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Abstract

This paper presents a novel approach to detect and track people and cars based on the com-
bined information retrieved from a camera and a laser range scanner. Laser data points are
classified by using boosted Conditional Random Fields (CRF), while the imagebased detec-
tor uses an extension of the Implicit Shape Model (ISM), which learns a codebook of local
descriptors from a set of hand-labeled images and uses them to vote for centers of detected
objects. Our extensions to ISM include the learning of object parts and template masks to ob-
tain more distinctive votes for the particular object classes. The detections from both sensors
are then fused and the objects are tracked using a Kalman Filter with multiple motion mod-
els. Experiments conducted in real-world urban scenarios demonstrate theeffectiveness of our
approach.

1 Introduction

One research area that has turned more and more into the focus of interest during the last years
is the development of driver assistant systems and (semi-)autonomous cars. In particular, such
systems are designed to operate in highly unstructured and dynamic environments. Especially
in city centers, where many different kinds of transportation systems are encountered (walking,
cycling, driving, etc.), the requirements for an autonomous system are very high. One key
prerequisite is a reliable detection and distinction of dynamic objects, as well asan accurate
estimation of their motion direction and speed. In this paper, we address this problem by
focusing on the detection and tracking of people and cars. Our system is arobotic car equipped

1



with cameras and a 2D laser range scanner. As we will show, the use of different sensor
modalities helps to improve the detection results.

The system we present employs a variety of different methods from machine learning and
computer vision, which have been shown to provide robust performances. We extend these
methods obtaining substantial improvements and combine them into a complete systemof
detection, sensor fusion and object tracking. We use supervised learning techniques for both
kinds of sensor modalities, which extract relevant information from large hand-labeled training
data sets. In particular, the major contributions of this work are:

• Several extensions to the vision based object detector of Leibe et al. [2005], that uses
a feature based voting scheme denoted as Implicit Shape Models (ISM). Our major im-
provements to ISM are the subdivision of objects into parts to obtain a more differentiated
voting, the use oftemplate masksto discard unlikely votes, and the definition ofsuper-
featuresthat exhibit a higher evidence of an object’s occurrence and are more likely to
be found.

• The application and combination of boosted Conditional Random Fields (CRF)for clas-
sifying laser scans with the ISM based detector using vision. We use a KalmanFilter
(KF) with multiple motion models to fuse the sensor information and to track the objects
in the scene.

This paper is organized as follows. The next section describes work that is related to ours.
Sec. 3 gives a brief overview of our overall object detection and tracking system. In Sec. 4,
we introduce the implicit shape model (ISM) and present our extensions. Sec. 5 describes our
classification method of 2D laser range scans based on boosted Conditional Random Fields.
Then, in Sec. 6 we explain our sensor fusion techniques and our KF-based object tracker.
Finally, we present experiments in Sec. 7 and conclude the paper.

2 Related Work

This section presents the scientific literature related to people and vehicle detection. It is
organized in three parts: the first discusses range-based approaches, the second image-based
methods, and the last one presents the related work in the area of multimodal detection using
camera and laser range data.

2.1 Range-based methods

Several approaches can be found in the literature to identify a person in 2D laser data. A
popular approach is to extract legs by detecting moving blobs that appear as local minima in
the range data [Fod et al., 2002, Scheutz et al., 2004, Schulz et al., 2003]. They characterize
people by computing geometrical and motion features. When motion features are used, people
that do not move can not be detected. The work of Topp and Christensen [2005] overcomes
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this problem, obtaining good results in an cluttered indoor environment. Hähnel et al. [2003]
consider the problem of classifying beams in range scans that are reflected by dynamic objects.
An expectation maximization (EM) estimation is run in order to determine which beam has
been reflected by a dynamic object as a person. The work of Xavier et al. [2005] is also
based on the identification of people by geometrical features on the range scan. The data
is segmented into clusters and a set of heuristics is applied in order to distinguish between
lines, circles and legs. The first work that formulates the problem of detecting people as a
learning problem in a principled manner has been developed by Arras et al. [2007]. Here, the
authors use geometrical and statistical features extracted from clusters of the range scan to
learn an AdaBoost classifier. Excellent results have been presented for indoor environments.
Also, Luber et al. [2008] make use of learning techniques for detecting and tracking several
classes of objects using unsupervised creation of exemplar models. In a later work, Arras et al.
[2008] use a multi-hypotheses tracker to adaptively address the problemof occlusions and self-
occlusions when tracking multiple pedestrians in range data. More recently,Lau et al. [2009]
present an approach to track groups of people using distance clustering and a multi-hypotheses
tracking system.

