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Abstract. To obtain high-quality segmentation results the integration of seman-
tic information is indispensable. In contrast to existing segmentation methods
which use a spatial regularizer, i.e. a local interaction between image points, the
co-occurrence prior [15] imposes penalties on the co-existence of different labels
in a segmentation. We propose a continuous domain formulation of this prior, us-
ing a convex relaxation multi-labeling approach. While the discrete approach [15]
is employs minimization by sequential alpha expansions, our continuous convex
formulation is solved by efficient primal-dual algorithms, which are highly paral-
lelizable on the GPU. Also, our framework allows isotropic regularizers which do
not exhibit grid bias. Experimental results on the MSRC benchmark confirm that
the use of co-occurrence priors leads to drastic improvements in segmentation
compared to the classical Potts model formulation when applied .

1 Introduction

1.1 Semantic Image Labeling

While traditional image segmentation algorithms have focused on separating regions
based on homogeneity of color or texture, more recent methods have aimed at incorpo-
rating semantic knowledge into what is often called class-based image segmentation.
Rather than simply grouping regions of similar color, the goal is to assign to each pixel
of an image a semantic label such as “grass”, “sky”, “cow” or “horse”, each of which
does not necessarily share the same color model – horses may be white, brown or black
for example. Such approaches allow to impose prior knowledge about which pairs of
labels are likely to co-occur in a given image [15]. Figure 1 shows semantic labelings
computed for the image of a cow on grass with and without a co-occurrence prior:
While the color likelihood based data term has a slight preference for cat over cow,
the co-occurrence additionally imposes the information that cows are more commonly
observed on grass next to the ocean than cats.

A separate line of work has promoted the use of minimum description length (MDL)
priors [16, 27, 5, 25] which impose a prior that favors a smaller number of labels in
the final segmentation. In practice, the advantage of such MDL priors is that one can
preserve a level of regularity while reducing the often over-smoothing boundary length
regularization. While many experiments demonstrating the advantage of co-occurrence
can often be reproduced with a simple MDL prior (that suppresses the emergence of
undesired labels), for the example in Figure 1 co-occurrence is vital since the number
of labels is in both cases the same.
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Input image Semantic segmentation with co-occurrence prior

Fig. 1. We propose a convex relaxation for co-occurrence priors in spatially continuous semantic
segmentation. Whereas purely data-driven semantic segmentation (middle) assigns the label ’cat’
to the cow, co-occurrence priors (right) substantially improve the performance by imposing the
knowledge that cows are more commonly encountered next to grass and ocean than cats.

Co-occurrence priors have been applied to the finite-dimensional discrete setting by
means of combinatorial problems on a grid [15]. These problems can be cast as large
scale integer linear programs which are solved approximatively using α-expansion [1]
or the fast primal dual algorithm [14]. However, being defined on the grid these meth-
ods are inherently anisotropic. In addition the discrete methods used for solving such
problems are sequential and thus only partially parallelizable [13]. In contrast, continu-
ous formulations allow for isotropic regularizers and appropriate discretizations of such
functionals do not show grid artefacts. Furthermore, the primal dual algorithm [4] used
for solving the continuous saddle-point problem is defined point-wise and can thus be
parallelized in a straight-forward manner and run in parallel using modern GPU’s or
other parallel architectures. For a detailed discussion see [19, 11].

Thus, a major challenge addressed in this paper is how to efficiently integrate co-
occurrence priors into a convex continuous optimization approach, which allows for
fast solutions independent of the initialization of the algorithm.

In contrast to common segmentation methods we refrain from using super-pixels
[18, 7, 22, 15]. Super-pixels prevent pixels with similar colors from being assigned to
different labels. As a consequence, elongated structures may be lost or larger chunks
may be incorrectly assigned in the final solution – see the head of the sheep in Figure
2 which is assigned to the label ’cow’. To preserve elongated structures we use the
non-local total variation formulation [24, 8].

