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Abstract

We propose a general class of label configuration pri-
ors for continuous multi-label optimization problems. In
contrast to MRF-based approaches, the proposed frame-
work unifies label configuration energies such as minimum
description length priors, co-occurrence priors and hier-
archical label cost priors. Moreover, it does not require
any preprocessing in terms of super-pixel estimation. All
problems are solved using efficient primal-dual algorithms
which scale better with the number of labels than the alpha-
expansion method commonly used in the MRF setting. Ex-
perimental results confirm that label configuration priors
lead to drastic improvements in segmentation. In particular,
the hierarchical prior allows to jointly compute a semantic
segmentation and a scene classification.

1. Introduction

1.1. Semantic Image Labeling

While traditional image segmentation algorithms have
focused on separating regions based on homogeneity of
color or texture, more recent methods have aimed at in-
corporating semantic knowledge into what is often called
class-based image segmentation. Rather than simply group-
ing regions of similar color, the goal is to assign to each
pixel of an image a semantic label such as “grass”, “sky”,
“cow” or “horse”, each of which does not necessarily share
the same color model – horses may be white, brown or black
for example. Such approaches allow to impose prior knowl-
edge about which pairs of labels are likely to co-occur in a
given image [8]. Figure 1 shows semantic labelings com-

puted for the image of a cow on grass without and with a
co-occurrence prior: While the data term has a slight pref-
erence for cat over cow, the co-occurrence additionally im-
poses the information that cows are more commonly ob-
served on grass next to the ocean than cats.

A separate line of work has promoted the use of mini-
mum description length (MDL) priors [9, 17, 4, 15] which
imposes a prior that favors a smaller number of labels in the
final segmentation. In practice, the advantage of such MDL
priors is that one can preserve a level of regularity while
reducing the often oversmoothing boundary length regular-
ization. While many experiments demonstrating the advan-
tage of co-occurrence can often be reproduced with a sim-
ple MDL prior (that suppresses the emergence of undesired
labels), for the example in Figure 1 co-occurrence is vital
(since the number of labels is in both cases the same).

Additionally, hierarchical priors have been introduced in
[3]. These favor specific label groups which usually occur
in the same context, e.g. a dishwasher and an oven are likely
to occur together within the context of a kitchen, whereas
a cow and a sheep usually appear in natural contexts out-
side. Such hierarchical priors are more general than co-
occurrence priors since they do not distinguish between the
labels within a specific context but only between labels of
different contexts thus building a kind of label hierarchy.

A major challenge addressed in this paper is how to effi-
ciently integrate such label configuration priors in a convex
continuous optimization approach, which allows for fast so-
lutions which are independent of the initialization of the al-
gorithm.
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Input image no prior configuration prior

Figure 1. Whereas purely data-driven semantic segmentation
(middle) assigns the label ’cat’ to the cow, label configuration pri-
ors such as co-occurrence priors (right) can substantially improve
the semantic image labeling. The co-occurrence prior imposes
the knowledge that cows are more commonly encountered next
to grass and ocean than cats.

1.2. Related work

The inspiration to this work predominantly draws from
two lines of research, namely research on label configura-
tion priors and research on convex relaxation techniques:

On then one hand, there are a number of recent advances
on label configuration energies for semantic image labeling,
including the co-occurrence priors by Ladicky et al. [8], the
MDL priors of Delong et al. [4] and Yuan et al. [15], and the
hierarchical label cost priors proposed by Delong et al. [3].
While the approach by Ladicky et al. demonstrates excel-
lent labeling performance using co-occurrence statistics, it
requires a preprocessing in terms of super-pixel estimation.
Clearly, this preprocessing step is suboptimal in the sense
that the super-pixel estimation has no knowledge of the co-
occurrence prior: pixels erroneously combined in a super-
pixel will not get separated in the subsequent co-occurrence
based optimization process. This effect is shown in Figure
2.

On the other hand, there are a number of recent ad-
vances on convex relaxation techniques for spatially con-
tinuous multi-label optimization. These include relaxations
for the continuous Potts model [1, 10, 16], for the non-local
continuous Potts model [14], for MDL priors [15], and for
vector-valued labeling problems [6, 13].

