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Abstract
This paper presents a novel people detection and tracking
method based on a multi-modal sensor fusion approach that
utilizes 2D laser range and camera data. The data points in the
laser scans are clustered using a novel graph-based method
and an SVM based version of the cascaded AdaBoost clas-
sifier is trained with a set of geometrical features of these
clusters. In the detection phase, the classified laser data is
projected into the camera image to define a region of inter-
est for the vision-based people detector. This detector is a
fast version of the Implicit Shape Model (ISM) that learns an
appearance codebook of local SIFT descriptors from a set of
hand-labeled images of pedestrians and uses them in a vot-
ing scheme to vote for centers of detected people. The ex-
tension consists in a fast and detailed analysis of the spatial
distribution of voters per detected person. Each detected per-
son is tracked using a greedy data association method and
multiple Extended Kalman Filters that use different motion
models. This way, the filter can cope with a variety of differ-
ent motion patterns. The tracker is asynchronously updated
by the detections from the laser and the camera data. Experi-
ments conducted in real-world outdoor scenarios with crowds
of pedestrians demonstrate the usefulness of our approach.

Introduction
The ability to reliably detect people in real-world environ-
ments is crucial for a wide variety of applications including
video surveillance and intelligent driver assistance systems.
According to the National Highway Traffic Safety Admin-
istration report (NHTSA 2007) there were 4784 pedestrian
fatalities in United States during the year 2006, which ac-
counted for 11.6% of the total 42642 traffic related fatal-
ities. In countries of Asia and Europe, the percentage of
pedestrian accidents is even higher. The number of such ac-
cidents could be reduced if cars were equipped with systems
that can automatically detect, track, and predict the motion
of pedestrians. However, pedestrians are particularly diffi-
cult to detect because of their high variability in appearance
due to clothing, illumination and the fact that the shape char-
acteristics depend on the view point. In addition, occlusions
caused by carried items such as backpacks, as well as clutter
in crowded scenes can render this task even more complex,
because they dramatically change the shape of a pedestrian.
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Our goal is to detect pedestrians and localize them in 3D
at any point in time. In particular, we want to provide a
position and a motion estimate that can be used in a real-
time application, e.g. online path planning in crowded en-
vironments. The real-time constraint makes this task par-
ticularly difficult and requires faster detection and tracking
algorithms than the existing approaches. Our work makes
a contribution into this direction. The approach we propose
is multimodal in the sense that we use 2D laser range data
and CCD camera images cooperatively. This has the advan-
tage that both geometrical structure and visual appearance
information are available for a more robust detection. In this
paper, we exploit this information using supervised learn-
ing techniques based on a combination of AdaBoost with
Support Vector Machines (SVMs) for the laser data and on
an extension of the Implicit Shape Model (ISM) for the vi-
sion data. In the detection phase, both classifiers yield like-
lihoods of detecting people which are fused into an over-
all detection probability. Finally, each detected person is
tracked using multiple Extended Kalman Filters (EKF) with
three different motion models and a greedy data associa-
tion. This way, the filter can cope with different motion
patterns for several persons simultaneously. The tracker is
asynchronously updated by the detections from the laser and
the camera data. The major contributions of this work are:
• An improved version of the image-based people detector

by Leibe et al. (2005). The improvement consists in two
extensions to the ISM for a reduced computation time to
make the approach better suited for real-time applications.

• A tracking algorithm based on EKF with multiple motion
models. The filter is asynchronously updated with the de-
tection results from the laser and the camera.

• The integration of our multimodal people detector and the
tracker into a robotic system that is employed in a real
outdoor environment.
This paper is organized as follows. The next section

describes previous work that is relevant for our approach.
Then, we give an overview of our overall people detec-
tion and tracking system. Section 4 presents our detection
method based on the 2D laser range data. Then, we intro-
duce the Implicit Shape Model (ISM) and our extensions to
the ISM. Subsequently, we explain our EKF-based tracking
algorithm with a focus on the multiple motion models we



Figure 1: Overview of the individual steps of our system. See text for details.

use. Finally, we describe our experiments and conclusions.