1.2 Related work

The inspiration to this work predominantly draws from two lines of research, namely
research on label configuration priors and research on convex relaxation techniques. On
the one hand, there are a number of recent advances on label configuration energies for
semantic image labeling, including the co-occurrence priors [15], MDL priors [5, 27,
25, 16], and hierarchical label cost priors [5].

On the other hand, there are a number of recent advances on convex relaxation tech-
niques for spatially continuous multi-label optimization. These include relaxations for
the continuous Potts model [2, 3, 17, 26], for the non-local continuous Potts model [24],
for MDL priors [25], and for vector-valued labeling problems [9, 23].
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Input no co-occ. Ladicky et al. [15] proposed

Fig. 2. Methods using super-pixel information for improving label consistency can produce mis-
labeling in the resulting segmentation as can be seen in the case of the approach in [15] which
builds on the higher order CRF approach introduces by Kohli et al. [12].

1.3 Contributions

Our contributions are the following:

• We formulate the co-occurrence priors within a spatially continuous approach to
semantic multi-label segmentation.

• We propose a convex relaxation of the co-occurrence based segmentation func-
tional which can be solved optimally. This approach yields results independent of
intialization and is - in contrast to discrete methods - straighfowardly parallelizable.

• The proposed integration of co-occurrence priors is done on a pixel level and there-
fore avoids the commonly used pre-segmentation into super-pixels.

2 Convex Multi-label Segmentation

Given a discrete label space G = {1, ..., n} with n ≥ 3, the multi-labeling problem can
be stated as a minimal partition problem. The image domainΩ ⊂ R2 is to be segmented
into n pairwise disjoint regions Ωi which are encoded by the label indicator function
u ∈ BV (Ω, {0, 1})n

ui(x) =

{
1 if x ∈ Ωi,
0 otherwise.

(2.1)

Here BV denotes the space of functions u for which the total variation

TV (u) := sup
p∈C1

c (Ω;R2)
|p(x)|≤1 ∀x

∫
Ω

u(x) div p(x) dx (2.2)

is bounded allowing for discontinuities. To ensure that each pixel is assigned to exactly
one region a point-wise simplex constraint is imposed on u:

n∑
i=1

ui(x) = 1 ∀x ∈ Ω. (2.3)
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To find a solution to the minimal partition problem we minimize the general energy E
which can be decomposed as follows:

E(u) = ED(u) + ES(u) + EC(u), (2.4)

The term ED is called the data term, the expression ES represents a regularization
term usually requiring smoothness of the solution, and the term EC is the global co-
occurrence energy which will be introduced in Section 3.

The data term ED(u) assigns a cost %i(x) : Ω → R to each pixel x for belonging
to region i (based on its color or texture). It can be written in terms of the indicator
functions as

ED(u) =

n∑
i=1

∫
Ω

ui(x)%i(x)dx. (2.5)

The regularization term ES(u) imposes a spatial smoothness which can be formulated
by means of the Potts model.

The classical total variation based formulation of the Potts model, 1
2

∑n
i=1 TV (ui),

minimizes the length of the interface of each region which leads to an over-smoothing
in images exhibiting objects with fine or elongated structures. To improve over this,
Werlberger et al. [24] proposed a non-local variant of the Potts model, which improves
the labeling quality on the boundaries. The key idea is that pixels x and y are likely to
share the same label if they are spatially close and have a similar color. For each pair of
pixels a weight w is defined, which measures this similarity:

w(x, y) = exp

[
−
(
dc(x, y)

α
+
ds(x, y)

β

)]
. (2.6)

Here dc and ds denote the color and spatial distance scaled by the parameters α and
β. The regularizer, finally, measures the weighted label differences for each pixel com-
pared to its spatial neighborhood Nx

ES(u) =

n∑
i=1

∫
Ω

( ∫
Nx

w(x, y) |ui(y)− ui(x)| dy
)
dx. (2.7)

Introducing a dual variable p transforms the non-differentiable expression (2.7) to a
fully differentiable one (for each fixed p):