1.3. Contribution

Apart from the MDL prior, all label configuration priors
have been applied to the spatially discrete MRF domain,
which exhibit grid bias and are hard or impossible to paral-
lelize. As discussed in [7], spatially continuous approaches
do not exhibit any grid bias and respective algorithms are
easily parallelized on graphics hardware.

Hence, we propose a convex framework for multi-label
optimization which can incorporate all of the above label
configuration priors. To this end, we formulate a varia-
tional approach which can be optimized with fast primal-
dual schemes. In contrast to the co-occurrence approach
by Ladicky et al. [8], the proposed method does not require
any pre-processing in terms of super-pixel estimation but
directly works on the input pixels. In contrast to the hier-

archical prior approach by Delong et al. [3], it scales well
with the number of labels – examples with 256 labels are
easily handled. Additionally we propose a generalisation
of the minimal description length prior given by Yuan et al.
[15] to a general formulation by a composition with a with
an arbitrary convex and monotonously increasing function.

2. Formulating a Convex Optimization Prob-
lem

Given a discrete labelspace G = {1, .., n} with a n ≥ 1,
the multi-labeling problem can be stated as a minimal par-
tition problem. The image domain Ω ⊂ R2 is to be seg-
mented into n of pairwise disjoint regions Ωi by minimizing
a general energy E which can be decomposed as follows:

E = ED + ES + EL, (1)

The term ED is called the data term, the expression ES
represents a smoothness regularizer and the term EL is a
global energy which penalizes specific label configurations
in the image and will be introduced in Section 3 .

To obtain a convex energy, the label assignment function
is expressed in terms of the n label indicator functions ui :
Ω→ {0, 1}, i ∈ {1, .., n} defined by

ui(x) =

{
1 if x ∈ Ωi,

0 otherwise.
(2)

To ensure that each pixel is assigned to exactly one region
the simplex constraint is imposed on u

n∑
i=1

ui(x) = 1 ∀x ∈ Ω. (3)

Data Term ED(u). The data term assigns the cost %i(x)
to each pixel x for belonging to region i, e.g. based on
color distance and can be written in terms of the indicator
functions as

ED(u) =

n∑
i=1

∫
Ω

ui(x)%i(x)dx. (4)

Here, %i : Ω → R indicates the cost of assigning the label
i to pixel x. It can be computed from color models, which
can be either indicated by the user or learned from training
data.

Smoothness Term ES(u). The smoothness term imposes
a spatial prior which can be formulated by choosing the
Potts model:

ES(u) =
1

2

n∑
i=1

∫
Ω

|Dui(x)| (5)
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Input no co-occ. Ladicky et al. proposed

Figure 2. The CRF approach by Ladicky et al. [8] requires a super-pixel preprocessing which assigns to the entire head a single super-
pixel labeled as “cow”. The subsequent co-occurrence based optimization cannot recover from this mistake due to the large number of
mislabeled pixels. Since the proposed method imposes co-occurrency directly in the labeling of the input pixels it does not suffer from this
drawback.

which penalizes the total interface length. Since ui is not
differentiable in general, we consider its dual formulation

ES(u) = sup
p∈K

n∑
i=1

∫
Ω

ui(x) div pi(x)dx (6)

with the convex set

K =

{
p : Ω→ (R2)n

∣∣ |pi(x)| ≤ 1

2

}
. (7)

The classical TV formulation of the Potts model mini-
mizes the length of the interface of each region which can
be an inappropriate prior in images exhibiting fine or elon-
gated structures. Hence, Werlberger et al. [14] proposed a
non-local variant of the Potts models, which improves the
labeling quality on the boundaries:

ES(u) =

n∑
i=1

∫
Ω

∫
Nx

w(x, y)|ui(y)− ui(x)|dy dx (8)

where Nx indicates a predefined neighborhood of x and
w(x, y) defines the support weight between the pixels. It
is specified as

w(x, y) = exp

[
−
(
dc(x, y)

α
+
dp(x, y)

β

)]
. (9)

In this way, the color distance dc(x, y) and the Euclidean
distance dp(x, y) between pixels x and y are combined.

