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Abstract. Many man-made and natural structures consist of similar elements
arranged in regular patterns. In this paper we present an unsupervised approach
for discovering and reasoning on repetitive patterns of objects in a singleimage.
We propose an unsupervised detection technique based on a voting scheme of
image descriptors. We then introduce the concept oflatticelets: minimal sets of
arcs that generalize the connectivity of repetitive patterns. Latticelets areused for
building polygonal cycles where the smallest cycles define the sought groups of
repetitive elements. The proposed method can be used for pattern prediction and
completion and high-level image compression. Conditional Random Fieldsare
used as a formalism to predict the location of elements at places where theyare
partially occluded or detected with very low confidence. Model compression is
achieved by extracting and efficiently representing the repetitive structures in the
image. Our method has been tested on simulated and real data and the quantitative
and qualitative result show the effectiveness of the approach.

1 Introduction

Man-made and natural environments frequently contain setsof similar basic elements
that are arranged in regular patterns. Examples include architectural elements such as
windows, pillars, arcs, or structures in urban environments such as equidistant trees,
street lights, or similar houses built in a regular distanceto each other. There are at
least two applications where models of repetitive structures are useful pieces of infor-
mation: occlusion handling and data compression. For the former, pattern information
can be used to predict the shape and position of occluded or low confidence detections
of objects in the same scene. This introduces a scheme in which low-level detections
are mutually reinforced by high-level model information. For model compression, rep-
resenting the repetitive structure by a generalized objectand pattern description makes
it possible to represent the structure of interest in the image very efficiently.

In this paper, we present a technique to find such repetitive patterns in an unsuper-
vised fashion and to exploit this information for occlusionhandling and compression.
Specifically, we evaluate our method on the problem of building facade analysis.

The contributions of this paper are:

1. Unsupervised detection of mutually similar objects. Closed contours are extracted
and robustly matched using a growing codebook approach inspired by the Implicit
Shape Models (ISM) [1].
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2. Analysis of pattern repetitions by the concept oflatticelets: a selected set of fre-
quent distances between elements of the same object category in the Cartesian
plane. Latticelets are generalizations of the repetition pattern.

3. A probabilistic method to geometrically analyze cyclic element repetitions. Using
Conditional Random Fields (CRF) [2], the method infers missing object occur-
rences in case of weak hypotheses. Element detection probability and geometrical
neighborhood consistency are used as node and edge features.

Our method is a general procedure to discover and reason on repetitive patterns, not
restricted to images. The only requirement is that a method for detecting similar objects
in a scene is available and that a suitable latticelet parameterization is available in the
space of interest, e.g. the image or Cartesian space.

To the authors’ best knowledge, there is no other work in the literature that pursues
the same goals addressing the problem in a principled way.

This paper is organized as follows: the next section discusses related work. Section 3
gives an overview of our technique while in Section 4, the process of element discovery
is explained. Section 5 presents the way we analyze repetitive patterns and Section 6
describes how to use CRFs for the task of repetitive structure inference. Section 7 shows
how to obtain an high-level image compression with the proposed method. In Section 8
the quantitative and qualitative experiments are presented followed by the conclusions
in Section 9.

2 Related Work

In this work we specifically analyze repetitions from a single static image. The work
of [3] uses Bayesian reasoning to model buildings by architectural primitives such as
windows or doors parametrized by priors and assembled together like a ’Lego kit’. The
work of [4] interprets facades by detecting windows with an ISM approach. A prede-
fined training set is provided. Both works address the problem with a Markov Chain
Monte Carlo (MCMC) technique. Unlike our approach, they do not exploit information
on the connectivity between the detected elements. Our workuses ISM in an unsu-
pervised fashion without a priori knowledge. We consider closed contours to create
codebooks that generalize the appearance of repeated elements. Thereby, we are able to
recognize such elements with high appearance variability thanks to the Hough-voting
scheme. In the field of computer graphics, grammar based procedural modeling [5–7]
has been formally introduced to describe a way of representing man-made buildings.
Most of these works do not discover patterns but reconstructthe 3D appearance of the
facade and require human intervention.

Approaches based on RANSAC [8] and the Hough transform [9] have been used to
find regular, planar patterns. More sophisticated methods relax the assumption of the
regular pattern using Near-Regular Textures (NRT) [10, 11]. Similar to our work is [12]
in which the authors propose a method to find repeated patterns in a facade by using
NRT with MCMC optimization using rules of intersection between elements. They are
able to extract a single pattern based on a 4-connectivity lattice. Our approach allows
detection of arbitrary patterns without relying on a fixed model. Further, it can detect
multiple object categories and associate for each categorymultiple repetition patterns.
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Fig. 1.Schematic overview of the algorithm.