Previous Work
Several approaches can be found in the literature to identify
a person in 2D laser data including analysis of local mini-
ma (Scheutz, Mcraven, & Cserey 2004; Schulz et al. 2003;
Topp & Christensen 2005), geometric rules (Xavier et al.
2005), or a maximum-likelihood estimation to detect dy-
namic objects (Hähnel et al. 2003). Most similar to our
work is the approach of Arras, Mozos, & Burgard (2007)
which clusters the laser data and learns an AdaBoost classi-
fier from a set of geometrical features extracted from the
clusters. Recently, we extended this approach (Spinello
& Siegwart 2008) by using multi-dimensional features and
learning them using a cascade of Support Vector Machines
(SVM) instead of the AdaBoost decision stumps. In this pa-
per, we will make use of that work and combine it with an
improved appearance-based people detection and an EKF-
based tracking algorithm.

In the area of image-based people detection, there mainly
exist two kinds of approaches (see Gavrila (1999) for a sur-
vey). One uses the analysis of a detection window or tem-
plates (Gavrila & Philomin 1999; Viola, Jones, & Snow
2003), the other performs a parts-based detection (Felzen-
szwalb & Huttenlocher 2000; Ioffe & Forsyth 2001). Leibe,
Seemann, & Schiele (2005) presented an image-based peo-
ple detector using Implicit Shape Models (ISM) with excel-
lent detection results in crowded scenes.

Existing people detection methods based on camera and
laser rangefinder data either use hard constrained approaches
or hand tuned thresholding. Cui et al. (2005) use multiple
laser scanners at foot height and a monocular camera to ob-
tain people tracking by extracting feet and step candidates.
Zivkovic & Kröse (2007) use a learned leg detector and
boosted Haar features extracted from the camera images to
merge this information into a parts-based method. However,
both the proposed approach to cluster the laser data using
Canny edge detection and the extraction of Haar features to
detect body parts is hardly suited for outdoor scenarios due
to the highly cluttered data and the larger variation of illu-
mination encountered there. Therefore, we use an improved
clustering method for the laser scans and SIFT features for
the image-based detector. Schulz (2006) uses probabilistic
exemplar models learned from training data of both sensors
and applies a Rao-Blackwellized particle filter (RBPF) in or-
der to track the person’s appearance in the data. The RBPF
tracks contours in the image based on Chamfer matching as

well as point clusters in the laser scan and computes the like-
lihood of different prototypical shapes in the data. However,
in outdoor scenarios lighting conditions change frequently
and occlusions are very likely, which is why contour match-
ing is not appropriate. Moreover, the RBPF is computation-
ally demanding, especially in crowded environments.

Several methods have been proposed to track moving ob-
jects in sequential data (see Cox (1993) for an overview).
The most common ones include the joint likelihood filter
(JLF), the joint probabilistic data association filter (JPDAF),
and the multiple hypothesis filter (MHF). Unfortunately,
the exponential complexity of these methods makes them
inappropriate for real-time applications such as navigation
and path planning. Cox & Miller (1995) approximate the
MHF and JPDA methods by applying Murty’s algorithm
and demonstrate in simulations the resulting speedup for the
MHF method. Rasmussen & Hager (2001) extend the JLM,
JPDA, and MHF algorithms to track objects represented by
complex feature combinations. Schumitsch et al. (2006)
propose a method to reduce the complexity of MHT methods
introducing the Identity Management Kalman Filter (IMKF)
for entities with signature.