The dual formulation of (8) is given by

ES(u) = sup
p∈K̃

n∑
i=1

∫
Ω

∫
Nx

p(x, y)(ui(y)− ui(x))dy dx (10)

with the convex constraint set K̃

K̃ :=

{
p(x, y) : Ω×Ω→ R

∣∣ |p(x, y)| ≤ w(x, y)

}
. (11)

Thus ED and ES above are both convex in u.

Convex Relaxation. In order to obtain a convex opti-
mization problem, the optimization domain must be con-
vex as well. Therefore, we relax the binary constraints
ui(x) ∈ {0, 1} together with (3) and obtain the convex set

S :=

{
(u : Ω→ Rn

∣∣∣ n∑
i=1

ui(x) = 1, ui(x) ∈ [0, 1]

}
.

(12)

3. Label Configuration Priors
In this section we introduce the global energy EL in (1),

which depends only on the presence of a specific label in
the image, not on the location or the size of the correspond-
ing region in the segmentation, i.e. label configurations
like the number of non-empty regions (MDL prior), the co-
occurrences of certain labels (co-occurrence prior) or cate-
gories/subgroups of labels (hierarchical prior) occurring in
the segmentation are penalized.

To make this precise, we introduce the indicator func-
tions l = (l1, .., ln) : S → {0, 1}n,

li(u) =

{
1, if ∃x ∈ Ω : ui(x) = 1,

0, otherwise
(13)

which indicate if a label i appears in the segmentation given
by the indicator functions u.

Our approach can handle general label configuration en-
ergies EL subject to the following properties:

1. EL(l) is convex.

2. EL(l) is strictly monotonously increasing in l.

Convex Formulation of EL To obtain a convex formula-
tion of the label indicator functions li, we use the following
relation:

li(u) = max
x∈Ω

ui(x) ∀i ∈ G. (14)

Since the max operator is not differentiable we relax the
above equation to l : S → [0, 1]n with the convex con-
straint:

li(u) ≥ ui(x) ∀x ∈ Ω ∀i ∈ G. (15)
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We prove the following theorem, which states that the
constraint in (14) can be replaced by the constraint in (15)
preserving the optimum of the optimization problem.

Theorem 1. Let (u∗, l∗) be a minimizer of

E(u, l) = ED(u) + ES(u) + EL(l) (16)

subject to the convex constraint (15). Then (u∗, l∗) is also
a minimizer of the same energy (16) and the constraint (14)
is recovered.

Proof. Let (u∗, l∗) be given and satisfying (15). If (u∗, l∗)
also satisfies (14) we are done. Otherwise there exists i ∈
{1, .., n} such that l∗i (u

∗) > maxx∈Ω u
∗
i (x). Let l̂ be a

vector with l̂i(u) := maxx∈Ω u
∗
i (x). Then l̂i < l∗i and

E(u∗, l̂) = ED(u∗) + ES(u∗) + EL(l̂)

< ED(u∗) + ES(u∗) + EL(l∗) = E(u∗, l∗),
(17)

since EL is strictly monotonously increasing. Thus, (u∗, l̂)

has a lower energy than (u∗, l̂), contradicting the assump-
tion.

Next, we will give some examples and implementation
details for the label interactions EL arising frequently in
practice.

3.1. A Generalized MDL Prior

The MDL prior can be written as the following label con-
figuration energy:

EL(l) =

n∑
i=1

li(u)Ci, (18)

where Ci represents a predefined cost for each label occur-
ring in the image. This prior has been previously considered
in [15, 4]. By choosing Ci differently for each 1 ≤ i ≤ n
one can penalize subsets of labels differently than others.

We generalize this prior to the following energy

EL(l) = f

(
n∑
i=1

li(u)

)
(19)

with an arbitrary convex and monotonously increasing func-
tion f : R → R. Specific choices are f(s) = s for the
number of labels as in [15, 4], f(s) = s2, or f(s) = δs≤s0
for some s0 ≥ 1, i.e. f(s) = 0 if s ≤ s0 and f(s) = ∞
otherwise. The latter one imposes a hard constraint on the
total number of labels in the end result.