Detection of people in 3D range data is recently gaining attention in the robotics com-
munity. Navarro-Serment et al. [2009] use a ground detector, PCA analysis and geometrical
descriptors classified by Support Vector Machines for detecting peoplefrom 3D data retrieved
from several nodding laser rangefinders. In an own work [Spinello et al., 2010], we detect peo-
ple in 3D point cloud data using a part-based voting approach with banks oftrained AdaBoost
classifiers. This method is more general as it does not need any ground detector, and yields
very accurate detection results.

A very successful work in the field of vehicles detection using range datais the one of
Petrovskaya and Thrun [2008], focussing on the tracking and detection of multiple vehicles
via a model-based approach. It encompasses both geometric and dynamic properties of the
tracked vehicle in a single Bayes filter. Other approaches based on segmentation and classi-
fication are the one of Zhao and Thorpe [1998] and Streller et al. [2002]. The first enforces
a rectangular model of a car in range data by using heuristics on extractedlines and uses an
Extended Interactive Motion Model for tracking. In the latter, several motion models are used
and applied to simple geometrical models of vehicles.

2.2 Camera-based methods

In the area of image-based object detection, and people detection in particular, there mainly
exist two kinds of approaches (see Enzweiler and Gavrila [2009] for asurvey). One uses
the analysis of adetection windowor templates[Gavrila and Philomin, 1999, Viola et al.,
2003], the other performs aparts-baseddetection [Felzenszwalb and Huttenlocher, 2000, Ioffe
and Forsyth, 2001]. The detection window approach uses a scalable window that is scrolled
through the image. For each step, a classification of the image area under thedetection win-
dow is obtained. A template-based detection technique is similar to the previously described
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approach, but in this case a simple distance measure is computed between the edges in the im-
age under the template silhouette and the silhouette itself. Part-based detection methods aim
at independently detecting parts to obtain location hypotheses for entire objects. There exist
plenty of computer vision based people detection systems described in the literature. Here, we
refer to the most successful ones. Leibe et al. [2005] presented an image-based people detector
using Implicit Shape Models(ISM) with excellent detection results in crowded scenes. This
method is based on a database orbag of words, called codebook, extracted from standard de-
scriptors, that vote for object centers. A mean shift mode estimation is used todefine object
hypotheses in the continuous space and a minimum description length method to select the
winning ones. In earlier works, we showed already extensions of this method with a better
feature selection and an improved nearest neighbor search [Spinello etal., 2008a,b]. Another
image-based person detection algorithm that obtained remarkable detection results has been
presented by Dalal and Triggs [2005]. This method is based on the classification of special
image descriptors called Histogram of Oriented Gradients (HOG), computed over blocks of
different sizes and scales in a fixed size detection window. The HOG descriptor is based on a
collection of normalized image gradients on each cell. The resulting high dimensional vector
is then classified with a linear support vector machine (SVM). Zhu et al. [2006] then refined
this detector by using a fast rejector-based SVM cascade to discard the presence of a person in
the detection window.