3 Overview

The first step of our algorithm (see Fig. 1) is to compute a set of standard descriptors
on a given input image. Then, we compute closed contours thatrepresent the candi-
dates for repetitive objects such as windows or pillars. Thekey idea is that we do not
classify these objects using a model that was previously learned from training data, but
instead, obtain evidence of their occurrence by extractingsimilarities directly from the
given scene. The advantage of this is twofold: first, we are independent of a previously
hand-labeled training data set. Second, by grouping similar objects into categories and
considering only those categories with at least two object instances, we can filter out
outlier categories for which no repetitive pattern can be found. Our measure of mu-
tual similarity is based on the object detection approach byLeibeet al. [1]. In the next
step, we analyze repetitive patterns inside each category.This is done by analyzing the
Euclidean distances between elements in the image accumulated in a frequency map.
These relative positions are represented as edges in a lattice graph in which nodes rep-
resent objects positions. The most dominant edges by which all nodes in this graph can
be connected are found using a Minimum Spanning Tree algorithm and grouped into a
set that we call latticelet. For reasoning on higher-level repetitions we extract a set of
polygonal repetitions composed of latticelet arcs. Such polygonal repetitions are used
to build a graph for predicting the position of occluded or weakly detected elements.
An inference engine based on CRFs is used to determine if the occurrence of an object
instance at a predicted position is likely or not. In an imagecompression application,
we use a visual template of each object category, the medium background color and the
lattice structure to efficiently store and retrieve a given input image.

4 Extraction of Mutually Similar Object Instances

In this section we explain the process of discovering repetitive elements present in an
image based on closed contours. As first step of the algorithm, Shape Context descrip-
tors [13] are computed at Hessian-Laplace interest points.Contours are computed by
using the binary output of the Canny edge detector [14] encoded via Freeman chain
code [15]. We refer to the content in each contour as an objectinstanceOe. Matching
contours in real world images can be very hard due to shadows and low contrast areas.
We therefore employ an Implicit Shape Model-like (ISM) technique in which the con-
tours act as containers to define a codebook of included descriptors. This way, we can
robustly match objects. In summary, an ISM consists of a set of local region descriptors,
calledcodebook, and a set of displacements, usually namedvotes, for each descriptor.
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Fig. 2.Extraction of mutually similar objects. For each closed contour, a codebook of descriptors
is created that contains relative displacements to the object centers (votes). Then, the descriptors
of each object are matched against the descriptors in the image.

The idea is that each descriptor can be found at different positions inside an object and
at different scales. Thus, a vote points from the position ofa matched descriptor to the
center of the object as it was associated in the codebook construction. In our case all
the descriptors found inside a contour are included in the codebookCe as well as the
relative displacement of the respective interest points with respect to the center of the
contour. To retrieve objects repetitions we match objects in the following way:

1. All descriptors found in the image are matched against an object’s codebookCe.
Those with a Euclidean distance to the best match inCe that is bigger than a thresh-
old θd are discarded.

2. Votes casted by the matching descriptors are collected ina 2D voting space
3. We use mean shift mode estimation to find the object center from all votes. This is

referred to as an object hypothesis.

To select valid hypotheses we propose a quality function that balances the strength of
the votes with their spatial origin. Votes are accumulated in a circular histogram around
the hypothetical object center. The detection quality function is given by:

qi = wa ·
fh(αi,αe)

fh(αe,αe)
+(1−wa) ·

si

se
qi ∈ [0,1] (1)

whereαe is the vote orientation histogram of the objectCe; αi is the vote orientation
histogram of the hypothesisi; fh is a function that applies anAND operator between
the bins of two histograms and sums the resulting not empty bins.si,se are respectively
the score (number of votes received for the hypothesis) and the score ofOe. wa is the
bias that is introduced between the two members. This is a simplified version of the cost
function explained in [16]. Detected objects are selected by a simple minimum thresh-
old θq on the detection qualityqi. All the objects matching withOe constitute the object
categoryτ that is defined by a codebook composed by descriptors that contributed to
each match and all the entries ofCe. Thus, a more complete description of the visual
variability of the initial object instanceOe is achieved. It is important to notice that it
is not required that every object in the image has a closed contour as soon as there is
at least one of its category. In other words: if an image of a facade contains several
windows of the same type, only one of them is required to have aclosed contour. In this
work we aim to match objects with the same scale. Same objectspresent at different
scales in the image are treated as different object categories.
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Fig. 3.Latticelet discovery process. Objects of the same category are detected. A complete graph
is built and the relative distances are accumulated in the Cartesian plane.