3.2. Co-occurrence Prior

To formulate the co-occurrence prior we make use of the
functions li in (14). Let L ⊆ G denote a subset of labels

which can appear in the current scene. For a given subset L
let δL : S → {0, 1} denote the indicator function of a label
subset L ⊆ G appearing in the scene :

δL(u) =

{
1 if li(u) = 1 ∀i ∈ L,
0 otherwise.

(20)

Note that δL(u) is 1 if and only if every label from L occurs
in image. Thus, δL is equal to:

δL(u) =
∏
i∈L

li(u), (21)

and EL(l) can be written as:

EL(l) =
∑
L⊆G

δL(u) · C(L) (22)

with a label cost C(L) associated with label configuration
L. The term δL is not convex for |L| ≥ 2. Thus a convex
relaxation is required in order to convexify the final problem
. Based on the tight convex relaxation given in [13] we
obtain the following convex formulation :

EL(l) =
∑
L⊆G

(
sup

(ϕL,ψL)∈QL

∑
i∈L

(1− li)ϕiL + liψ
i
L

)
(23)

We introduced dual variables ϕL, ψL ∈ R|L| where |L|
stands for the cardinality of the subset L and where each
dual variable pair ϕiL, ψ

i
L is associated with a label indi-

cator variable li for all i ∈ L. Additionally (ϕL, ψL) are
constrained in the following set:

QL :=

{
(ϕL, ψL)

∣∣ s.t. ∀z ∈ {0, 1}|L| 6= ~1 (24)∑
i∈L

(1− zi)ϕiL + ziψ
i
L ≤ 0 and

∑
i∈L

ψiL ≤ C(L)

}
,

where ~1 is a vector in R|L| consisting of all ones. Since
the power set of G is very large, as done in [8] we approxi-
mate the true costs by taking only sets with two labels into
account with fixed costs, which best approximate the origi-
nal cost function. The resulting formulation of EL(u) then
reads as:

EL(l) =
∑
i<j∈G

(
sup

{ϕij ,ψij}∈Qi,j

(1− li)ϕ1
ij + liψ

1
ij (25)

+ (1− lj)ϕ2
ij + ljψ

2
ij

)
(26)

with Qij the convex constraint set of ϕij , ψij ∈ R2 given
as follows:

Qij :=

{
(ϕij , ψij)

∣∣ s.t. ψ1
ij + ψ2

ij ≤ Cij , (27)

ϕ1
ij + ϕ2

ij ≤ 0, ϕ1
ij + ψ2

ij ≤ 0, ψ1
ij + ϕ2

ij ≤ 0

}
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3.3. Hierarchical Label Prior

Another application of the proposed general framework
is the introduction of label hierarchies according to cat-
egories such as outdoor/indoor, animals, buildings etc.,
which consist of a set of labels L ⊂ G. For each of these
categories a specific cost C(L) is defined. The hierarchical
label prior is then defined as

EL(l) =
∑
L⊆G

C(L) max
i∈L

li(u). (28)

The above energy is non-differentiable and we derive a
smooth convex optimization problem by use the following
relaxation

ẼL(l) =
∑
L⊆G

C(L)

(
sup
µL

∑
i∈L

li(u)µiL

)
(29)

s.t.
∑
i∈L

µiL = 1, µiL ≥ 0 (30)

We introduced auxiliary dual variables µL ∈ R|L| where
each µi is associated with the label indicator variable li for
all i ∈ L. The equivalence of (28) and (29) is the well
known dualization of the max function, see [15]. We give
here a proof for the convenience of the reader:

Proof. We show the equivalence for two labels. The gener-
alization to any larger set of labels is straight-forward. Let
l = (l1, l2) and binary, then

ẼL(l) = supµ(l1(u)µ1 + l2(u)µ2) (31)
s.t. µ1 + µ2 = 1 (32)

µ1, µ2 ≥ 0. (33)

If l1(u) = l2(u) = 0 it is easy to see that the supremum
over µ is 0 hence ẼL(l) = 0 = max(l1(u), l2(u)). In the
case (l1(u) = 1 or l2(u) = 1) the supremum is 1 and is
reached for µ1 = 1 or respectively µ2 = 1. In the case
(l1(u) = 1 and l2(u) = 1) the supremum is 1 and is attained
for µ1 = µ2 = 0.5 and the constraint (32) is active (32).
Hence, we obtain ẼL(l) = EL(l).