Unlike human bodies, cars have relatively uniform characteristics in structure such as four
wheels, a certain number of pillars, two bumpers, etc. The appearance ofthese parts changes
due to different car models, view points and lighting conditions. The methods already dis-
cussed for people detection are also used for detecting cars. Leibe et al. [2007] detect and
track people and cars using a stereo system and an ISM approach where detection hypothe-
ses are selected via an optimization that takes into account overlaps betweendetections and
between object categories. Zheng and Liang [2009] compute ’strip features’ to describe im-
age locations with arcs, edge-like and ridge-like patterns that are frequently found on vehicles.
They learn a complexity-aware RealBoost to produce a fast and accurate classification method.
Papageorgiou and Poggio [2000] detect cars and people by using an overcomplete set of Haar
features classified with a support vector machine method.

2.3 Multimodal approaches

Most existing people detection methods based on cameraand laser range data depend on hard
constraints or on hand-tuned thresholding. Cui et al. [2005] use multiple laser scanners at foot
height and a monocular camera to obtain people tracking by extracting feet and step candidates.
Zivkovic and Kr̈ose [2007] employ a range-based leg detector and boosted Haar features from
camera images to detect people by using a probabilistic ruleset. Both methods cluster laser
data points using a Canny edge detector and they extract unrobust image features to detect
body parts. These approaches, based on simplistic processing of data,are hardly suited for
outdoor scenarios due to the presence of clutter in image and range data. Moreover, in such
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Figure 1: Overview of the method.

environments a large illumination variability can affect the descriptiveness of features that
are based on simple intensity-based descriptors such as Haar features.The work of Schulz
[2006] uses probabilistic exemplar models learned from camera and laser data and it applies
a Rao-Blackwellized particle filter (RBPF) to track a person’s appearance in the data. The
RBPF tracks contours in the image based on Chamfer matching as well as pointclusters in the
laser scan and computes the likelihood of different prototypical shapes in the data. However,
in outdoor urban scenarios occlusions are very likely, thus a contour matching approach is
not an appropriate choice for dealing with partial object visibility. Neverthless, RBPF is a
computationally demanding technique, especially when tracking multiple objects in ascene.
Douillard et al. [2008] employ a Conditional Random Field (CRF) learned on2D laser data
and robust image features to detect multiple classes of objects (i.e. cars, people, vegetation).
Promising results are obtained, but occlusions and overlapping object detection hypothesis,
critical for yielding good results in any frame, are not handled by the algorithm. The work
of Premebida et al. [2009] does not implement tracking of objects but it evaluates several
centralized and decentralized fusion rules with standard vision and laser detectors. Wender
and Dietmayer [2008] employ a camera and a laser scanner to detect cars infront of a robotic
platform. They use simplistic heuristic rules on range data for estimating the viewpoint of the
vehicle (front, side etc). Thus, they apply an AdaBoost-based image detector trained with Haar
features on different car viewpoints.

3 Overview of Our Method

Our system consists of three main components (see scheme in Fig. 1):

• an appearance-based detector that processes data from a camera image

• a range based detector that processes data from a laser rangefinder

• a tracking module that fuses the information from both sensor modalities and provides
an estimate of the motion vector for each tracked object.
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The laser-based detector is based on a Conditional Random Field (CRF),formulated with
a boosted set of geometrical and statistical features of 2D laser range data. The image based
detector extends the multiclass version of the Implicit Shape Model (ISM) of Leibe et al.
[2007]. The vision-based detector operates only on regions of interest obtained by projecting
range data into the image to constrain the position and scale of the detectable objects (the “early
fusion” step). The tracking module applies a Kalman Filter with two different motion models,
fusing the information from camera and laser. In the following, we describethe particular
components in detail.

Mathematical notations Throughout this paper we use the following mathematical nota-
tions:

• avectoris denoted with a bold letter, e.g.a.

• amatrix is denoted with a bold capital letter, for exampleB.

• setsare denoted with calligraphic capital letters, for exampleC. The cardinality of a set
C is expressed by the notation‖C‖.