As a last step we use an hierarchical agglomerative clustering with average linkage
to group visually similar categories by using a measure described by their codebook
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5 Analysis of Repetitive Objects

5.1 Latticelets

In this section we introduce the space frequency analysis for the discovered object cate-
gories. We name the detected object locations in the image asnodes. In order to analyze
the repetition pattern of each object category we build a complete graph that connects
all the nodes. Our aim is to select in this graph edges that have a repeated length and
orientation. Moreover, we require our arc selection to include all the nodes. Our pro-
posed solution is based on the use of a Minimum Spanning Tree (MST). From the
complete graph we build a frequency map (see scheme Fig. 3 andFig. 4), in which we
store the distances|dx|, |dy| in pixels between nodes of the graph. The map represents
the complete distance distribution between the nodes. We therefore have to select from
this map the most representative modes. In order to estimatelocal density maxima in
the frequency map we employ a two dimensional mean shift algorithm, with a simple
circular kernel. Each convergence mode is expressed by a point in the mapdx̂,dŷ and
its score repetitiveness that is given by the number of points contributing to the basin
of attraction. All the graph edges that contribute to each mode convergency are then
labeled with their associated distance. At the end of this process we have obtained a
graph in which the distances between the nodes have been relaxed by averaging similar
consistent distances/orientations. Each edge is tagged with its repetitiveness score.
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Fig. 4.Repetitive distances in x and y are clustered via mean-shift, the arcs are reweighed by their
mode convergency score. The solid and dotted lines in the latticelet figure represent the possible
directions espressed by the selected|dx| and|dy|.

As last step of this processing we employ Kruskal’s algorithm [17] to find the min-
imum spanning tree by using the nodes, their edge connectivity and the weight of the
arcs. The resulting tree represents the most repetitive arcs sufficient to connect all the
nodes. In order to compact the information we select each kind of arc just once. We call
it latticelet, the minimal set of repetitive arcs that are needed to represent the original
lattice. Each object category is associated to a latticeletthat generalize its repetition
pattern. Our method is able to cope with small perspective distortions thanks to the re-
laxation step. For larger deviations from a fronto-parallel image view, the problem of
perspective estimation can be naturally decoupled from theone of analyzing repetitive
patterns. The problem of image rectification could be addressed with many existing
methods (e.g. [18]) that are far beyond the scope of this paper.

5.2 Cycles and chains

Latticelets contain very local information, they explain the direction of a possible pre-
dicted element from a given position. In order to incorporate higher level knowledge of
the repetitive pattern of the neighborhood, we use cycles composed of latticelets arcs.
Our aim is to find minimal size repetitive polygons. They provide the effective object
repetition that is used in later stages to obtain predictionand simplification. For each
category we sort the the weight of its latticelet arcs and we select the one with highest
weight. We compose a new graph by using the selected arc to build connection between
nodes and compute the smallest available cycle by computingits girth (i.e. length)γ.

A cycleΓ is computed by using an approach based on a Breadth-first Search algo-
rithm. Starting from a node of choice in the graph, arcs are followed once, and nodes
are marked with their number of visits. A cycle is found as soon as the number of visits
for a node reaches two. This is done for all the nodes present in the object category
detection set. We then collect all the cycles, and we select the one with the smallest
number of nodes. We create a graph by using the connectivity offered byΓ and mark
as removed the nodes that are connected by it. Thus, we add another latticelet arc until
all the nodes are connected or all the latticelet arcs are used. We obtained a polygon
set composed of frequent displacements suitable to describe the object distribution in
the image (see scheme Fig. 5) and to generalize higher ordersrepetitions. An object
category is therefore associated tok small cycles:G = {Γ1, . . . ,Γk}.
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Fig. 5. From the graph created by an incremental set of latticelet’s arcs, small repetitive cyclesΓ
are selected by using a Breadth-first Search algorithm. Chains are created on the remaining nodes
that have not been satisfied by any polygonal cyclesG .

In addition to what has been explained above, the algorithm tries to represent with
chains the nodes that cannot be described with polygonal cycles. The procedure is anal-
ogous to the former one: chain arcs are selected by using the sorted latticelet set. The
procedure is run for each object category.

