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Abstract— This paper presents a novel people detection and
tracking method based on a combined multimodal sensor
approach that utilizes 2D and 3D laser range and camera
data. Laser data points are clustered and classified with a
set of geometrical features using an SVM AdaBoost method.
The clusters define a region of interest in the image that is
adjusted using the ground plane information extracted from
the 3D laser. In this areas a novel vision based people detector
based on Implicit Shape Model (ISM) is applied. Each detected
person is tracked using a greedy data association technique and
multiple Extended Kalman Filters that use different motion
models. This way, the filter can cope with a variety of different
motion patterns. The tracker is asynchronously updated by the
detections from the laser and the camera data. Experiments
conducted in real-world outdoor scenarios with crowds of
pedestrians demonstrate the usefulness of our approach.

I. INTRODUCTION

The ability to reliably detect people in real-world environ-
ments is crucial for a wide variety of applications including
video surveillance and intelligent driver assistance systems.
The detection of pedestrians is the next logical step after the
development of a successful navigation and obstacle avoid-
ance algorithm for urban environments. However, pedestrians
are particularly difficult to detect because of their high
variability in appearance due to clothing, illumination and
the fact that the shape characteristics depend on the view
point. In addition, occlusions caused by carried items such
as backpacks or briefcases, as well as clutter in crowded
scenes can render this task even more complex, because they
dramatically change the shape of a pedestrian.

Our goal is to detect pedestrians and localize them in 3D at
any point in time. In particular, we want to provide a position
and a motion estimate that can be used in a real-time appli-
cation. The real-time constraint makes this task particularly
difficult and requires faster detection and tracking algorithms
than the existing approaches. Our work makes a contribution
into this direction. The approach we propose is multimodal
in the sense that we use laser range data and images from
a camera cooperatively. This has the advantage that both
geometrical structure and visual appearance information are
available for a more robust detection. In this paper, we
propose to exploit this information using supervised learning
techniques that are based on a combination of AdaBoost with
Support Vector Machines (SVMs) for the laser data and on an
extension of the Implicit Shape Model (ISM) for the camera
data. In the detection phase, both classifiers yield likelihoods

of detecting people which are fused into an overall detection
probability. The information extracted from 3D and 2D data
define the positioning of the hypotheses in the image. The
image detection method is constrained in region of interest
generated by the 2D laser and positioned in the image
using a ground plane extraction method from 3D scans.
Finally, each detected person is tracked using a greedy data
association method and multiple Extended Kalman Filters
that use different motion models. This way, the filter can cope
with a variety of different motion patterns for several persons
simultaneously. The tracker is asynchronously updated by the
detections from the laser and the camera data. In particular,
the major contributions of this work are:
• An improved version of the image-based people detector

by Leibe et al. [12]. It consists in three extensions to
the Implicit Shape Model (ISM), resulting in a reduced
computation time and an improved feature selection.

• A method to discard false positive detections by com-
puting regions of interest in the camera images.

• The use of a 3D scanning device, which facilitates a fast
and robust detection of the ground plane and thus helps
to disambiguate possible detections of pedestrians.

This paper is organized as follows. The next section describes
previous work that is relevant for our approach. Then, we
give a brief overview of our overall people detection and
tracking system. The following section presents in detail
our detection method based on the 2D laser range data
and explains 3D plane extraction. Then, we introduce the
implicit shape model (ISM), present our extensions to the
ISM and expose the region of interest generation algorithm.
Subsequently, we explain our EKF-based tracking algorithm
focusing particularly on the multiple motion models we use.
Finally, we present experiments and conclude the paper.