• numerical constants are denoted with capital letters.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of Leibe et al. [2005] on
scale-invariant Implicit Shape Models (ISM). In summary, an ISM consistsin a setI of local
region descriptors calledcodebook, and a setV of displacements and scale factors, usually
namedvotes, for each descriptor. The idea is that each descriptor can be found atdifferent
positions inside an object and at different scales. Thus, a vote points from the position of
the descriptor to the center of the object as it was found in the training data. To obtain an
ISM from labeled training data, the descriptors are computed at interest point positions and
then clustered, usually using agglomerative clustering with a maximal distance thresholdϑd.
Then, the votes are obtained by computing the scale and the displacement of the objects’
center to the descriptors. A training dataset consists in a collection of images and binary image
masks defining the area and the position of the objects in each image. For the detection, new
descriptors are computed on a test image and matched against the descriptors in the codebook.
The votes that are cast by each matched descriptor are collected in a 3Dvoting space, and a
maximum density estimator is used to find the most likely position and scale of an object.

In previous works, we presented already several improvements of the standard ISM ap-
proach [Spinello et al., 2008b,a]. Here, we show some more extensions ofISM to further
improve the classification results. These extensions concern both the learning and the detec-
tion phase and are described in the following.
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4.1 ISM Extension: Generating a Superfeature Codebook

In the standard ISM formulation, the process of generating a codebook does not include any
feature selection. This has two potential disadvantages: first, a codebook for a given object
category may contain many entries, and second, each entry may cast a big quantity of votes.
One possibility to reduce the number of codebook entries is to increase the distance threshold
ϑd when creating the codebook. However, in this case each entry in the codebook represents a
larger variability of descriptors which leads to more votes per entry. When matching a code-
book to new descriptors found in a test image, usually the same distance thresholdϑd is used
as when generating the codebook. Therefore, ifϑd is large, more matches are found for a given
new descriptor. Both effects result in a larger number of votes, which increases the number of
false positive detections.

The goal of asuperfeaturecodebook is to overcome these disadvantages by collecting
more informed descriptors that cast stronger votes. We define superfeatures as features that
are stable in image space and in descriptor space. This means that a superfeature is frequently
found in the training set, at approximately the same image position with respect to the object
center, and its variability in descriptor space is low. This definition ensures that for superfea-
tures a high evidence of the occurrence of the object is combined with a highprobability to
encounter an interest point. LetO+ be defined as the set of all interest points found inside the
segmentation masks in the training data. Each element ofO+ is a three-dimensional vector,
where the dimensions are the relative displacement (∆x,∆y) between the location of the inter-
est point and the object center, and the scales at which the interest point has been detected.
Let furthermoreκ be a function that maps fromO+ to theD-dimensional descriptor space�D.
In the training phase,κ is computed for all interest points in the labeled images. To compute
superfeatures, we perform four steps. First, we determine points that liein very dense areas of
O+ by applying mean-shift mode estimation [Comaniciu et al., 2001]. This way, we obtain a
reduced setO∗ of interest points, i.e.:

O∗ =ms
(

ρx,ρy,ρs,O
+
)

, (1)

where ms(·) indicates the mean shift estimator with uniform ellipsoidal kernelK of semiaxes
ρx,ρy andρs. We setρx = ρy in order to give equal importance to interest points found in both
directions. In our implementation we useρx = ρy = 5 andρs= 0.2. Thus,O∗ consists of theM
modeso∗1, . . . ,o

∗
M of the interest point distribution inO+ as found by the mean-shift estimator.

In the second step, we determine for each modeo∗i the setJi of image descriptors that have
been computed at interest points inside the kernel aroundo∗i , i.e.

Ji =
{

κ(p) | p ∈ O+∩K(o∗i )
}

, (2)

whereK(o∗i ) denotes the ellipsoidal kernel centered at the modeo∗i . Then, we apply agglom-
erative clustering with average linkage to the descriptors inJi , i.e.
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{C1,C2, . . . } = ac(ϑd,Ji) , (3)

where ac(·) represents a function that computes agglomerative clustering with distance thresh-
old ϑd, andC1,C2, . . . are the resulting clusters in descriptor space.