6 Structure Inference using Conditional Random Fields

So far, we showed our method to detect objects represented asclosed contours and to
find repetitive patterns in the occurrence of such objects. However, in many cases, ob-
jects can not be detected due to occlusions or low contrast inthe image. In general,
the problem of these false negative detections can not be solved, as there is not enough
evidence of the occurrence of an object. In our case, we can use the additional knowl-
edge that similar objects have been detected in the same scene and that all objects of
the same kind are grouped according to a repetitive pattern.Using these two sources
of information, we can infer the existence of an object, evenif its detection quality is
very low. We achieve this by using a probabilistic model: each possible location of an
object of a given categoryτ is represented as a binary random variablelτ(x) which is
true if an object of categoryτ occurs at positionx and false otherwise. In general, the
state of these random variables can not be observed, i.e. they arehidden, but we can
observe a set of featuresz(x) at the given positionx. The featuresz here correspond
to the detection quality defined in Eqn. (1). The idea now is tofind states of all binary
variableslτ = {lτ(x) | x ∈ X } so that the likelihoodp(lτ | z) is maximized. In our for-
mulation we will not only reflect the dependence between the variablesl andz, but also
theconditional dependence between variableslτ(x1) andlτ(x2) givenz(x1) andz(x2),
wherex1 andx2 are positions that are very close to each other. The intuition behind this
is that the occurrence probability of an object at positionx1 is higher if the same object
already occurred at positionx2. We model this conditional dependence by expressing
the overall likelihoodp(lτ | z) as a CRF.

6.1 Conditional Random Fields

A CRF is an undirected graphical model that represents the joint conditional probability
of a set of hidden variables (in our caselτ ) given a set of observationsz. A node in
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the graph represents a hidden variable, and an edge between two nodes reflects the
conditional dependence of the two adjacent variables. To computep(lτ | z), we define
node potentials ϕ andedge potentials ψ as

ϕ(zi, lτ i) = ewn·fn(zi,lτ i) and ψ(zi,zj,yi,y j) = ewe·fe(zi,zj ,lτ i,lτ j)
, (2)

where fn and fe are feature functions for the nodes and the edges in the graph(see
below), andwn andwe are the feature weights that are determined in a training phase
from hand-labeled training data. Using this, the overall likelihood is computed as

p(lτ | z) =
1

Z(z)

N

∏
i=1

ϕ(zi, lτ i) ∏
(i, j)∈E

ψ(zi,zj, lτ i, lτ j), (3)

whereZ is thepartition function, N the number of nodes, andE the set of edges in the
graph. The computation of the partition functionZ is intractable due to the exponential
number of possible stateslτ . Instead, we compute thelog-pseudo-likelihood, which
approximates logp(lτ | z)

In the training phase, we compute the weightswn andwe that minimize the negative
log pseudo-likelihood together with a Gaussian shrinkage prior. In our implementation,
we use the Fletcher-Reeves method [19]. Once the weights areobtained, they are used
in the detection phase to find thelτ that maximizes Eq. (3). Here, we do not need
to compute the partition functionZ, as it is not dependent onlτ . We use max-product
loopy belief propagation [20] to find the distributions of each lτ i. The final classification
is then obtained as the one that is maximal at each node.

6.2 Node and Edge Features

As mentioned above, the features in our case are directly related to the detection qual-
ity obtained from Eqn. (1). In particular, we define the node features asfn(qi, lτ ,i) =
1− lτ ,i + (2lτ ,i − 1)qi, i.e. if the labellτ ,i is 1 for a detected object, we use its de-
tection qualityqi, otherwise we use 1− qi. The edge feature functionfe computes a
two-dimensional vector as follows:

fe(qi,q j, lτ i, lτ j) =

{ 1
γ ( fe1 fe2) if lτ i = lτ j

(0 0) else
with

fe1 = max(fn(qi, lτ i), fn(q j, lτ j))
fe2 = maxG∈Gi j(fn(η(G), lτ i)),

whereGi j is the set of (maximal two) minimum cyclesΓ that contain the edge between
nodesi and j, andη(Γ ) is a function that counts the number of detected objects along
the cycleΓ , i.e. for which the detection quality is aboveθq.

