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Abstract—This paper presents a novel approach to detect
and track multiple classes of objects based on the combined
information retrieved from camera and laser rangescanner.
Laser data points are classified using Conditional Random
Fields (CRF) that use a set of multiclass Adaboost classified
features. The image detection system is based on Implicit Shape
Model (ISM) that learns an appearance codebook of local
descriptors from a set of hand-labeled images of pedestrians and
uses them in a voting scheme to vote for centers of detected
people. We propose several extensions in the training phase
in order to automatically create subparts and probabilistic
shape templates, and in the testing phase in order to use
these extended information to select and discriminate between
hypothesis of different classes. Finally the two information are
combined during tracking that is based on kalman filters with
multiple motion models. Experiments conducted in real-world
urban scenarios demonstrate the usefulness of our approach.

I. INTRODUCTION

Urban environments are complex scenes where often

multiple objects interact and move. In order to navigate

and understand such environment a robot should be able

to detect and track multiple classes of objects: most im-

portant pedestrians and cars. The ability to reliably detect

these objects in real-world environments is crucial for a

wide variety of applications including video surveillance and

intelligent driver assistance systems. Pedestrians are partic-

ularly difficult to detect because of their high variability in

appearance due to clothing, illumination and the fact that the

shape characteristics depend on the view point. In addition,

occlusions caused by carried items such as backpacks or

briefcases, as well as clutter in crowded scenes can render

this task even more complex, because they dramatically

change the shape of a pedestrian. Cars are large objects

that dramatically change their shape with respect to the

viewpoint: for example a side view of a car is totally different

from its back view. Shape symmetries can easily create false

detections and shadows can drive off detection systems.

Our goal in this paper is to detect pedestrians and cars

and localize them in 3D at any point in time. In particular,

we want to provide a position and a motion estimate that

can be used in a mobile robotic application. The real-

time constraint makes this task particularly difficult and

requires faster detection and tracking algorithms than the

existing approaches. Our work makes a contribution into

this direction. The approach we propose is multimodal in the

sense that we use laser range data and images from a camera

cooperatively. This has the advantage that both geometrical

structure and visual appearance information are available for

a more robust detection.

Managing detection of multiple classes in laser range data

is a complex task due the problem of data segmentation.

Often range data is grouped in consistent clusters and then

classified, using heuristic rules and therefore creating a

strong prior in the algorithm. In this paper, we propose

an elegant solution to train and classify range data using

Conditional Random Fields (CRF) through the use of a

boosted set of features. Moreover each scan point will be

labeled with a probability of owning to a certain class. In

order to manage occlusions in complex visual scenarios a

new extension of the Implicit Shape Model (ISM) for camera

data classification has been developed. Finally, each detected

object is tracked using a greedy data association method and

multiple Extended Kalman Filters that use different motion

models. This way, the filter can cope with a variety of

different motion patterns for several persons simultaneously.

In particular, the major contributions of this work are:

• An improved version of the image-based object detector

by Leibe et al. [14]. It consists in several extensions to

the Implicit Shape Model (ISM) in the training step, in

the detection step and in the capability of coping with

multiple classes. We introduce an automatic subpart

extraction that is used to build an improved hypotheses

selection, the concept of superfeatures that define a

favorable feature selection that maintaining information

richness. Moreover we introduce an automatically gen-

erated probability template map to ease the multiclass

hypothesis selection.

• The combined use of Conditional Random Fields and

camera detection to track objects in the scene.

This paper is organized as follows. The next section describes

previous work that is relevant for our approach. Then, we

give a brief overview of our overall object detection and

tracking system. The following section presents in detail

our detection method based on conditional random fields

for 2D laser range data. Then, we introduce the implicit

shape model (ISM) and present our extensions. Subsequently,

we explain our EKF-based tracking algorithm. Finally, we

present experiments and conclude the paper.

II. PREVIOUS WORK

Several approaches can be found in the literature to

identify a person in 2D laser data including analysis of local



minima [20], [24], geometric rules [26], or a maximum-

likelihood estimation to detect dynamic objects [10], or

learning AdaBoost classifiers from a set of geometrical

features extracted from segments [2] or from Delaunay

neighborhoods [21]. Most similar to our work is the work of

[5] that makes use of a Conditional Random Field in order

to label points to extract objects from a collection of laser

scans.