In the last step, we remove all clusters with cardinality smaller than a thresholdϑc and
store the centroids of those clusters that are bigger than the median of the cardinality of the
remaining clusters into the descriptor setI∗i , or formally

I∗i := {cn(C) | C ∈ C ∧ ‖C‖ ≥md(C)} . (4)

Here,C denotes the set of all clusters that are bigger thanϑc, cn(·) computes the centroid of a
cluster, and md(·) returns the median cluster cardinality. The resulting superfeature codebook
I∗ is defined as

I∗ :=
M
⋃

i=1

I∗i . (5)

The computation of the set of votesV∗ for I∗ follows the same procedure as in standard ISM.
The resulting superfeature codebookI∗ has less elements than the standard ISM codebook

and each entry is associated to less votes. Figure 2 shows a visual explanation of the superfea-
ture codebook generation. It is interesting to see that the superfeaturesinherently reflect the
skeleton of the object. In case of a pedestrian, superfeatures are mostlytaken in theΛ-shaped
area between the legs, and nearby the shoulders. Even though this result is strictly related to
the kind of interest point detector (e.g. Harris and Hessian interest points are located either on
corners or on blobs), it intuitively reflects distinctive local areas for detecting pedestrians. This
result is in agreement with other local weighting methods found in the area of image-based
people detection (see e.g. the discussion of Dalal and Triggs [2005] on the high classification
weight that such areas receive).

4.2 ISM Extension: Learning Object Parts

The aim of this procedure is to further enrich the information retrieved in the voting process
by distinguishing between different object parts from which the vote has been cast. The seg-
mentation into parts is computed offline during the training process for each object category.
Here, an object part is defined as a sector of a circle, where the circle center is aligned with
the center of the bounding box that encompasses all training instances of an object class. This
definition of an object part is motivated by the fact that the displacement vectors stored in an
ISM vote for object centers. Hence, a natural way to distinguish the voters in the training data
is with respect to the orientation of their displacement vectors.

8



Figure 2: Generation of a superfeature codebook. Superfeatures are stable features in image and
descriptor space. First, all interest points from the training data are accumulated in a continuous
space. Then, high density areas are found using mean shift mode estimation. In the next step, we
consider the descriptors associated to the clustered points and segment them using agglomerative
clustering. From the resulting clusters, we select those that are larger than the median and store
them together with the votes from the associated interest points in the superfeature codebook. In
this example, we used Shape Context descriptors computed at Hessian interest points (in red) for
the class ’pedestrian’. The position of the superfeatures are depicted in green.

To distinguish appropriate object parts, we perform three steps. We start again with the
accumulated setO+ of interest points from the training data set. Then, we compute the orien-
tation angle of each displacement vector with respect to the horizontal line through the center
of the bounding box that encompasses all object instances (see Fig. 3).All orientation angles
are collected in a setA. Finally, we applyk-means clustering [Lloyd, 1982] to the elements of
A. The problem here is that the numberK of clusters is not given beforehand. We solve this
by re-running the clustering algorithm with increasing values ofK and evaluating the resulting
clusters with the Bayesian Information Criterion (BIC) [Schwarz, 1978]. The BIC can be used
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Algorithm 1: K-means clustering with estimation of the number of clusters.
Input: Set of orientation anglesA from voters
Output: Optimal set of clustersA∗

K← 1
bold←−∞

bnew←−∞

A← ∅

while bnew≥ bold do
A
∗← A

A←kMeans (A,K)
bold← bnew

bnew←−2ln(RSS(A)
‖A‖

)+K ln(‖A‖) Compute BIC using residual sum of squares (RSS)