II. PREVIOUS WORK

Several approaches can be found in the literature to
identify a person in 2D laser data including analysis of local
minima [17], [20], geometric rules [23], or a maximum-
likelihood estimation to detect dynamic objects [10]. Most
similar to our work is the approach of Arras et al. [2] which
clusters the laser data and learns an AdaBoost classifier from
a set of geometrical features extracted from the clusters.
Recently, we extended this approach et al. [18] in such a way
that multi-dimensional features are used and that they are
learned using a cascade of Support Vector Machines (SVM)



Fig. 1. Overview of the individual steps of our system. See text for details.

instead of the AdaBoost decision stumps. In the area of
image-based people detection, there mainly exist two kinds
of approaches (see [8] for a survey). One uses the analysis of
a detection window or templates [7], [22], the other performs
a parts-based detection [5], [11]. Leibe et al. [12] presented
an image-based people detector using Implicit Shape Models
(ISM) with excellent detection results in crowded scenes.

Existing people detection methods based on camera and
laser rangefinder data either use hard constrained approaches
or hand tuned thresholding. Zivkovic and Kröse [24] use
a learned leg detector and boosted Haar features extracted
from the camera images to merge this information into a
parts-based method. However, both the proposed approach to
cluster the laser data using Canny edge detection and the ex-
traction of Haar features to detect body parts is hardly suited
for outdoor scenarios due to the highly cluttered data and the
larger variation of illumination encountered there. Therefore,
we use an improved clustering method for the laser scans
and SIFT features for the image-based detector. Schulz [16]
uses probabilistic exemplar models learned from training
data of both sensors and applies a Rao-Blackwellized particle
filter (RBPF) in order to track the person’s appearance in
the data. However, in outdoor scenarios lighting conditions
change frequently and occlusions are very likely, which is
why contour matching is not appropriate. Moreover, the
RBPF is computationally demanding, especially in crowded
environments.

III. OVERVIEW OF THE METHOD

Our system is divided into three phases: training, detection
and tracking (see Figure 1). In the training phase, the system
learns a structure-based classifier from a hand-labeled set
of 2D laser range scans, and an appearance-based classifier
from a set of labeled camera images. The first one uses a
boosted cascade of linear SVMs, while the latter computes an
implicit shape model (ISM), in which a collected set of image
descriptors from the training set vote for the occurrence of a
person in the test set. In the detection phase, the laser-based
classifier is applied to the clusters found in a new range scan
and a probability is computed for each cluster to correspond
to a person. The clusters are then projected into the camera
image to define a region of interest and positioned using the
information of the ground plane extracted from the online
retrieved 3D point cloud. Thus an appearance-based classifier
extracts local image descriptors and uses them to obtain a
set of hypotheses of detected persons. Here, we apply a
new technique to discard false positive detections. Finally

in the tracking phase, the information from both classifiers
is used to track the position of the people in the scan data.
The tracker is updated whenever a new image or a laser
measurement is received and processed. It applies several
motion models per track to account for the high variety of
possible motions a person can perform. For the scope of this
paper, we omit the details of our tracking algorithm and refer
instead to[19] for an extensive explanation. In the following,
we describe the particular steps of our system in detail.

IV. STRUCTURE INFORMATION: LASER DATA ANALYSIS

Our robotic system features a 2D and a 3D laser range
scanner. The dense and frequent 2D range data is used to
estimate possible locations of a person’s legs, and the 3D
point clouds are used to extract the ground plane to aid the
appearance-based person detector (see section V).

A. Clustering and Classification of 2D range data

A graph based reasoning on the classic jump distances
segmentation has been proposed in [18] in order to address
the problem of clustering range data in outdoor scenario.
Experimental results showed that this reduces the cluster
quantity of 25%−60%, significantly reducing overclustering
but mantaining clusters information.

We use an improved version of Adaboost [6] based on a
cascade of support vector machines (SVMs)[18] to classify
the clustered laser data into the classes “person” and “no
person”. The main reason for this is to obtain a small number
of classifiers in each stage and to guarantee an optimal
separation of the two classes. We denote the detection of a
person using a binary random variable π that is true whenever
a person is detected. Each of the L cascaded SVM-classifiers
hi yields either 1 or 0 for a given input feature vector f . The
overall detection probability can then be formulated as

p(π | f) =
L∑

i=1

wihi(f) (1)

In the learning phase, the weights wi and the hyperplanes
are computed for each SVM classifier hi. The laser-based
people detector then computes (1) for each feature vector f
in the test data set.