6.3 Network Structure

The standard way to apply CRFs to our problem would consist incollecting a large
training data set where all objects are labeled by hand and for each object categoryτ a
pair of node and edge features is learned so thatp(lτ | z) is maximized. However, this
approach has two major drawbacks:
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– For a given object categoryτ, there are different kinds of lattice structures in which
the objects may appear in the training data. This means that the connectivity of a
given object inside its network varies over the training examples. Thus, the impor-
tance of the edges over the nodes can not be estimated in a meaningful way.

– In such a supervised learning approach, only objects of categories that are present
in the training data can be detected. I.e., if the CRF is trained only on, say, some
different kinds of windows, it will be impossible to detect other kinds of objects that
might occur in repetitive patterns in a scene. Our goal however, is to be independent
of the object category itself and to infer only the structureof the network. In fact, the
object category is already determined by the similarity detection described above.

To address these issues, we propose a different approach. Considering the fact that
from the training phase we only obtain a set of node and edge weightswn andwe, which
do not depend on the network geometry but only on its topology, we can artificially
generate training instances by setting up networks with a given topology and assigning
combinations of low and high detection qualitiesqi to the nodes. The advantage of this
is that we can create a higher variability of possible situations than seen in real data and
thus obtain a higher generalization of the algorithm. The topology we use for training
has a girthγ of 3 and is shown in Fig. 6 on the left. Other topologies are possible for
training, e.g. using squared or hexagonal cycles, but from experiments we carried out it
turns out that the use of such topologies does not increase the classification result. The
graph in Fig. 6 right illustrates that. It shows the true positive and the true negative rates
from an experiment with 100 test data sets, each consisting of networks with a total
of 5000 to 10000 nodes. The training was done once only with a triangular topology
(TriTop) and once also including square and hexagonal topologies (MixTop), which
represent all possible regular tessellations of the plane.As the graph shows, there is no
significant difference in the two classification results. Incontrast to the topology, the
number of outgoing edges per node, i.e. theconnectivity, has a strong influence on the
learned weights. Thus, we use a training instance where all possible connectivities from
2 to 6 are considered, as shown in Fig. 6 left.

In the inference phase, we create a CRF by growing an initial network. From the
analysis of repetitive patterns described above, we obtainthe setG for each category,
the topology and edge lengths of the lattice. By subsequently adding cycles fromG to
the initial network obtained from the already detected objects, we grow the network
beyond its current borders. After each growing step, we run loopy belief propagation to
infer the occurrence of objects with low detection quality.The growth of the network is
stopped as soon as no new objects are detected in any of the 4 directions from the last
inference steps.

7 Model Compression

One aim of our work is to show that the information contained in an image (e.g. a fa-
cade) can be compressed using the proposed repetition detection technique. We reduce
the image to a simple set of detected object categories, their repetition scheme, and a
simplified background extraction. More in detail: each object category is stored as a
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Fig. 6. Left: Triangular lattice topology used for training the CRF. The numbers inside thenodes
show the connectivity of the nodes.Right: Comparison of CRF performances using TriTop and
MixTop datasets for training. True positive and the true negative rates are evaluated. The result
from the TriTop data are shown in box-and-whiskers mode, the MixTop result as dots. We can see
that using different topologies for learning gives no significant change in the classification result.

set of codebook descriptors and vote vectors, a rectangularcolorscale bitmap result-
ing from averaging the image areas inside the detected elements bounding boxes. To
visually simplify the image background, we assume that the space between detected
elements in a category is covered by textures of the same kind. We sort object cate-
gories by their cardinality. Then, as a texture simplification, we compute the median
color between the elements by sampling squared image patches. This color is assigned
to a rectangle patch that extends from top to the bottom of each category. We iterate this
procedure until all the image is covered. Missing empty spaces are filled with the color
of the most populous group. Some examples are shown in the right part of Fig. 9.

An image compressed with our method can be used in a number of applications
such as visual based localization, in which information is extracted only from the re-
peated pattern, or low-bitrate storage for embedded systems (e.g. UAV) that have to
store/transmit large urban environments. In a more generalfashion we consider that our
approach should be useful in all those cases where the main goal is to identify places
where repetitive patterns are present, although it is not aswell suited to provide detailed
reconstructions of the represented objects.

8 Experiments

The goal of our experimental evaluation is to investigate towhich extent the proposed
algorithm is capable to detect different categories of objects, to detect repetition rules
and to run inference based on that information.