Overview of the method
Our system is divided into three phases: training, detection
and tracking (see Fig. 1). In the training phase, the system
learns a structure-based classifier from a hand-labeled set
of 2D laser range scans, and an appearance-based classifier
from a set of labeled camera images. The first one uses a
boosted cascade of linear SVMs, while the latter computes
an ISM, in which a collected set of image descriptors from
the training set vote for the occurrence of a person in the test
set. In the detection phase, the laser-based classifier is ap-
plied to the clusters found in a new range scan and a proba-
bility is computed for each cluster to correspond to a person.
The clusters are then projected into the camera image to de-
fine a region of interest, from which the appearance-based
classifier extracts local image descriptors and computes a
set of hypotheses of detected persons. Here, we apply a new
technique to discard false positive detections. Finally in the
tracking phase, the information from both classifiers is used
to track the position of the people in the scan data. The
tracker is updated whenever a new image or a laser measure-
ment is received and processed. It applies several motion
models per track to account for the high variety of possible
motions a person can perform. In the following, we describe
the particular steps of our system in detail.



Structure Information from
Laser Data Analysis

We assume that the robot is equipped with a laser range sen-
sor that provides 2D scan points (x1, ...,xN ) in the laser
plane. We detect a person in a range scan by first clustering
the data and then applying a boosted classifier on the clus-
ters, which we describe as follows.

Clustering
Jump distance clustering is a widely used method for 2D
laser range data in mobile robotics (see Premebida &
Nunes (2005) for an overview). It is fast and simple to
implement: if the Euclidean distance between two adjacent
data points exceeds a given threshold, a new cluster is gen-
erated. Although this approach performs well in indoor sce-
narios, it gives poor results for outdoor data, because the
environment is geometrically more complex and bigger dis-
tances, reflections and direct sunlight effects usually occur.
This often leads to over-segmented data with many small
clusters. To address this problem, we use a simple and effec-
tive technique that extends the classic jump distance method.
It consists in the following steps:

1. Perform jump distance clustering with threshold ϑ. Each
cluster Si is defined by its left border xl

i, its central point
xc

i , and its right border xr
i :

Si =
{
xl

i,x
c
i ,x

r
i

}
(1)

2. Compute a Delaunay triangulation on the centers xc
i .

3. Annotate each edge eij := (xc
i ,x

c
j) of the Delaunay

graph with the Euclidean distance between Si and Sj .

4. Remove edges with a distance greater than ϑ and merge
each remaining connected component into a new cluster.

Note that the same threshold ϑ is used twice: first to de-
fine the minimum jump distance between the end points of
adjacent clusters and then to define the Euclidean distance
between clusters. Experimental results showed that this re-
duces the cluster quantity of 25% − 60%, significantly re-
ducing overclustering. The additional computational cost
due to the Delaunay triangulation and distance computation
is lower compared to a full 2D agglomerative clustering ap-
proach.

Boosted Cascade of Support Vector Machines
We use AdaBoost (Freund & Schapire 1997) to classify the
clustered laser data into the classes “person” and “no per-
son”. AdaBoost creates a strong classifier from a set of
weak classifiers. Viola & Jones (2002) further improved
this approach by ordering the weak classifiers in a degen-
erate decision tree which they call an attentional cascade.
This reduces the computation time significantly. We apply
this method, but we use support vector machines (SVMs),
in particular c-SVMs with linear kernel (Boser, Guyon, &
Vapnik 1992), instead of the standard decision stumps based
on thresholding. The main reason for this is to obtain a
small number of classifiers in each stage and to guarantee an
optimal separation of the two classes. Before applying the

SVMs, we normalize the input data in order to avoid numer-
ical problems caused by large attribute values. The param-
eters c of the c-SVMs where obtained from a local search
where the classification results where evaluated using 5-fold
cross validation.

We denote the detection of a person using a binary ran-
dom variable π that is true whenever a person is detected.
Each of the L cascaded SVM-classifiers hi yields either 1
or 0 for a given input feature vector f . The overall detection
probability can then be formulated as

p(π | f) =
L∑

i=1

wihi(f) (2)

In the learning phase, the weights wi and the hyperplanes
are computed for each SVM classifier hi. The laser-based
people detector then computes (2) for each feature vector
f in the test data set. In our implementation, we compute
the features f of a cluster S as described in our previous
work (Spinello & Siegwart 2008).

