth displacement field. As optical flow works best

for small displacements, the error of the concate-

nation is smaller than calculating the motion field

between I1 and I2 directly.

For comparison, we consider two different op-

tical flow methods. We chose the algorithm of

Zach et al. [27], since it relies on the same math-



Ben windmill corner

MAE STD MAE STD MAE STD

Sand, Tellers [22] 8.42 20.91 6.78 17.43 6.40 17.71

Zach et al. [27] 5.81 20.08 4.87 17.35 5.05 19.59

Sellent et al. [23] 6.31 19.53 8.64 23.70 12.87 27.69

our method 4.27 16.35 4.56 15.70 4.57 17.32

Table 1: The motion field computed with our method has a smaller mean angular error (MAE) and a smaller

standard deviation (STD) than motion fields computed with competitive optical flow or alternate exposure

algorithms.

(a) (b) (c) (d)

Figure 6: Real-world recordings juggling (top row) and waving (bottom row): I1, IB , I2 (a)-(c) and the

motion field calculated with our method (d).

ematical framework as our approach. However, our

method uses a long exposed image instead of a

higher frame rate of short exposed images. We also

compare to the algorithm of Sand and Teller [22]

on three images, as both our method and their ap-

proach consider occlusion effects while calculating

motion fields. As can be seen in Table 1, our al-

gorithm performs best in all three test scenes: the

mean angular error of the estimated motion fields is

smaller, as well as its standard deviation.

5.2 Real-World Recordings

We also test our method on real-world recordings.

We use the built-in HDRmode of a PointGrey Flea2

camera to alter exposure time and gain between suc-

cessive frames. By adjusting the gain, we ensure

that corresponding pixels of static regions in the

short and long exposed images are approximately

of same intensity. With the HDR mode we are able

to acquire I1, IB and I2 with a minimal time gap

between the images. The remaining gap is due to

the fix 30 fps camera frame rate and the readout

time of the sensor. The recorded images and the

estimated motion fields are shown in Fig. 6. The

juggling scene demonstrates vividly the advantages

of using short and long exposures: the motion is

very fast and sharp images require short exposure

times of 6.02 ms. Yet the camera can only process

an image every 33.33ms. This leads to long gaps of

27.31 ms of unrecorded motion between sharp im-

ages. For our method, we record a long exposed im-

age with an exposure time of 39.65 ms reducing the

gap between IB and the succeeding short exposed

image to 0.48 ms and providing us with additional

information. While the short exposures either show

the ball or not, the motion-blurred image captures

the path taken by the ball and enables correct mo-

tion field estimation, i.e. our method can handle the

small ball leaving the picture.

For the waving scene we use exposure times of



20.71 ms and 124.27 ms, resulting in gaps of 12.45
ms and 0.48 ms, respectively. Note that the algo-

rithm is capable of dealing with disoccluded texture

as in the waving scene where the hand uncovers the

face.

5.3 Limitations

Our method shares some of the limitations inherent

to all optical flow methods which also the use of a

motion-blurred image cannot remedy. Like in all

purely image based methods, motion in poorly tex-

tured regions cannot be detected uniquely, as can be

seen in the black background of the waving scene,

Fig. 6. Also common to all optical flow meth-

ods, we assume that motion is the only source of

change in brightness, disregarding highly reflecting

and transparent surfaces from the calculations. In

contrast to most optical flow methods, however, we

include occlusion explicitly into our image forma-

tion model. We limit each pixel to change visibil-

ity only once during the exposure interval. This as-

sumption is justified if the fame rate is sufficiently

high. Several changes in visibility would partition

the motion curves into more than two parts, thus

rendering the problem numerically unstable.

6 Conclusion and Future Work

In this work, we proposed a variational approach to

optical flow from a set of alternatingly exposed im-

ages. We refine the optimization of a general image

formation model, that is able to handle occlusions,

large displacements and objects moving out of the

image. Based on the image formation model, we

derive a TV-L1 energy functional which we solve

with an efficient dual method. In the experiments

we show that making use of a long exposure image

improves the accuracy of the motion field calcula-

tion: the mean angular error and its standard devia-

tion is reduced, not only for linear motion but also

for rotational types of motion. So far, we model

changes in illumination only implicitly by the ro-

bust L1 norm, but we hope to incorporate this into

future motion-blurred image formation models. In

future work, we also want to apply the optimization

method to non-linear motion paths which promises

to be favorable for frame interpolation.
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