In the area of image-based people detection, there mainly

exist two kinds of approaches (see [9] for a survey). One

uses the analysis of a detection window or templates [8],

[25], the other performs a parts-based detection [6], [11].

Leibe et al. [14] presented an image-based people detector

using Implicit Shape Models (ISM) with excellent detection

results in crowded scenes. An extension of this method

that proposes a feature selection enhancement and a nearest

neighbor search optimization has been already shown in

[22][23].

Existing people detection methods based on camera and

laser rangefinder data either use hard constrained approaches

or hand tuned thresholding. Zivkovic and Kröse [27] use

a learned leg detector and boosted Haar features extracted

from the camera images to merge this information into a

parts-based method. However, both the proposed approach to

cluster the laser data using Canny edge detection and the ex-

traction of Haar features to detect body parts is hardly suited

for outdoor scenarios due to the highly cluttered data and the

larger variation of illumination encountered there. Therefore,

we use an improved clustering method for the laser scans

and SIFT features for the image-based detector. Schulz [19]

uses probabilistic exemplar models learned from training

data of both sensors and applies a Rao-Blackwellized particle

filter (RBPF) in order to track the person’s appearance in

the data. However, in outdoor scenarios lighting conditions

change frequently and occlusions are very likely, which is

why contour matching is not appropriate. Moreover, the

RBPF is computationally demanding, especially in crowded

environments. The work of Douillard [5] also uses image

features in order to enhance object detection but it doesn’t

explicitly handle occlusions and separate image detection

hypotheses.

III. OVERVIEW OF THE METHOD

Our system is composed of three main components: an

appearance based detector that uses the information from

camera images, a 2D-laser based detector providing struc-

tural information, and a tracking module that uses the com-

bined information from both sensor modalities and provides

an estimate of the motion vector for each tracked object. The

laser based detection applies a Conditional Random Field

(CRF) on a boosted set of geometrical and statistical features

of 2D scan points. The image based detection system extends

the multiclass version of the Implicit Shape Model (ISM)[13]

and uses Shape Context descriptors [3] computed at Harris-

Laplace and Hessian interest points. It also uses the laser

based detection result projected into the image to constrain

the position and scale of the detected objects. Then, the

tracking module applies an Extended Kalman Filter (EKF),

to the combined detection results where two different motion

models are implemented to account for a high variety of

possible object motions. In the following, we describe the

particular components in detail.

IV. APPEARANCE BASED DETECTION

Our image-based people detector is mostly inspired by the

work of Leibe et al. [14] on scale-invariant Implicit Shape

Models (ISM). In summary, an ISM consists in a set of

local region descriptors, called the codebook, and a set of

displacements and scale factors, usually named votes, for

each descriptor. The idea of the votes is that each descriptor

can be found at different positions inside an object and at

different scales, and thus a vote points from the position of

the descriptor to the center of the object as it was found

in the training data set. To obtain an ISM from labeled

training data, all descriptors are first clustered, usually using

agglomerative clustering, and then the votes are computed by

adding the scale and the displacement of the objects’ center

to the descriptors in the codebook. For the detection, new

descriptors are computed on a given test image and matched

against the descriptors in the codebook. The votes that are

cast by each matched descriptor are collected in a 3D voting

space, and a maximum density estimator is used to find the

most likely position and scale of an object.

A. Extensions to ISM

In the past, we presented already several improvements

of the standard ISM approach (see [23], [22]). Here, we

show some more extensions of ISM to further improve

the classification results. These extensions concern both the

learning and the detection phase and are described in the

following.

1) ISM Extensions in the Learning Phase:

a) Learning of Subparts: The aim of this procedure is

to enrich the information that is obtained from the voters by

distinguishing between different object subparts from which

the vote was cast. We achieve this by learning a circular

histogram of interest points from the training data set for

a given object class. The number of bins of this histogram

is determined automatically by using K-means clustering.