Appearance Information from
Image Data Analysis

Our image-based people detector is mostly inspired by
the work of Leibe, Seemann, & Schiele (2005) on scale-
invariant Implicit Shape Models (ISM). An ISM is a gen-
erative model for object detection and has been applied to a
variety of object categories including cars, motorbikes, ani-
mals and pedestrians. In this paper, we extend this approach,
but before we briefly explain the steps for learning an object
model in the original ISM framework.

An Implicit Shape model consists of a codebook I and
a set of votes V . The K elements of I are local region de-
scriptors dC

1 , . . . ,d
C
K and V contains for each dC

i a set ofDi

local displacements {(∆xij ,∆yij)} and scale factors {sij}
with j = 1, . . . , Di. The interpretation of the votes is that
each descriptor dC

i can be found at different positions inside
an object and at different scales. To account for this, each lo-
cal displacement points from dC

i to the center of the object
as it was found in the labeled training data set. We can think
of this as a sample-based representation of a spatial distribu-
tion p(π, x̂ | dC

i ,xi) for each dC
i at a given image location

xi = (xi, yi) where x̂ = (x̂, ŷ) denotes the center of the de-
tected person. To obtain an ISM from a given training data
set, two steps are performed:

1. Clustering All region descriptors are collected from the
training data. The descriptors are then clustered using ag-
glomerative clustering with average linkage. In the code-
book, only the cluster centers are stored.

2. Computing Votes In a second run over the training data,
the codebook descriptors dC

i are matched to the descrip-
tors dI

j found in the images, and the scale and center dis-
placement corresponding to dI

j is added as a vote for dC
i .

In the detection phase, we again compute interest points xI
j

and corresponding region descriptors dI
j at various scales

on a given test image I . The descriptors are matched to the



codebook and a matching probability p(dC
i | dI

j ) is obtained
for each codebook entry. To compute the likelihood to detect
a person at location x̄ we use the following marginalization:

p(π, x̄ | xI
j ,d

I
j ) =

K∑
i=1

p(π, x̄ | dC
i ,x

I
j )p(dC

i | dI
j ) (3)

This defines the weight of the vote that is cast by each de-
scriptor dI

j at location xI
j for a particular occurrence of a

person at position x̄. The overall detection probability is
then the sum over all votes:

p(π, x̄ | gI) =
M∑

j=1

p(π, x̄ | xI
j ,d

I
j ) (4)

where gI = (xI
1, . . . ,x

I
M ,dI

1, . . . ,d
I
M ). With the sample-

based representation, we can find the x̄ that maximizes (4)
by a maxima search using a variable-bandwidth mean shift
balloon density estimator (Comaniciu, Ramesh, & Meer
2001) in the 3D voting space.

First Extension to ISM: Strength of Hypotheses
In the definition of the ISM there is no assumption made on
the particular shape of the objects to be detected. This has
the big advantage that the learned objects are detected al-
though they might be occluded by other objects in the scene.
However, the drawback is that usually there is a large num-
ber of false positive detections in the image background.
Leibe, Seemann, & Schiele (2005) address this problem
using a minimum description length (MDL) optimization
based on pixel probability values. However, this approach
is rather time demanding and not suited for real-time appli-
cations. Therefore, we suggest a different approach.

First, we evaluate the quality of a hypothesis about a de-
tected object center x with respect to two aspects: the overall
strength of all votes and the way in which the voters are dis-
tributed. Assume that ISM yields an estimate of a person at
position x. We can estimate the spatial distribution of voters
xI

j that vote for x using a 1D circular histogram that ranges
from 0 to 2π. When computing the weight of the vote ac-
cording to (3) we also compute the angle α

α(xI
j ,x) = arctan2(yI

j − y, xI
j − x) (5)

and store the voting weight in the bin that corresponds to α.
This way we obtain a histogram ξ(x) with, say, B bins for
each center hypothesis x. Now we can define an ordering on
the hypotheses based on the histogram difference

d(x1,x2) :=
B∑

b=1

ξb(x1)− ξb(x2), (6)

where ξb(x1) and ξb(x2) denote the contents of the bins with
index b from the histograms of x1 and x2 respectively. We
say that hypothesis x1 is stronger than x2 if d(x1,x2) > 0.