ES(u) = sup
p∈K̃

n∑
i=1

∫
Ω

( ∫
Nx

pi(x, y) (ui(y)− ui(x)) dy

)
dx (2.8)

with the convex constraint set K̃

K̃ :=

{
p(x, y) ∈ C1 (Ω ×Ω,R)

n ∣∣ |pi(x, y)| ≤ w(x, y)

}
. (2.9)

Thus ED and ES above are both convex in u. Note that the above non-local regularizer
(2.7), and with it also our energy, is not isotropic. One could also easily use its isotropic
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version, where the L1-norm in (2.7) is replaced by
√∫
Nx

w(x, y)(ui(y)− ui(x))2 dy

as in [8]. However, the results with both versions are almost the same, so that we have
chosen the form (2.7) for computational efficiency. In general, our continuous formula-
tion easily allows to incorporate isotropic regularizers, such as the isotropic Potts model
relaxations [2, 3]. Additionally, in contrast to graph based methods there is no need for
complex graph constructions when solving our optimization problem.

In order to obtain a convex optimization problem, the optimization domain must be
convex as well. Therefore, we relax the binary constraints of the indicator function u
and — together with (2.3) — obtain the convex set

S :=

{
u ∈ BV (Ω, [0, 1])n

∣∣∣ n∑
i=1

ui(x) = 1 ∀ x ∈ Ω
}
. (2.10)

After optimization of the relaxed problem the final pixel labeling L : Ω → G can be
recovered from the relaxed solution u∗ by:

L(x) = arg max
1≤i≤n

u∗i (x) (2.11)

3 A Continuous Co-occurrence Prior

In this section we introduce the global co-occurrence energy EC in (2.4), which allows
for the integration of semantic scene knowledge, such as for example that sheep and
grass often appear together in the same image whereas sheep and wolves are rarely to
be found. For each subset of labels L ⊆ G a specific penalty can be defined or learned
from training data. Note that this penalty only depends on the simultaneous occurrence
of specific labels in the image, not on their location or the size of their corresponding
regions in the segmentation.

3.1 A Convex Formulation of Label Occurrences

In order to devise the co-occurrence prior it is necessary to model the occurrences
of specific labels in the image. To this end, we introduce the label indicator function
l : S → {0, 1}n,

li(u) =

{
1, if ∃x ∈ Ω : ui(x) = 1,

0, otherwise,
(3.1)

which indicates for each label i ∈ G if it appears in the segmentation given by u ∈ S .
To obtain a convex formulation of the function l, we use the following relation which
was already used by Yuan et al. [25]:

li(u) = max
x∈Ω

ui(x) ∀i ∈ G. (3.2)

where we use max, instead of the formally correct ess sup operator, for readability. Note
that the L∞-norm on the left hand side of (3.2) couples the indicator functions of all
pixels in the image domain and, thus, represents the key ingredient for the introduction
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of the global co-occurrence prior. Due to the non-differentiability of the L∞-norm and
the non-convex range {0, 1} of each label indicator function li, we relax l to map to the
unit intervals l : S → [0, 1]n and replace (3.2) by the following convex constraint:

li(u) ≥ ui(x) ∀x ∈ Ω ∀i ∈ G. (3.3)

The idea of defining a co-occurrence energy is that it should only depend on the
label indicator functions l, which capture the global occurrence information:

EC(u) = EC(l(u)). (3.4)

Provided that EC has the following properties:

1. EC(l) is convex.
2. EC(l) is monotonically increasing w.r.t. l i.e.

l � l =⇒ EC(l) ≤ EC(l̃), (3.5)

it can be easily shown that, replacing (3.2) by (3.3) and minimizing over l, one recovers
the optimum of the optimization problem (2.4) with respect to constraint (3.2).