B. Ground Plane Extraction from 3D Scans

As mentioned, a point cloud P obtained with our 3D
rotating scanner device reflects the full 360◦ environment of
the vehicle. The idea is to use this information to extract the



Fig. 2. 3D ground plane extraction. Left: Camera image as seen from the inside of the vehicle. Middle: Triangulated 3D point cloud of the same scene
(seen from above). Right: Camera image with the points of the extracted ground plane overlayed.

position of the ground plane in the local environment of the
vehicle to be able to further disambiguate detected persons
from the camera images and to reduce false positives. In
the literature, there exist many different approaches to detect
planes in 3D range data [13], [21], [9]. For the application
described here we want to detect and track persons if as
fast as possible. Therefore, we decided to use a simple
but time efficient region growing technique to detect the
ground plane. The criterion for a scan point to belong to
the ground plane is that its corresponding normal vector
deviates only slightly (in our implementation by maximal
25◦) from the upright vector (0, 0, 1)T and that it is not
farther away from its closest neighbor than a given threshold
(we use 1 m). The region growing is initiated always at the
same fixed point right in front of the vehicle at the ground
level. To efficiently compute the normal vectors, we exploit
the fact that the point clouds are structured in slices – each
scan line of the vertically mounted rotating laser scanner
accounts for one slice. This facilitates a fast and simple
mesh triangulation performed by connecting two consecutive
points from one slice with one point of the consecutive
slice. From this triangulation the normal vectors are easily
computed from the normalized cross product of difference
vectors. An example result of the ground plane extraction is
shown in Figure 2. To clarify: rectangular bounding boxes
are created in the image where laser clusters are found then
the extracted ground plane is used to place those region
of intereset (ROI) at the correct height in the image. The
resulting ROI placement helps the image detector in creating
valid detection hypotheses.

V. APPEARANCE INFORMATION: IMAGE DATA ANALYSIS

Our image-based people detector is mostly inspired by the
work of [12] on scale-invariant Implicit Shape Models (ISM).
An ISM is a generative model for object detection. In this
paper we extend this approach, but before we briefly explain
the steps for learning an object model in the original ISM
framework.

An Implicit Shape model consists of a codebook I and
a set of votes V . The K elements of I are local region
descriptors dC

1 , . . . ,d
C
K and V contains for each dC

i a set of
Di local displacements {(∆xi,j ,∆yi,j)} and scale factors
{si,j} with j = 1, . . . , Di. The interpretation of the votes is

that each descriptor dC
i can be found at different positions

inside an object and at different scales. To account for this,
each local displacement points from dC

i to the center of the
object as it was found in the labeled training data set. To
obtain an ISM from a given training data set, two steps are
performed:

1) Clustering All region descriptors are collected from
the training data. The descriptors are then clustered
using agglomerative clustering with average linkage.
In the codebook, only the cluster centers are stored.

2) Computing Votes In a second run over the training
data, the codebook descriptors dC

i are matched to the
descriptors dI

j found in the images, and the scale and
center displacement corresponding to dI

j is added as a
vote for dC

i .
In the detection phase, we again compute interest points xI

j

and corresponding region descriptors dI
j at various scales

on a given test image I . The descriptors are matched to
the codebook and a matching probability p(dC

i | dI
j ) is

obtained for each codebook entry. With the sample-based
representation, we can detect a person at location x̄ by a
maxima search using variable bandwidth mean shift balloon
density estimation [4] in the 3D voting space.

A. First Extension to ISM: Strength of Hypotheses

In the definition of the ISM there is no assumption made
on the particular shape of the objects to be detected. This
has the big advantage that the learned objects are detected
although they might be occluded by other objects in the
scene. However, the drawback is that usually there is a large
number of false positive detections in the image background.
[12] address this problem using a minimum description
length (MDL) optimization based on pixel probability values.
However, this approach is rather time demanding and not
suited for real-time applications. Therefore, we suggest a
different approach.