The second idea is to reduce the search area in the voting
space using the region of interest computed from segmented
clusters in the laser data. This further reduces the search
space and results in a faster and more robust detection due
to the scale information.

Second Extension to ISM:
High-dimensional Nearest Neighbor Search
Another problem of the ISM-based detector is the time re-
quired to compute the matching probability p(dC

i | dI
j ). Im-

age descriptors such as SIFT, GLOH or PCA-SIFT are very
effective (see Mikolajczyk & Schmid (2005) for a compari-
son), but they may have up to 256 dimensions. Considering
that the size of the codebook can be as big as 25000, we
can see that a linear nearest-neighbor (NN) search can not
be used for real-time applications. A potential alternative
would be the use of kD-trees, but these provide efficient NN
search only for dimensions not more than around 20, be-
cause the number of neighboring cells inside a given hyper-
sphere grows exponentially with the number of dimensions.

Therefore we apply approximate NN search, which is de-
fined as follows. For a given set of d-dimensional points
P ⊂ Rd and a given radius r, find all points p ∈ P for a
query point q so that ‖p − q‖2 ≤ r with a probability of
at least 1 − δ. This can be implemented efficiently using
locality-sensitive hashing (LSH) as proposed by Andoni &
Indyk (2006).

Tracking Pedestrians
So far, we described how pedestrians can be detected in
2D laser range data and in camera images. The result of
these detectors is an estimate of the position of a person at
a given time frame. However, for many applications it is
required to also have information about the kinematics of
the person, e.g. provided by a motion vector. This can be
achieved by tracking the position of the person and predic-
ting the future motion based on the observations from the
previous time frames. A key issue for a people tracking al-
gorithm is the definition of the motion model. Pedestrians
are not constrained to a particular kind of motion and they
can abruptly change their motion direction at any time. To
address this problem, we use the following motion models
for each tracked person:

1. Brownian motion: This accounts for sudden motion
changes.

2. Constant speed: The person does not change direction or
speed.

3. Smooth turning: The forward speed is constant and a we
fit a second order polynomial into the last 10 positions of
the pedestrian using least mean square fitting (LMS).
In each time step, the tracker needs to solve the data as-

sociation problem that consist in finding a mapping between
observations and tracked objects. In our system, we use a
greedy approach to do the data association, which is per-
formed in two steps: In the first step we choose the motion
model whose prediction has the smallest distance to the clos-
est observation. In the second step, we consider the person
with the longest tracking history and assign to it the obser-
vation that is closest to it and still inside a 3σ ellipse from
the last position. For the distance computation we use the
Mahalanobis metric. Then we assign the observation that is
closest to the person with the second-longest history and so
on. If this process ends up with unassociated observations, a
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Figure 2: Left and Center: Image detection recall value and frames in dataset 1 and 2: ISMe vs Haar Adaboost cascade method. ISMe yields
a higher detection rate than Haar/Adaboost mainly due to the distinctiveness of the features used, the detection based on a soft decision on
multiple votes, and the robustness against occlusions. Right: Comparison of multimodal and laser-only based people detection on a tracking
sequence. The tracker follows a pedestrian and a higher overall probability is obtained with the multimodal detection method compared to
the laser-only detection. A part of the graph shows that the laser detection performs better in case of multiple continuous false negatives in
the image detection, but then the algorithm quickly regains confidence.

new track is created. In the case that no assignment is found
for a tracked person, the corresponding track is updated only
using the motion prediction based on all three motion mod-
els. This is done until a new observation can be assigned,
but at most for 0.5 seconds, afterwards the track is removed.

Experimental Results
A car equipped with several active and passive sensors is
used to acquire the datasets. In particular, we use a camera
with a wide angle lens in combination with a 2D laser range
finder in front of the car. An accurate camera-laser synchro-
nization has been developed for this work.