The number K of clusters is obtained using the Bayesian

Information Criterion (BIC). Note that this subpart extraction

does not guarantee a semantical subdivision (i.e.: legs, arms

in the case of pedestrians) of the object but it is interesting to

see that it nevertheless resembles this automatically without

manual interaction by the user (see Fig. 1, left).

b) Applying a Template Mask: The idea here is to

extract a common segmentation mask from the training

data for each object by averaging over all masks from the

particular object instances. This mask is later used to discard

outlier voters by overlaying the mask at the hypothetical

center of the object. Chamfer matching has been widely used

in literature [4] to compute such a mask. However, it heavily

depends on a robust detection of the contour edges and is

strongly affected by noise. A more robust method is to build a



Fig. 1. Left: Probabilistic template and overlayed subparts are both
automatically computed from the training set (in this case on the class
’pedestrian’). It is important to notice that even though the subparts are
computed without a semantic subdivision, their segmentation shows legs,
arms and upper body.Right: Superfeatures are stable features in image and
descriptor space. This figure depicts Shape Context descriptors with Hessian
Interest point (in red) in the case of pedestrian class. In green are depicted
the selected superfeatures.

probabilistic template map from the individual segmentation

masks in the training set. All the segmentation masks are

collected, centered with respect to their center of gravity

and averaged. Strong responses (common areas of the same

objects) have high probability, whereas various details are

softened in the average but still kept.

2) Learning Superfeatures: The original ISM does not

perform feature selection but it maintains the complete

probability distribution generated by extracted features of

the training set. This has the disadvantage to potentially

generate false positive due to inevitable feature mismatches.

We here propose a method to drive the detection while

still maintaining information richness. The idea is to find

good features in the image space (namely 〈x, y, scale〉) and
descriptor space (n-d space) that could vote for the object

center with more weight to ease the hypothesis selection.

The procedure can be sketched in three steps.

1) Interest points of the entire training dataset are col-

lected.

2) Dense areas of interest points reflect a high informative

content. We employ mean shift mode seeking with a

uniform kernel in order to locate such areas.

3) On each convergence point descriptors are collected in

pools. These pools are clustered using unsupervised

clustering with average linkage in order to group

closely similar features. We use the best 50% of the

resulting groups (ranked by quantity) and collect them

as superfeatures.

Noticeably, the resulting superfeatures inherently reflect the

skeleton of the objects and constitute key points in the shape

of the objects (see Fig. 1, right).

B. ISMe: extensions in testing phase

In this subsection we explain how we combine the richer

learning information in order to obtain a better detection.

1) Using superfeatures: Superfeatures and features vote

for object centers in the same voting space: the votes

generated by the first are bigger than the latter. The resulting

hypothesis score is enriched by their support. In visually sim-

ple scenes it is possible to apply just superfeature codebooks

in order to obtain a very fast detection.

2) Using subparts and prob. template in the cost function:

Each hypothesis is now defined by an angular histogram

in which the bins are defined by the subparts. Moreover,

the probabilistic template is used to prune feature matches

that lie far outside the probabilistic shape (that is scaled

according to the hypothesis). In order to determine which of

the hypotheses better represents an object of a given class, we

use a maximum likelihood estimation method. In particular,

we solve:

Hs = argmaxp(H|Θ), (1)

whereH represents the set of hypotheses and Θ is the feature

assignment. In order to achieve the solution we consider

pairwise comparisons. Given each pair of hypotheses ha and

hb, their relative histogramsWa = {wa
1 , ..., w

a
q }, and Wb we

compute:

V =

q
∑

i

vi (2)

where

vi =

{

1 if wa
i > wb

i

−1 otherwise
(3)

Then a simple sign condition is used to check which of the

two hypotheses is the best. If we perform this simple and fast

comparison on the setH, we obtain hmax = argmaxp(H|Θ)
and put it in the selected hypothesis set Hc.

3) Discriminate between object classes: In the previous

subsection we explained how we selected the best object

hypothesis for each class. Here we explain how we dis-

criminate among hypothesis of different classes. In order to

not bias the multiclass detection towards a class that has

more features or codebook occurrences we used a common

measure to do hypothesis selection. This comes from the

probabilistic template area ratio. Each assigned feature for

a certain hypothesis occupies a scaled square area in the

probabilistic template. The ratio of the occupied area on

the total object area is the score of each class hypothesis.