K← K +1
end
return A∗

for model selection from a class of parametric models with different numbers of parameters.
It represents a balanced score based on the likelihood of the model and itscomplexity. Our
overall clustering method is summarized in Algorithm 1. We note that the ResidualSum of
Squares (RSS) of clusters obtained with thek-means algorithm decreases monotonically with
growing K. The RSS is exactly 0 whenK = ‖A‖, i.e. when each data point defines its own
cluster. The BIC is used to trade off a low residual error with a low model cost. Once the
BIC does not increase any longer, the maximum is found and the process stops. To perform
k-means clustering onA, we need to take care of the fact that the orientation angles are pe-
riodic, i.e. 0 needs to be identified with 2π. Fortunately, ink-means clustering only relative
distances between points and clusters are required. Thus, we can replace each element inA by
a corresponding point on the unit circle and use the arc length between twosuch points as the
distance metric for clustering. When clustering is completed,A is represented by a collection
of angle intervals:A = (a1, . . . ,aK ], whereai = [αi−1,αi) is an angle interval that defines an
object part.

An example of the outcome of our clustering algorithm is shown in Fig. 4. Note that
although our algorithm does not explicitly search for a semantical subdivision of the object
(e.g.: legs, arms, etc. in case of the pedestrian object category), it nevertheless resembles this
automatically without human interaction. In Sec. 4.4 we describe how we use thisextended
shape information for hypothesis selection.

10



Figure 3: Subparts are computed by accumulating interest points, iteratively runningk-means
clustering, and using the BIC to score the cluster result.

4.3 ISM Extension: Learning Shape Templates

Based on a similar reasoning as described in the previous section, we propose another exten-
sion to the standard ISM approach to distinguish the votes with respect to theirquality. The aim
of this is to discardoutlier votes, i.e. those that are cast from interest points located in unlikely
areas for a given object class. Outliers are caused by training exampleswith an unusual shape
where some interest points lie outside the most likely shape of the object. For example, there
might be training examples of the class “pedestrian”, where a person extremely extends the
arms. Then, if there are interest points detected on an arm, the resulting displacement vector
stored inV will be very rare and thus correspond to an unlikely vote. Later, in the detection
phase, this causes problems, because such an unlikely vote is treated in thesame way as likely
ones, causing many false positive detections.

A first attempt to detect and remove outlier votes has already been made by Leibe et al.
[2005]. There the authors compute a combined optimization between expectedsegmentation

11



Figure 4: Clustered object parts (colored sectors) and template masks, overlaid as brightness val-
ues, for the classespedestrianandcar-sideview. Both are computed from the training set. Note that
even though the object parts are computed unsupervised, they exhibit some semantic interpretation.

and silhouette matching via Chamfer matching [Borgefors, 1988]. This approach is computa-
tionally expensive and influenced by noise due to the nature of contour matching. In contrast,
we propose a probabilistic approach. Instead of relying on the object’s silhouette to determine
outliers, we use the entire binary shape masks from the training data. By aligning all shape
masks for a given object class so that their center points coincide and by computing the average
mask, we obtain a gray value maskTc with pixel values between 0 and 1. This procedure is
similar to the one used to produce eigenfaces [Sirovich and Kirby, 1987].These pixel values
can be interpreted as prior probabilities for the location of interest points in the given object
class. We denoteTc as thetemplate maskof the object classc. Naturally, all training images
used to create the template mask are given in scale 1, but we can obtain template masks at
different scales by scalingTc using bilinear interpolation.

An example of the template masks which we obtained for the classes “pedestrian” and
“car-sideview” is shown in Fig. 4. Here, the template masks are visualized asbrightness values
together with the part clustering method presented in the previous section. Ascan be seen, the
average shapes of both object classes are clearly visible.

4.4 ISM Extension: Multiclass Hypothesis selection

After learning standard codebooksIc, superfeature codebooksI∗c, segmented object partsAc,
and template masksTc for each object classc = 1, . . . ,C from the training data as described
before, we incorporate these information into the detection step. Here, we have to perform
some further adaptation to the standard ISM approach, as we assume a multi-class problem.
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Before however, we formulate the detection step mathematically.
After computing interest points and shape descriptors for a given test image, the latter are