4. Implementation
We use the primal-dual algorithm [2] which is essentially

a gradient descent in the primal variables and a gradient as-
cent in the dual variables with a subsequent computation of
the proximity operators. For the time steps we used the re-
cent preconditioning techniques [12]. To impose the label
configuration priors, three kinds of constraints have to be
implemented.

• the simplex constraint
∑
i ui(x) = 1 in (3) can be

implemented by introducing Lagrange multipliers.

a) Input b) 2 phase

c) 3 phase d) 4 phase

Figure 3. Generalized MDL prior: Minimizing energy (35) on
an MRI image allows to impose an upper bound on the number
of labels. This example shows an unsupervised segmentation of
image (a) into 2 regions (s0 = 2) (b), 3 regions (s0 = 3) (c) and 4
regions (s0 = 4) (d).

• equality constraints, e.g.
∑
i µLi = 1 in (29), are

implemented by unconstrained Lagrange multipliers.

• inequality constraints, e.g. li(u) ≥ ui(x) ∀x ∈ Ω,
and the constraints in (27) are implemented by sign
constrained Lagrange multipliers.

In addition we have the proximity operator of EL in (19).
In our case we use

f(s) = δs≤s0 (34)

for some s0 ≥ 1 in Section 5.1. The resolvent operator for
EL is as follows:

l =
(
I+τ∂EL

)−1(
l̃
)
⇔ li = l̃− 1

n
max

(
s0−

n∑
i=1

l̃i, 0

)

5. Experiments

The key contribution of this paper is introducing label
configuration priors into the continuous multi-label frame-
work. We have applied the presented priors to various im-
age segmentation tasks as will be shown in the following:
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5.1. The Generalized MDL Prior

In the previous section we introduced the MDL prior and
generalized it to convex, monotonously increasing func-
tions f . We will show results for the case f(s) = δs≤s0 ,
i.e. for limiting the number of labels to at most s0. We
set the number of candidate labels to the number of gray
levels n = 256 and the data term as the difference to a con-
stant gray value for each region, %i(x) = (I(x)− ci)2 with
ci = i

255 , 0 ≤ i ≤ 255. We obtain the following optimiza-
tion problem

min
u∈S

l s.t. (15)

max
p∈K

n∑
i=1

∫
Ω

ui(I − ci)2 + ui div pi dx. (35)

with the set S in (12) andK in (7). This energy functional is
a convex relaxation of the Mumford-Shah functional [11],
which allows for the simultaneous optimization of the re-
gions Ωi and the gray values. We apply this model to the
segmentation of an MRI-scan in Figure 3 and compute a 2,
3 and 4 phase segmentation of the input image. Note that
the 4-phase segmentation gives best result since the white
matter is separated properly from the gray matter.

5.2. Co-Occurrence

In this section we test the proposed continuous formu-
lation of the segmentation problem with the co-occurrence
prior on the MSRC database [5]. To preserve comparabil-
ity to [8], we use their data term, which is based on tex-
ture boosting. Since the power set of the label set G is very
large, the computation of the exact co-occurrence prior be-
comes intractable. Hence, as proposed in [8] we approxi-
mate based on subsets of only two labels. We applied the
algorithm to the MSRC dataset. Some of the obtained seg-
mentation results are shown in Figure 4. From the results
we can conclude that the continuous formulation of the seg-
mentation problem without superpixel preprocessing step
improves on the results by Ladicky et al. [8] in several
cases. The bird in the first row, for example, is segmented
without its head by the approach in [8], since the head and
the body are separated into two superpixels due to the strong
color difference. The superpixels are not reunited by the
segmentation approach. However, the continuous formula-
tion, which is based on the single pixels, is able to recover
the head.