For each object class hypothesis a score si is computed

taking into account the overlapping area (if present) between

hypotheses of different classes:

si = ri −
∆o

#o
(4)

where ri is the area ratio and ∆o is the overlap ratio of the

areas, and #o is the number of overlaps. The best score si

defines the current winning object hypothesis. The features

involved in the voting of this hypothesis are then removed

from the voting space and the selection process (subparts

voting and object class selection) continues until a detection

with a minimum strength dt is available.

This two step process is necessary to handle occlusions

and multiple classes in a computationally feasible time: each

hypothesis competes with the rest of its class to become the

best hypothesis of its class. Then it is evaluated against all



the other candidates of the other class and then, if it is the

case, selected.

V. STRUCTURE BASED DETECTION

For the detection of objects in 2D laser range scans,

several approaches have been presented in the past. Most of

theses approaches have the disadvantage that they disregard

the conditional dependence between data points in a close

neighborhood: the fact that the label yi of a given scan

point zi is more likely to be yj if we know that yj is the

label of zi’s neighbor zj is not reflected. One way to model

this conditional independence is to use Conditional Random

Fields (CRFs) [12], as has been shown by Douillard et al.[5].

CRFs represent the conditional probability p(y | z) using an

undirected cyclic graph, in which each node is associated

with a hidden random variable yi and an observation zi. In

our case, the yi is a discrete label that ranges over 2 different

classes (pedestrian and car) and the observations zi are 2D

points in the laser scan. Assuming a maximal clique size of

2 for the graph, we can compute the conditional probability

of the labels y given the observations z as:

p(y | z) =
1

Z(z)

N
∏

i=1

ϕ(zi, yi)
∏

(i,j)∈E

ψ(zi, zj , yi, yj), (5)

where Z(z) =
∑

y′

∏N

i=1 ϕ(zi, y
′
i)

∏

(ij)∈E
ψ(zi, y

′
i, y

′
j) is

usually called the partition function and E is the set of edges

in the graph. To determine the node and edge potentials ϕ

and ψ we use the log-linear model:

ϕ(zi, yi) = ewn·fn(zi,yi), ψ(zi, zj , yi, yj) = ewe·fe(zi,zj ,yi,yj)

where fn and fe are feature functions for the nodes and the

edges in the graph, and wn and we are the feature weights

that are determined in the training phase. The computation of

the partition function Z is intractable due to the exponential

number of possible labelings y′. Instead, we compute the

pseudo-likelihood, which approximates p(y | z) and is

defined by the product of all likelihoods computed on the

markov blanket (direct neighbors) of node i.

pl(y | z) =

N
∏

i=1

ϕ(zi, yi)
∏

zj∈N (zi)

ψ(zj , zi, yj , yi)

∑

y′

(

ϕ(zi, y
′
i)

∏

zj∈N (zi)

ψ(zj , zi, y
′
i, y

′
j)

)

Here, N (zi) denotes the set of direct neighbors of node i. In
the training phase, we compute the weights wn and we that

minimize the negative log pseudo-likelihood together with a

Gaussian shrinkage prior as in [18]:

L(w) = − log pl(y | z) +
(w − ŵ)T (w − ŵ)

2σ2
(6)

For the minimization of L, we use the L-BFGS gradient

descent method [15]. Once the weights are obtained, they

are used in the inference phase to find the labels y that

maximize Eq. (5). Here, we do not need to compute the

partition function Z , as it is not dependent on y. We use max-

product loopy belief propagation to find the distributions of

each label yi. The final labels are then obtained as those that

are most likely for each node.