matched with all codebooksIc andI∗c, and the modes of the voting space are computed using
mean-shift, as described above. Lethc = (x̄c, ȳc, sc) be a resulting mode, i.e. a possible center
location (x̄c, ȳc) of an object of classc and its scalesc. We will refer tohc as ahypothesisof
classc. Furthermore, letXc be the interest point locationsxi of all voters that were responsible
to create hypothesishc. As in standard ISM, each vote has an assigned voting strengthwi .
In the following, we will include the voting strength as an additional dimension to the point
location vector, i.e.xi = (xi ,yi , si ,wi). Using this, we define avoting scoreas

vs(hc) =
∑

xi∈Xc

2bi wiTc(xi ,yi ,hc), where bi =

{

1 if xi results fromI∗c
0 if xi results fromIc

(6)

andTc(xi ,yi ,hc) is the evaluation of the template mask at position (xi ,yi) after placing its center
at (x̄c, ȳc) and rescaling it withsc (see above). This means that the quality of a hypothesis is
influenced by four values, namely the number of votes, their strengthwi , whether they arise
from a superfeature match, and the prior quality of the voters obtained from the shape template
Tc. Unlikely votes with respect to the shape template receive a very low weight and their
contribution to the hypothesis score is strongly reduced.

Furthermore, for each object classc we make use of the information of the learned subparts
Ac. The idea is to obtain an information about the amount of parts that have beendetected.
Intuitively, a foreground object is expected to have most of the parts welldetected, instead,
an occluded object appears with less parts. To account for the different object parts from
which votes may be cast, we first formulate the voting score vsk, which is restricted to an
interval ak = (αk−1,αk) of orientations of vote vectors, wherek = 1, . . . ,K is the index of the
corresponding object part, i.e.

vsk(hc) =
∑

xi∈Xc, αk−1≤α(xi )<αk

wiTc(xi ,yi ,hc) and α(xi) = arctan

(

yi − ȳc

xi − x̄c

)

(7)

All part-based scores are then collected in aK-dimensional vectorξ defined as

ξ(hc) = (vs1(hc), . . . ,vsK(hc)) . (8)

Intuitively, this is a weighted histogram of votes where each bin corresponds to a learned
object part, or equally a sector of vote orientations.

To find the best hypothesis we define a partial order≺ on all hypotheses based on a function
∆r as

hi ≺ h j ⇔ ∆r

(

ξ(hi), ξ(h j)
)

< 0 where ∆r

(

ξ(hi), ξ(h j)
)

:=
K

∑

k=1

sign(ξk(hi)− ξk(hi)) (9)
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Algorithm 2: Multiclass detection with ISMe
Input:

• Interest pointsxi and corresponding shape descriptorsdi from a new test image

• codebooksI1, . . . ,IC, superfeature codebooksI∗1, . . . ,I
∗
C and votesV1, . . . ,VC

for all C object classes

• minimal hypothesis scoreσmin

Output: Set of optimal object hypothesesH∗

H∗← ∅

hwin←∞

while hwin > σmin do
for c= 1 to C do
Dc← FindMatches (Ic, {di})
D∗c← FindMatches (I∗c, {di})
Yc← CollectVotes (Dc,D

∗
c,Vc)

Hc←ms(ρx,ρy,ρs,Yc) Mean-shift operation, returns set of hypotheses
Findh∗c s.t. hc ≺ h∗c ∀hc ∈ Hc,hc , h∗c Best hypothesis for classc, see Eqn. (9)
Γc← ComputeHypothesisArea (h∗c) see Eqn. (10)

end
h∗← argmaxh∗c(Γ1, . . . ,ΓC)
hwin← vs(h∗)
H∗←H∗∪h∗

end
returnH∗

whereξk(hi) indicates the value contained in the bink of the histogram for the hypothesis
hi . Intuitively, the function∆r measures for which of the hypothetical objects the individual
object parts are stronger represented in the voting space. Using Eqn. (9), we can determine the
hypothesish∗c with the highest order of all hypotheses for classc. In case of ambiguity we use
the one with the highest global score vs(·).