In order to obtain rich statistics on a wide range of object categories we prepared an
image evaluation set composed of high contrast polygons at different sizes. 150 pictures
of 450× 150 pixels size have been computer generated, each one containing 2 to 8
different object categories. An object category is defined by a type of a polygon. It is
important to stress that such set evaluates not the detection capabilities but the capacity
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Fig. 7.Samples from the evaluation data set

of grouping similar elements, detecting latticelets and inferring high level cycles and
chains for model compression and completion. Polygons are described by few pixels
to introduce ambiguity in the description of repetitive elements. Fig. 7 shows some
samples from the evaluation dataset.

One of our goals is to assess the quality of object category distinction and grouping,
that is fundamental for the creation of the graph, as well as its analysis. It is important
to note that the angle difference between an hexagon and a pentagon is just 12◦ and
in small scales, due to pixel aliasing, this difference may not be easy to distinguish.
Fig. 8 left shows the average difference between the number of detected categories and
annotated categories. The graph is plotted with respect to the minimum detection quality
θb needed for each node. We can notice that the algorithm tends to under-explain the
data trying to not overfit single detections. This is the result of the soft detection and
grouping strategy we use that favors the merging of similar categories to the creation of
a new one.

Moreover, we evaluate the contribution of the CRF to the detection rate of repetitive
elements present in the image. We plot, in Fig. 8 right, this measure with respect toθb

and we overlay the results using CRF. The left side of the graph shows the CRF contri-
bution ( 4%) when many annotated objects have been already detected by the discovery
process, the right one shows the performance when just few elements are detected. In
the latter case, a sound 20% detection rate improvement is achieved: it suffices that a
small group of elements is detected for generating a set ofG used for inferring many
missing aligned low-detection nodes. Important to mentionis the average of false pos-
itives per image: 0.2. CRF therefore increases the true positive rate and it guarantees a
very low false positive rate.

We also performed a quantitative analysis of compression ratio for the images in
the evaluation set and the real-world images displayed in Fig. 9-right. The resulting
compressed image is very compact and it stores just one bitmap for each object cate-
gory and a list of 2D coordinates of elements locations. If weemploy the ratio in bytes
between the compressed image and the raw input image for the testing set images we
obtain 1.4% ratio, for the pictures displayed in Fig. 9 (top to bottom order), we ob-
tain: 2%,1.2%,2.3%,0.8%,2.8%,8%. Even though this method aggressively reduces
the amount of image details, the salient repetitive patternis preserved.
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Fig. 8. Left: Average difference between the number of detected categories and annotated cate-
gories. The algorithm tends to under-explain the data trying to not overfit single detections.Right:
Discovery only detection and discovery + CRF detection. The contribution of CRF for detecting
missing elements is particularly evident when a low detection rate is obtained. Graphs are plotted
with respect to the minimum detection qualityθb needed for each node.

A set of images of facades and other repetitive elements havebeen downloaded
from internet and treated as input for our algorithm, Fig. 9.On each of the examples the
difference from discovery and CRF-completed image is shown. It is interesting to notice
that the algorithm works also for not rectified facades and several kind of architectural
or repetitive elements. In the scope of this work it is evident that training on a simulated
data, sufficiently rich in variability, satisfies also real world examples.

9 Conclusions

In this paper we presented a probabilistic technique to discover and reason about repeti-
tive patterns of objects in a single image. We introduced theconcepts of latticelets, gen-
eralized building blocks of repetitive patterns. For high-level inference on the patterns,
CRFs are used to soundly couple low-level detections with high-level model informa-
tion.

The method has been tested on simulated and real data showingthe effectiveness
of the approach. From a set of synthetic images, it was verified that the method is able
to correctly learn different object categories in an unsupervised fashion regardless the
detection thresholds. For the task of object detection by model prediction and comple-
tion, the experiments showed that the method is able to significantly improve detection
rate by reinforcing weak detection hypotheses with the high-level model information
from the repetitive pattern. This is especially true for large thresholds for which detec-
tion only, without our method, tends to break down. For the task of model compression,
i.e. retaining and efficiently representing the discoveredrepetitive patterns, a very high
compression ratio of up to 98% with respect to the raw image has been achieved.

Beyond the tasks of model completion and compression, we seeapplications of this
method in image inpainting, environment modeling of urban scenes and robot naviga-
tion in man-made buildings.
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Fig. 9. Left Column: Extracted self-similar objects (red boxes). Note that often only a few num-
ber of instances are found.Center Column: Final CRF lattice (dots and lines) and inferred posi-
tion of objects (boxes).Right Column: Reconstruction of images based on our model compres-
sion.