First we evaluate the quality of a hypothesis of a detected
object center x with respect to two aspects: the overall
strength of all votes and the way in which the voters are
distributed. Assume that ISM yields an estimate of a person
at position x. We can estimate the spatial distribution of
voters xI

j that vote for x using a 1D circular histogram that
ranges from 0 to 2π. When computing the weight of the vote



we also compute the angle α

α(xI
j ,x) = arctan2(yI

j − y, xI
j − x) (2)

and store the voting weight in the bin that corresponds to α.
This way we obtain a histogram ξ(x) with, say, B bins for
each center hypothesis x. Now we can define an ordering on
the hypotheses based on the histogram difference:

d(x1,x2) :=
B∑

b=1

ξb(x1)− ξb(x2), (3)

where ξb(x1) and ξb(x2) denote the contents of the bins with
index b from the histograms of x1 and x2 respectively. We
say that hypothesis x1 is stronger than x2 if d(x1,x2) > 0.
The second idea is to reduce the search area in the voting
space using the region of interest computed from segmented
clusters in the laser data. This further reduces the search
space and results in a faster and more robust detection due
to the scale information.

B. Second Extension to ISM: Features weight analysis

An important problem of classifying high dimensional
feature vectors consist in the correct positioning of the sepa-
rating hypersurfaces between negative and positive samples.
The original ISM approach does not consider this problem
and it just classifies the feature distribution of pedestrian
feature descriptors π+ thus, during the detection step, it uses
a distance threshold T in order to match features to the
codebook. In this paper we enrich the pedestrian feature set

Fig. 3. Left: Features are weighted for their positional stability wu
i .

Features found in the trunk are more stable (white), features found in the
legs are less stable due to the part motion. Right: Smartter vehicle platform.

using two different informative weights in order to select and
treat differently each match in the detection phase. Features
found in the pedestrian silhouette and features found in the
background are now both collected in the training phase.
Therefore, a neighborhood analysis of each positive feature
descriptor is computed considering the quantity of negative
samples in a radius of distance T (the same value used in
the detection step). This value called wf

i is then normalized
with respect to the cardinality of the negative set π−:

wf
i = 1− card(neighT

i (π−))
card(π−)

(4)

This weight gives an information about the distinctiveness of
each feature, assigning very low values to positive samples

in loci where a high number of negative descriptors are
found. In order to prune out weak feature vectors without
impoverishing the learned pedestrian feature distribution, a
low value of wf

i have to be chosen. This elimination method
decreases the amount of false positive matching and it can be
seen as a compact way of expressing a k−nn classification.

Another proposed improvement in the classification
method is to consider statistics in the position of the positive
feature set as an informative cue of the pedestrian pose.
Pedestrian features are analyzed for positional stability with
respect to the object center: more the same feature is found in
the same area more a high weight wu

i is assigned. According
to this weight, features found on the trunk of the pedestrian
body will have high values due to its rigidness and features
found on the limbs area will have a low value due to their
flexibility and position change with respect to the object
center. Rigid features will vote the center as a part of a rigid
body keeping a fixed angle between the vector pointing to
the object center and the vector parallel to the direction of its
support (the direction in which the descriptor is computed to
be rotation invariant). The rest of the features are classified
also with their support angle and matched on the codebook
during detection with a given variance in order to distinct that
similar descriptors at totally different angles do not classify
pedestrians (see Figure 3)

C. Third Extension to ISM:
High-dimensional Nearest Neighbor Search

Another problem of the ISM-based detector is the time
required to compute the matching probability p(dC

i | dI
j ).

Image descriptors such as SIFT, GLOH or PCA-SIFT are
very powerful (see [15] for a comparison), but they may
have up to 256 dimensions. Considering that the size of
the codebook can be as big as 25000, we can see that
neither a linear nearest-neighbor (NN) search can be used
for real-time applications or kD-trees that provide efficient
NN search only for dimensions not more than 20, because
the number of neighboring cells inside a given hypersphere
grows exponentially with the number of dimensions.