A. Node and Edge Features

As node features fn we use a set of statistical and geo-

metrical features such as height, width, circularity, standard

deviation, kurtosis, etc. (for a full list see [21]). We compute

these features in a local neighborhood around each point,

which we determine by jump distance clustering. We can

then use these features as an input to the CRF classification

algorithm. However as stated in [18], and also from our

own observation, the CRF is not able to handle non-linear

relations between the observations and the labels, which is

a consequence of the log-linear model described above. To

overcome this problem, we apply AdaBoost [7] to the node

features and use the outcome of AdaBoost as features for the

CRF. For our particular classification problem with multiple

classes, we train one binary AdaBoost classifier for each

class against the others. As a result, we obtain a set of weak

classifiers hi (decision stumps) and corresponding weight

coefficients αi so that the sum

gk(z) =
M
∑

i=1

αihi(f(z)) (7)

is positive for observations that are assigned with the class

label k and negative otherwise. To obtain values between

0 and 1 we apply the inverse logit function l(x) = (1 +
exp(−x))−1, which has a sigmoid shape and ranges between

0 and 1, to each value gj . We do this for two reasons:

First we obtain values that can be interpreted as likelihoods

of corresponding to class k. Second, by applying the same

technique also for the edge features, the resulting potentials

are better comparable. The resulting node features are then

computed as

fn(zi, yi) = l(gyi
(zi)), (8)

i.e. the scalar component of the vector l(g) that corresponds
to the class with label yi. For the edge features, we don’t

apply AdaBoost, but instead compute two values, namely the

Euclidean distance dij between the points zi and zj and a

value gij defined as

gij(zi, zj) = sign(gi(zi)gj(zj))(|gi(zi)| + |gj(zj)|) (9)

This feature has a high value if both zi and zj are classified

equally (its sign is positive) and low otherwise. Its absolute

value is the sum of distances from the decision boundary of

AdaBoost, which is given by g(z) = 0. We define the edge

features then as follows:

fe(zi, zj , yi, yj) =

{

(l(dyi,yj
) l(gyi,yj

)T if yi = yj

(0 0)T otherwise
(10)

Here, we omitted the arguments zi and zj of the functions

dij and gij for brevity. The intuition behind Eq. (10) is that



edges that connect points with equal labels have a non-zero

feature value and thus yield a higher potential. The latter is

sometimes referred to as the generalized Potts model (see [1],

[17]).

a) Connectivity: Nowadays many laser scanners have

multilayer scanning capabilities. The CRF connectivity is

defined by a separate Delaunay triangulation for each layer.

Between layers connectivity is assured by connecting points

located in the same vertical. This assures a good layer

connection for the flow of BP and lessen the arc count with

respect to a full triangulation.

VI. TRACKING OBJECTS FOR SENSOR FUSION

In order to fuse the information coming from both sensors

(camera and laser) and to simultaneously keep track of the

object we use an EKF based tracking system, first introduced

in [23]. Here, each object is tracked with several motion

models (in this case: brownian motion and linear velocity)

in order to cope with pedestrian and car movements. We per-

form tracking in the laser data, therefore camera detections

are projected and assigned to segments in the laser data.

In order to reliably track wide objects, like cars, tracking

single segments are not enough. Single segments tend to be

spatially very unstable due to the noise present in outdoor

environments and the scatter resulting from the distance with

respect to the observer. We therefore group segments with

the same class label using Delaunay triangulation and a trim

distance rule. The resulting cluster will have a more stable

position and a probability of being a class that is the average

of its members. Each Kalman filter state (〈x, y, (vx, vy)〉) is
augmented with N states where N is the number of classes

present in the detector. Indeed, the observation vector z fed

to the tracking system consists of the position of the cluster

and the class label probability. The matrix H that models

the observations to mapping in the Kalman Filter x = Hz is

defined by H = [Hlsr;Hcam] in order to manage multiple

inputs from different sensors.

VII. EXPERIMENTAL RESULTS

A car equipped with several active and passive sensors is

used to acquire the datasets. In particular, we use a monoc-

ular camera in combination with a 2D laser range finder in

front of the car. An accurate camera-laser synchronization

and calibration has been developed for this work.

A. Image training datasets

The scope of this paper is to detect pedestrians and cars,

we therefore used a pedestrian dataset and three different

datasets for cars: front view, side view, back view. The

class car itself consists in multiple classes because of its

different visual appearance with respect to the viewpoint.