3.2 A Convex Formulation of the Co-occurrence Prior

We will now formulate the continuous co-occurrence prior. To this end, the concept of
occurrence functions l in (3.2) for single labels is generalized to the occurrence of label
subsets L ⊆ G by introducing the label subset indicator function δL : S → {0, 1} :

δL(u) =

{
1 if li(u) = 1 ∀i ∈ L,
0 otherwise.

(3.6)

The function δL indicates the simultaneous occurrence of all labels in the subset L in
the image, so that it can be rewritten in the following way:

δL(u) =
∏
i∈L

li(u). (3.7)

The co-occurrence prior is then defined as the sum over all possible label combinations
of G (the elements of the power set of G) weighted by the associated co-occurrence
penalties C(L) ≥ 0

EC(l(u)) =
∑

L∈P(G)

δL(u) · C(L) =
∑

L∈P(G)

C(L)
∏
i∈L

li(u). (3.8)

Because of the product in (3.7), the term δL is not convex in terms of l for |L| ≥ 2.
Thus, a convex relaxation of the product is required to make the energy term convex.
We relax the energy (3.8) term-wise for each subset L, i.e. by relaxing each individual
addend

EL(u) := C(L)
∏
i∈L

li(u). (3.9)
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A convex formulation of this kind of energies was given in [23]. Let us briefly recall
this approach for the convenience of the reader. The general considered energy is

E0(v) =
∑

γ1∈Λ1, ..., γd∈Λd

cγ v
1
γ1
· . . . · vdγd (3.10)

with d ≥ 1 finite label sets Λ1, . . . , Λd and, for each 1 ≤ i ≤ d, corresponding indicator
variables (viγ)γ∈Λi

∈ [0, 1] which satisfy the simplex constraint
∑
γ∈Λi

viγ = 1. The
costs cγ1,...,γd ∈ R can be arbitrary. The convex relaxation proposed in [23] is

Erel
0 (v) = sup

q∈Q

∑
γ1∈Λ1

q1
γ1
v1
γ1

+ . . .+
∑
γd∈Λd

qdγdv
d
γd

(3.11)

with the convex set

Q =
{

(qiγi)1≤i≤d, γi∈Λi

∣∣ qiγi ∈R, q1
γ1

+ . . .+ qdγd ≤ cγ ∀γ1 ∈ Λ1, .., γd ∈ Λd
}
.

(3.12)
The convex energy Erel

0 is the tightest possible relaxation of E0: In the recent jour-
nal version [10] of [23] it is shown that Erel

0 is the convex hull of E0. For instance, this
means thatErel

0 preserves the minimizers ofE0, i.e. minimizers ofE0 are also minimiz-
ers of Erel

0 , Furthermore, Erel
0 (v) coincides with E0(v) for binary v (viγi ∈ {0, 1} for all

i and γi ∈ Λi).
In our case, we have d = |L| and only two labels per factor, i.e. Λi = {0, 1} for all

1 ≤ i ≤ d. The corresponding indicator variables are vi0 = 1− li and vi1 = li for each
i. Finally, the costs cγ are given by

cγ =

{
C(L), if γ1 = . . . = γd = 1

0, otherwise.
(3.13)

Directly applying (3.11), and writing the dual variables as qi0 =: ϕiL and qi1 =: ψiL for
each 1 ≤ i ≤ |L|, we obtain the following convex formulation of EC :

EC(l(u)) =
∑

L∈P(G)

(
sup

(ϕL,ψL)∈QL

∑
i∈L

(1− li(u))ϕiL + li(u)ψiL

)
(3.14)

with the convex constraint set

QL :=

{
(ϕL, ψL)

∣∣ ∀z ∈ {0, 1}|L| 6= 1 :∑
i∈L

(1− zi)ϕiL + ziψ
i
L ≤ 0,

∑
i∈L

ψiL ≤ C(L)

}
,

(3.15)

where 1 is a vector consisting of all ones. The terms (1− zi)ϕiL + ziψ
i
L in (3.15) arise

from (3.12) by noting that qizi = (1− zi)ϕiL + ziψ
i
L for all i and zi ∈ {0, 1}.