A comparison of the segmentation accuracy of the pro-
posed algorithm to the original formulation by Ladicky et
al. on the whole benchmark can be found in Figure 5.
The table indicates the numbers for each label separately
as well as the average on the whole benchmark. The re-
sults show that the segmentations obtained with the pro-
posed continuous formulation are comparable to those ob-
tained by Ladicky et al. in terms of overall accuracy, and
even outperforms them in terms of average accuracy. Note

a) input b) mixed labels c) street scene

a) input b) mixed labels c) indoor

a) input b) mixed labels c) water scene

Figure 7. Hierarchical Prior: A joint semantic segmentation and
scene classification can be computed using hierarchical priors as
shown in Figure 6. Such scene-adaptive priors allow to avoid
scene-inconsistent semantic segmentations.

that in contrast to Ladicky et al. we do not use any prepro-
cessing steps such as superpixel extraction.

5.3. Hierarchical Label Prior

In the following we will demonstrate that using the hi-
erarchical prior introduced in Section 3.3 we can joinly in-
corporate a semantic prior and infere nature of the scene at
hand. For this we apply our algorithm on images from the
MSRC database and the following label set

G := {Car, Bird, Building, Sky, Water, Boat,
Chair, Tree, Sign, Road, Book}.

Next we partition the label space G into 3 Subgroups Street
Scene, See Scene and Indoor Scene. The group member-
ship of the labels in each group is illustrated in Figure
6. We define the costs C(Street Scene), C(Water Scene),
C(Indoor Scene) for choosing one or more labels from the
respective category. The results of our optimization algo-
rithm can be seen in Figure 7.

6. Runtime

The proposed algorithm is based on a variational ap-
proach which allows for an implementation on graphics
hardware. Furthermore, we do not use any preprocessing
step such as the computation of superpixels. For the ex-
periments we used a NVIDIA Geforce GTX480 GPU and
obtained average runtimes per image of 10 seconds for the
co-occurrence segmentation as well as for the hierarchi-
cal prior segmentation. The runtimes are similar, since the

6



a) Input b) Potts c) Ladicky et al. [8] d) Configuration Prior
Figure 4. Co-occurrence prior: Qualitative results on images taken from the MSRC database. The results show (a) the original benchmark
image, (b) the segmentation result without co-occurrence prior, (c) the results by Ladicky et al. [8], (d) results from our continuous
formulation of the segmentation algorithm incorporating the co-occurrence energy.
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dataterm 83.99 77.18 67 97 91 85 86 95 88 81 90 82 94 81 62 42 91 66 86 79 54 72 31
potts 84.80 77.88 69 97 91 86 86 96 86 82 90 81 93 83 62 42 91 68 86 80 56 72 28
proposed 85.99 78.95 72 97 91 87 86 97 86 84 90 83 93 83 64 44 93 73 87 81 59 74 25
Ladicky et al. [8] 86.76 77.78 76 99 90 77 84 99 82 88 88 80 90 90 71 47 94 68 90 73 55 77 15

Figure 5. Segmentation accuracies of the daterterm, the pure Potts model, our approach using and the resuls of Ladicky et al. [8]. The
scores for each label are defined as True Positives · 100

True Positives + False Negatives . While the proposed method is worse than [8] in the global score, it provides a
better average performance.

Figure 6. As an instance of a configuration prior we can impose a hierarchal prior which leads to a scene parsing which jointly estimates
a scene classification and a semantic partitioning of the image – see Figure 7.

overhead of computation compared to the classical multi-
labeling problems is marginal as the configuration priors are
defined on n scalar indicator variables compared to O(|Ω|)
variable for the indicator functions u.

7. Conclusion
We propose a convex framework for multi-label opti-

mization which allows to incorporate label configuration
priors such as generalized MDL priors, co-occurrence pri-
ors and hierarchical label cost priors. To this end, we for-
mulate a variational approach which can be optimized with
fast primal-dual schemes. In contrast to existing spatially
discrete MRF-based approaches, the proposed method does
not require any pre-processing in terms of super-pixel esti-
mation but directly works on the input pixels.
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