Therefore we apply approximate NN search, which is
defined as follows. For a given set of d-dimensional points
P ⊂ Rd and a given radius r, find all points p ∈ P for
a query point q so that ‖p − q‖2 ≤ r with a probability
of at least 1− δ. This can be implemented efficiently using
locality-sensitive hashing (LSH) as proposed by [1].

D. Region of interest generation in urban environment

A common problem of ISM based methods is the tendency
of generating a high quantity of false positives. In the voting
stage an image feature can match several times a codebook
entry and therefore it can vote for multiple object centers.
Due to object symmetries, feature mismatches and scene
configurations (i.e. vertical structures, complex buildings)
strong false positive object hypotheses can occur in empty
or unlikely areas on the image. In this paper we propose an
effective and fast way to remove this kind of errors based
on a distance transform computation. The idea here is that



large connected ridges in the distance transform image can
be safely disregarded in the detection process because they
do not contain any gradient information, which is a necessary
condition for the detection of a pedestrian. Two additional
parameters are required here: The minimal area Iq of a ridge
that can be discarded, and a safety distance Iw between a
pixel and the edge that is closest to it in the image. Both of
these parameters are set so that no contour of a pedestrian
is included in the discarded area (in our case we use Iq =
and Iw =). This method is particularly effective in urban
environments where roads and sky are often visible and
contain no or little information. It consists in the following
four steps (see Figure 4):

1) Compute an edge map using Canny edge detector.
2) Compute an approximate distance transform [3].
3) Cluster connected components from all points that have

a distance of at least Iw to the nearest edge.
4) Discard all regions with an area that is bigger than Iq .

The remaining polygonal map consitutes tha region of
interest for the pedestrian detection.

The only assumption we make is that a sufficient contrast
is present in the image, which is reasonable, because object
detection is generally hard in low contrast images.
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Fig. 6. Comparison of multimodal detection rate with respect to laser based
people detection on a tracking sequence. The tracking follows a pedestrian
and an overall higher probability is obtained with multimodal detection
method than a laser detection method. A part of the graph shows that
laser detection performs better in case of multiple continuous false negatives
obtained from image detection but then it quickly regains confidence.

VI. EXPERIMENTAL RESULTS

A. Training datasets

Our mobile platform Smartter has been equipped with an
IBEO ALASKA laser scanner (0.25deg resolution, 180deg
field of view, max range up to 200m), a rotating turntable
with two SICK LMS 291-S05 lasers (3D laser) (1.0deg
resolution, 180deg field of view, max range up to 200m),
and a camera behind the windscreen (see Fig. 3).

1) Image detection: We trained our image detection algo-
rithm using a set of 400 images of persons with a height of
200 pixels at different positions and dressed with different
clothing and accessories such as backpacks and hand bags
in a typical urban environment. SIFT descriptors [14] com-
puted at Hessian-Laplace interest points are collected for the
codebook building. Binary segmentation masks are used to
select only features that are inside the person’s shape.

2) Laser detection: We trained our laser-range detection
algorithm computing several features on clustered points.
Laser training datasets have been taken in different outdoor
scenarios: a crowded parking lot and a university campus.
The training data set is composed of 750 positive and 1675
negative samples. The resulting cascade consists of 4 stages
with a total of 8 features.

B. Qualitative and quantitative results

We evaluated our extension of ISM (ISMe) on a chal-
lenging dataset. We collected two datasets in an urban
environment and selected sequences in which pedestrians
are walking, crossing, standing and where severe occlusions
are present. Both sequences are manually annotated with
bounding boxes of at least 80 pixel height and where at least
half of a person body is shown. The first test set consists of
311 images containing 938 annotated pedestrians, the second
consists of 171 images and 724 annotated pedestrians.