The pedestrian dataset consists of 400 images of persons

with a height of 200 pixels at different positions and dressed

with different clothing and accessories such as backpacks and

hand bags in a typical urban environment. Each car dataset

consists in a set of 100 pictures taken in several urban scenes

with occlusions due to people or traffic signs.

B. Laser training datasets

The laser detector has been trained using 203 annotated

laser scans containing clutter, pedestrians and cars. There is

not distinction between car views in the laser detector due

to a not dramatic viewpoint change in the range data. The

range data is organized in 4 layers with a relative orientation

of 0.8◦. Each layer has a resolution of 0.25◦ and maximum

range of 30m.

C. Qualitative and quantitative multiclass results

In order to determine the performance of our detector we

created two datasets consisting of cars and pedestrians. The

image based detection uses Shape context descriptors [3]

from Hessian-Laplace and Harris-Laplace [16] interest point.

The quantitative results of the performance of pedestrian

based image detection are shown in the precision-recall graph

of Fig. 2-left. In the graph is shown a comparison with

respect to a naive ISM implementation that does not uses

hypothesis selection, Adaboost based Haar detector and our

previous version of the image detector (labeled as ISMe1.0).

The performance increase of our approach is mainly related

to the introduction of the new hypothesis selection system.

The performance of image based detection for cars is shown

in Fig. 2-middle where a comparison with ISM and ISMe1.0

is shown. For clarity the results are averaged between the

three different views of the class car. In general we can notice

from the results that pedestrian classification is harder than

car classification due to shape complexity and flexibility.

In order to justify our approach for laser range data

detection we evaluated CRF against Boost classifier that

uses the same set of features, the resulting precision-recall

graph is shown in Fig. 2-right for pedestrian and in fig.

3-left for cars. Then we evaluated the current performance

of combining the information togheter. A very informative

way of showing the potential of our method is shown in

the two graph of Fig. 3-middle and Fig. 3-right in which

we show that combining the two information increases the

hit rate and decreases the false positives. We show some

qualitative results extracted from the testing datasets in Fig.

4-right in which cars are correctly detected from both sensors

but the pedestrian is detected only with the laser and not

with the camera due to its pose configuration and its visual

neighborhood. Another result is shown in Fig. 4-left in

which the camera classifier detects a false positive located on

vertical structures of the trolleybus and detects the person on

the scooter as a pedestrian due its visual similarity. Thanks

to the structure information obtained from the laser the

system can discriminate the false positive. Moreover, we

show qualitative tracking results in Fig. 5, Fig. 7, Fig. 6

where passing cars and a crossing pedestrian are correctly

tracked using multiple sensor information.

VIII. CONCLUSIONS

In this paper we presented a method to reliably detect

and track multiple classes (cars and pedestrian) in outdoor

scenarios using 2D laser range data and camera images.

We showed that the overall performance of the system is
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Fig. 4. Detections from multiple sensors. Green: laser based pedestrian detections; Yellow: laser based car detections; Magenta: camera based pedestrian
detection; Red: camera based car detection



Fig. 5. Tracking cars in an intersection. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers to the
track in the laser plane.

Fig. 6. Tracking a pedestrian that crosses the road. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers
to the track in the laser plane. In the laser plane it is visible a false track associated with one steady detection of a cylinder concrete by the laser based
detector. For clarity, the laser tracked cluster is plotted into the image (green points).

Fig. 7. Tracking cars in an intersection. A bounding box surrounds the tracked object with annotated distance and a colored marker that refers to the
track in the laser plane. It is important to notice that also in case of the extreme closeup of the truck the track is still maintained



improved using a multiple sensor system. We presented

several novel extensions to the ISM-based image detection

in order to cope with multiple classes. We showed that a

system based on CRF has better performance than a simpler

Adaboost based classifier and presented tracking results on

combined data. Finally, we presented experimental results on

real-world data that point out the usefulness of our approach.
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[27] Z. Zivkovic and B. Kröse. Part based people detection using 2d range
data and images. In IEEE Int. Conf. on Intell. Rob. and Sys. (IROS),
San Diego, USA, November 2007.