Training datasets
Image detection We trained our image detection algo-
rithm using a set of 400 images of persons with a height
of 200 pixels at different positions and dressed with different
clothing and accessories such as backpacks and hand bags in
a typical urban environment. SIFT descriptors (Lowe 2003)
computed at Hessian-Laplace interest points are collected
for the codebook building. Binary segmentation masks are
used to select only features that are inside the person’s shape.

Laser detection We trained our laser-range detection al-
gorithm computing several features on clustered points.
Laser training datasets have been taken in different outdoor
scenarios: a crowded parking lot and a university campus.
The training data set is composed of 750 positive and 1675
negative samples. The resulting cascade consists of 4 stages
with a total of 8 features.

Qualitative and quantitative results
We evaluated our extension of ISM (ISMe) on a challeng-
ing dataset. We collected two datasets in an urban envi-
ronment and selected sequences in which pedestrians are
walking, crossing, standing and where severe occlusions
are present. Both sequences are manually annotated with
bounding boxes of at least 80 pixel height and where at least
half of a person’s body is shown. The first test set consists
of 311 images containing 938 annotated pedestrians, the sec-
ond consists of 171 images and 724 annotated pedestrians.

In order to show a quantitative performance a compari-
son is performed between the classic Haar based AdaBoost
pedestrian detection and our detector (see Figure 2 left and
center). We can see that the AdaBoost based approach
yields a very low hit rate (on average less that 50%) on both
datasets due to the low robustness of Haar features and the
concept of the cascade. If top level stages do not classify, the
detector produces false negatives, which is often the case in
a complex or occluded image frame. Conversely, ISMe has
a quite high true-positive rate (TPR) during the entire frame
sequence. Recall and precision rates have been computed
in order to verify the role of false positives for ISMe. For
both datasets the computed recall value is similar and com-
parably high (82% and 81%). Similar results are obtained
for the precision (≈ 61%). ISMe has also been compared
with an unconstrained implementation of ISM (maximum
strength center selection and no image ROI constraint) and
the resulting precision was half of the ISMe precision value.

In order to quantify the laser classification, a test data set
in crowded scenes composed of 249 positive and 1799 nega-
tive samples data was prepared. We obtained a true positive
rate (TPR) of 64.7% and a false positive rate (FPR) of 30.0%
(FP:161 FN: 88 FP: 536 TN: 1273). To test the usefulness
of using a multimodal detection algorithm a single person
was tracked, and a comparison with a laser-only detection
is shown in the right plot of Fig. 2. The overall detection
probability for this track increases and a smoother and more
confident tracking is achieved. It is important to remark that
there is a part in which the multimodal detection performs
slightly worse than plain laser detection. There, a continu-
ous false negative detection occured in the image detector,
but this was quickly recovered as can be seen. We also note
that many pedestrians were severely occluded, and that the
detection task is so difficult that a performance of over 90%
is far beyond the state of current computer vision systems.

Qualitative results from two frames are shown in Fig. 3.
The box colors in the image correspond to different tracks,
and the size of the filled circles is proportional to the pedes-
trian detection confidence. Another experiment has been
performed to evaluate the time advantage of using an LSH
approach during codebook matching with respect to linear



Figure 3: Qualitative results from dataset 1 and 2 showing pedestrian crossings. The colored boxes in the image describe different tracks and
probability levels; the size of the filled circle in the tracking figure is proportional to the confidence of the pedestrian detection. It is important
to notice that highly occluded pedestrians are also successfully detected and tracked.

neighbor search. A clustered codebook has been produced
and tested by matching a random test image extracted from
one of the two sequences with the codebook. LSH-based
NN search resulted 12 times faster than the linear approach.

Conclusions
In this paper, we presented a method to reliably detect and
track people in crowded outdoor scenarios using 2D laser
range data and camera images. We showed that the detection
of a person is improved by cooperatively classifying the fea-
ture vectors computed from the input data, where we made
use of supervised learning techniques to obtain the classi-
fiers. Furthermore we presented an improved version of the
ISM-based people detector and an EKF-based tracking algo-
rithm to obtain the trajectories of the detected persons. Fi-
nally, we presented experimental results on real-world data
that point out the usefulness of our approach.
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