In order to show a quantitative performance several com-
parisons have been performed. A comparison between ISM,
the proposed ISM extended (ISMe) and Haar based Adaboost
(HAda) classifier is shown in the Precision-Recall graph of
Fig. 5 (top center). Equal error rates (EER) are highlighted
in each curve in order to show the performance gain. It is
important to notice that at higher Recall values ISM (and
HAda) shows a low precision (lots of false positives), while
our method, thanks to generated ROIs and the proposed
extension performs much better. HAda in general shows
the limit of using boosted cascades and not robust Haar
features for obtaining detection in complex backgrounds: if
top level stages do not classify, the detector produces false
negatives, which is often the case in a complex or occluded
image frame. ISMe is significantly flatter than the other
two methods and tends to the optimal upper right corner of
the graph. Another comparison presented is the normalized
difference in number of features processed between ISM
and ISMe (Fig. 5(top right). ISMe works with one type
of descriptor and one type of interest point, ISM usually
has two or three. In average the number of descriptors to be
matched and processed by ISMe is less than half than ISM.
Therefore, we considered a clustered codebook and a single
ROI in the image with a fixed number of features (about
150) and we activated the approximate NN in the matching
step to show a speed gain of about 5 times between the two
methods. Moreover, we plotted Recall over frames to show
a comparison for each sample between ISMe and HAda.
We can see, as we expected, AdaBoost based approach
yields a very low hit rate, conversely, ISMe has a quite high
true-positive rate during the entire sequence frame. Another
experiment shown in the section is a comparison between
ISMe and ISM in the false positive rate. Here the difference
is evident and it is interesting to see that the two graphs
never intersects, depiting a clear advantage of using ISMe. To
quantify: ISMe, ISM and HAda obtained respectively Recall
80%; 81%; 78% at Precision 63%; 22%; 0.01%.

We evaluated the laser classification on a data set in
crowded scenes with 249 positive and 1799 negative samples.



Fig. 4. Region of interest generation. Uninformative content is discarded from the image by reasoning on the distance transformed image.Left: Edge
image (Canny). Middle: Approximate distance transform. Right: Result of the clustering in the distance transform image: areas in red are discarded
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than the other method mainly due the distinctiveness of the features used, the detection given by a soft decision on multiple votes and the robustness
against occlusion. Lower Right False positives in image classification evaluated for each frame of dataset 1 compared to standard ISM. Here it is clear
the advantage of rescricting the voting in ROIs with the other proposed improvements.

We obtained a true positive rate (TPR) of 74.7% and a false
positive rate (FPR) of 30.0% (TP:184 FN: 65 FP: 536 TN:
1273), the ROC curve is shown in Fig. 5(top left).

We evaluated the usefulness of the multimdal detection
computing statistics of pedestrian detection at maximum
range of 15m. In order to quantify the performance of the
system we considered the probability evolution of tracking
a single person with both sensors and with just one 2D
laser (see Fig. 6). The overall detection probability for this
track increases and a smoother and more confident tracking
is achieved. It is important to remark that there is a part
in which the multimodal detection performs slightly worse
than plain laser detection. There, a continuous false negative

detection occurred in the image detector but this was quickly
recovered as can be seen. We also note that many annotated
pedestrians are severely occluded, and the detection task is
so difficult that a performance of over 90% is far beyond the
state of current computer vision systems.

Qualitative results are shown in Fig. 7. The box colors
in the image describe different tracks, the size of the filled
circle is proportional to the pedestrian detection confidence.

VII. CONCLUSIONS

In this paper, we presented a method to reliably detect
and track people in crowded outdoor scenarios using 2D
and 3D laser range data and camera images. We showed



Fig. 7. Qualitative results from dataset 1 and 2 showing pedestrian crossings. The colored boxes in the image describe different tracks and probability
levels; the size of the filled circle in the tracking figure is proportional to pedestrian detection confidence. It is important to notice that highly occluded
pedestrians are also successfully detected and tracked.

that the detection of a person is improved by cooperatively
classifying the feature vectors computed from the input data,
where we made use of supervised learning techniques to
obtain the classifiers. Furthermore we presented an improved
version of the ISM based people detector and an EKF-based
tracking algorithm to obtain the trajectories of the detected
persons. Finally, we presented experimental results on real-
world data that point out the usefulness of our approach.
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