For C(L)→∞ in (3.8) for some subset L we obtain hard constraints on label con-
figurations, i.e. δL(u) = 0. Including this constraint prohibits segmentations containing
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all labels of L: The energy will be infinite if the labels from L occur in the image si-
multaneously. This corresponds to simply dropping the constraint

∑
i∈L ψ

i
L ≤ C(L)

in the above constraint set (3.15).
We can easily prove that E(l(u)) is monotonically increasing, i.e. that the require-

ment (2.5) is fulfilled. First, it is monotonic for binary l: It this case it is represented by
the original formula (3.8). Since the label subset indicator functions δL(l) are clearly
monotonous in l and the costs C(L) are nonnegative, it follows that EC is monotonous
for binary l. This is also referred to as the principle of Occam’s razor which states that
among competing labelings the one with fewer labels should be favoured energetically.
Second, we use the fact that (3.14) is the convex hull relaxation of δL(l) to the set of
possibly non-binary l’s. This and the monotonicity for binary l yields the monotonicy
of EC(l) for general l ∈ [0, 1]n.

It follows that by means of the convex relaxation (3.3) we can recover the constraint
(3.2) and thus globally minimize the overall energy (2.4). Since the power set of G is
very large, we follow [15] and approximate the true costs C(L) by taking only sets of
two labels into account, with fixed costs which best approximate the original costs. For
details see [15]. The resulting co-occurrence energy for sets of only two labels then
reads as:

EC(l(u)) =
∑

1≤i<j≤n

(
sup

{ϕij ,ψij}∈Qi,j

(1− li(u))ϕij,1li(u)ψij,1

+ (1− lj(u))ϕij,2 + lj(u)ψij,2

)
, (3.16)

where Qij is the convex constraint set of dual variables ϕij , ψij ∈ R2:

Qij :=

{
(ϕij , ψij)

∣∣ ψij,1 + ψij,2 ≤ cij , (3.17)

ϕij,1 + ϕij,2 ≤ 0, ϕij,1 + ψij,2 ≤ 0, ψij,1 + ϕij,2 ≤ 0

}
.

Note that in the integer linear program (ILP) given in [15] the label subset indicator
function δL(u) is realized by the following constraint ([15] equation (31)):

δL(u) ≥
∑
i∈L

li(u)− |L|+ 1. (3.18)

In contrast to our framework with the tight convex relaxations (3.11) and (3.16), equa-
tion (3.18) would introduces additional trivial solutions after relaxing the ILP to allow
δL(u) and li(u) to be from [0, 1]. For instance, (3.18) is always fulfilled for δL(u) = 0
and any l such that

∑
i∈L li ≤ |L|− 1, e.g. li = 1/(|L|− 1). Therefore, our continuous

formulation is a tighter relaxation than the linear relaxation given in [15].

4 Implementation

The overall saddle-point formulation of our optimization problem for label subsets con-
taining only two labels can be summarized as follows:
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min
u∈S

l∈[0,1]n

sup
p∈K̃

ϕij ,ψi∈Qi,j

n∑
i=1

∫
Ω

( ∫
Nx

p(x, y)(ui(y)−ui(x)) dy

)
dx+

n∑
i=1

∫
Ω

ui(x)%i(x)dx+

∑
1≤i<j≤n

(
(1− li)ϕij,1 + liψij,1 + (1− lj)ϕij,2 + ljψij,2

)
s.t. li ≥ ui(x) ∀x ∈ Ω ∀i ∈ G. (4.1)

In order to solve the above saddle-point problem we use the first order primal dual
algorithm [21, 4] which is essentially a gradient descent in the primal variables and a
gradient ascent in the dual variables with a subsequent computation of the respective
proximity operators and an over-relaxation step for the primal variables. For the time
steps we use recent preconditioning techniques introduced in [20]. This way there is no
need to compute the Lipschitz constant of the underlying linear operator. The details of
the implementation can be found in the appendix.

5 Experiments

The key contribution of this paper is the introduction of a co-occurrence prior into the
continuous multi-label framework. In this section we evaluate the proposed continuous
formulation of the segmentation problem with the co-occurrence prior on the MSRC
database [6]. To preserve comparability to [15], we use their data term, which is based
on texture boosting. As explained in Section 4 we approximate the exact co-occurrences
by considering only binary label interactions. Overall we obtain

(
n
2

)
possible binary

label interactions, i.e. 210 for the 21 labels considered in the MSRC dataset. For each
interaction we need to keep track of only eight scalar variables (dual variables and
Lagrange multipliers), which is almost negligible compared to the remaining part of
the optimization approach. Note that we obtain the co-occurrence weights cij from the
training data as in [15].

Some of the obtained segmentation results of the MSRC dataset are shown in Figure
3. A comparison of the segmentation accuracy of the proposed algorithm to the orig-
inal formulation by Ladicky et al. on the whole benchmark can be found in Figure 4.
The table indicates the numbers for each label separately as well as the average on the
whole benchmark. The results show that the segmentations obtained with the proposed
continuous formulation are comparable to those obtained by Ladicky et al. in terms of
global accuracy (which neglects the number of images per label), and even outperforms
them in terms of average accuracy over all benchmark images. Note that due to differ-
ent training and evaluation sets of images the numbers in table 4 differ slightly from the
numbers in [15].

In order to evaluate the tightness of the optimization problem we computed the
following relative optimality bound, which is an upper bound of the energy difference
between the globally optimal binary solution and the computed binarized solution

B(u, ũ) =
E(ũ)− E(u)

E(u)
. (5.1)
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a) Input b) Potts c) Ladicky et al. [15] d) Configuration Prior

Fig. 3. Co-occurrence prior: Qualitative results on images taken from the MSRC database. The
results show (a) the original benchmark image, (b) the segmentation result without co-occurrence
prior, (c) the results by Ladicky et al. [15], (d) results from our continuous formulation of the
segmentation algorithm incorporating the co-occurrence energy.
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Here E is the energy given in (2.4), u the solution of the relaxed saddle point problem
(4.1) and ũ the binarized solution of u used for computing the final labeling, see (2.11).
We obtained an average value of B(u, ũ) = 0.17% for the optimality bound, which
means that our computed binary solutions are very close to the global optimum of the
original optimization problem.
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dataterm 83.99 77.18 67 97 91 85 86 95 88 81 90 82 94 81 62 42 91 66 86 79 54 72 31
Potts 84.80 77.88 69 97 91 86 86 96 86 82 90 81 93 83 62 42 91 68 86 80 56 72 28
proposed 85.99 78.95 72 97 91 87 86 97 86 84 90 83 93 83 64 44 93 73 87 81 59 74 25
[15] 86.76 77.78 76 99 90 77 84 99 82 88 88 80 90 90 71 47 94 68 90 73 55 77 15

Fig. 4. Segmentation accuracies of the daterterm, the pure Potts model, our approach using
the continuous formulation of the co-occurrence energy, and the results by Ladicky et al. [15].
The scores for each label are defined as True Positives · 100

True Positives + False Negatives . While the score of the proposed
method is slightly below that of [15] in the global score, it provides a better average performance.

6 Runtime

The proposed algorithm is based on a variational approach which allows for an im-
plementation on graphics hardware. In practice the optimization scheme presented in
Section 4 converges within 1000 iterations in terms of the maximal change of two suc-
cessive iterations. For the experiments we used a NVIDIA Geforce GTX480 GPU and
obtained average runtimes per image of 10 seconds for the co-occurrence segmentation.
The runtimes are similar to the computation of the pure Potts model, since the overhead
of computation compared to the classical multi-labeling problems is marginal as the
configuration priors are defined on n scalar indicator variables compared to O(|Ω|)
variables for the indicator functions u.

7 Conclusion

We proposed a convex framework for continuous multi-label optimization which allows
for the integration of semantic scene label information by means of co-occurrence pri-
ors. We formulated a variational approach together with a convex relaxation which can
be optimized with fast primal-dual schemes. The approach compared favourably with
respect to the discrete co-occurrence prior by Ladicky et al. [15] and optimality bounds
demonstrate the tightness of our convex relaxations.
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A Appendix

In the following we will give some details on the optimization scheme for solving saddle
point problem (4.1). We start by introducing the Lagrange multipliers used for handling
the convex constraints. Then we give a list of the update steps performed in our iterative
minimization scheme.
In order to impose the label configuration priors, several kinds of constraints have to
be implemented. The simplex constraint

∑
i ui(x) = 1 in (2.3) can be implemented by

introducing Lagrange multipliers λ : Ω → R. The inequality constraints can also be
easily implemented by introducing the following Lagrange multipliers:

Contraints Lagrange Multipliers

li(u) ≥ ui(x) ∀x ∈ Ω αi : Ω → R+ ∀ i ∈ {1 · · · n}

ψij,1 + ψij,2 ≤ cij βij ∈ R− ∀ i < j ∈ G

ϕij,1 + ϕij,2 ≤ 0 θij ∈ R− ∀ i < j ∈ G

ϕij,1 + ψij,2 ≤ 0 ηij ∈ R− ∀ i < j ∈ G

ψij,1 + ϕij,2 ≤ 0 ξij ∈ R− ∀ i < j ∈ G

The update steps are performed point-wise for all x ∈ Ω, i ∈ {1, ..., n} and for
all label pairs 1 ≤ i < j ≤ n which makes it possible to parallely implement above
algorithm on modern graphics cards. Local constraints are tackled by a simple orthog-
onal projection Π into the respective convex sets which can be performed by simple
truncation. Overall the update steps for solving saddle-point problem (4.1) are iterated
in the following order:

Updates for dual variables:

pk+1
i (x) = ΠK̄

(
p(x)ki +

1

2
(∇wūki (x))

)
λk+1(x) = λk(x) +

1

n

(
n∑
i=1

ūki (x)− 1

)

αk+1
i (x) = ΠR+

(
αki (x) +

1

2
(ūki (x)− l̄ki )

)
ϕk+1
ij = ϕkij +

1

3

(
1− l̄ki + θ̄kij + η̄kij
1− l̄kj + θ̄kij + ξ̄kij

)
ψk+1
ij = ψkij +

1

3

(
l̄ki + β̄kij + ξ̄kij
l̄kj + β̄kij + η̄kij

)

Updates for primal variables:

uk+1
i (x) = Π[0,1]

(
uki (x)− 1

2 + |N (x)|

(
%i(x) + αki (x) + λk(x)− divw p

k
i (x)

))
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lk+1
i = lki −

1

|Ω|

(∫
Ω

αki (x) dx

)
βk+1
ij = ΠR−

(
βkij −

1

2
(ψkij,1 + ψkij,2 − Cij)

)
θk+1
ij = ΠR−

(
θkij −

1

2
(ϕkij,1 + ϕkij,2)

)
ηk+1
ij = ΠR−

(
ηkij −

1

2
(ϕkij,1 + ψkij,2)

)
ξk+1
ij = ΠR−

(
ξkij −

1

2
(ψkij,1 + ϕkij,2)

)

Extrapolation steps:

ūi(x)k+1 = 2ui(x)k+1 − ui(x)k

l̄k+1
i = 2lk+1

i − lki
β̄k+1
ij = 2βk+1

ij − βkij
θ̄k+1
ij = 2θk+1

ij − θkij
η̄k+1
ij = 2ηk+1

ij − ηkij
ξ̄k+1
ij = 2ξk+1

ij − ξkij

Note that for the differential operators we use a non-local version of the gradient
∇w and its respective adjoint operator −divw which are defined on a neighbourhood
of x denoted by N (x). For details see [8], and for a complete introduction to non-local
operators and their applications in computer vision, we refer to [24].
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