However, to determine the strongest hypothesis across all object classes, we can not simply
compare the scores, as they are based on different codebooks with different numbers of entries.
Instead, we use another measure based on the objectareathat is covered by a hypothesis. The
idea here is that all point locations inXc of votes that were responsible forhc, can be viewed
as small patches inside an object that contribute to the entire shape of the object, just as pieces
of a puzzle. To formulate that, we define a square regionγ(xi) around eachxi with side length
proportional to the scalesi . For the hypothesishc we can then define the relative area covered
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Figure 5: An urban environment with cars, pedestrian and other objects as it is perceived by a
2D laser.Left: Laser beams are shown in red, circles represents the measured points. Gray beams
indicate out of range data due to material reflections, sun related effects and particular object poses.
Center: Resulting JDC clustering of the scene. Orange lines depictsconsecutive points segmented
in the same cluster.Right: A Delaunay triangulation is build on the centroids of the segments. This
defines a graph among segments.

by all vote patches as

Γc =
area

(

⋃

xi∈Xc
γ(xi)

)

‖{(x,y) | T(x,y,hc) ≥ 0.5}‖
, (10)

where the function area(·) computes the area of the joint region, and the denominator approx-
imates the area of the object by counting all points in the shape template that are likely to
be inside the shape. Care has to be taken in the case of overlapping class hypotheses. Here,
we compute the set intersection of the interest points in the overlapping area and assign their
correspondingγ values alternately to one and the other hypothesis.

Once an optimal hypothesish∗ across all classes is found, we remove all the votes coming
from those features that contributed toh∗, because we assume that an image feature belongs
to just a single object. The scores are then recomputed until a minimum scoreσmin is reached.
Algorithm 2 summarizes the individual steps.

5 Structure Based Detection

For the detection of objects in 2D laser range scans, several approaches have been presented
in the past [see for example Arras et al., 2007]. Most of them have the disadvantage that they
disregard the conditional dependence between data in a close neighborhood. In particular, they
can not model the fact that the labell i of a given laser segmentSi is more likely to bel j if
we know thatl j is the label ofS j given thatS j andSi are neighbors. One way to model this
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conditional dependency is to use Conditional Random Fields (CRFs) [Lafferty et al., 2001],
as shown by Douillard et al. [2008]. CRFs represent the conditional probability p(l | s) using
an undirected cyclic graph, in which each node is associated with a hidden random variable
l i and an observationsi . In our case,l i is a discrete label that ranges over 3 different classes
(pedestrian, car and background) andsi is a feature vector extracted from the 2D segmentSi

in the laser scan. A preprocessing step on range data has been defined inorder to produce
segments for the CRF detector. We use a simple clustering technique to group nearby points,
called Jump Distance Clustering (JDC). It is fast and simple to implement: if the Euclidean
distance between two adjacent data points exceeds a given threshold, a new cluster is generated
otherwise the point is added to the current cluster (see Fig. 5-center). Each cluster, or segment,
is defined as the set of pointsSi . Moreover we compute a Delaunay triangulation between the
centroids of each segmentSi in order to create a graph that connects clusters, see Fig. 5-right.

Assuming a maximal clique size of 2 for the graph, we can compute the conditional prob-
ability of the labelsl given the observationss as:

p(l | s) =
1

Z(s)

N
∏

i=1

ϕ(si , l i)
∏

(i, j)∈E

ψ(si ,s j , l i , l j), (11)

whereZ(s) =
∑

l′
∏N

i=1ϕ(si , l′i )
∏

(i j )∈Eψ(si ,s j , l′i , l
′
j) is usually called thepartition function, E is

the set of edges in the graph, andϕ andψ represent node and edge potentials. To determineϕ

andψ we use the log-linear model

ϕ(si , l i) = eun·fn(si ,l i ) (12)

ψ(si ,s j , l i , l j) = eue·fe(si ,s j ,l i ,l j ), (13)

wherefn andfe are feature functions for the nodes and the edges in the graph, andun andue

are feature weights that are determined in the training phase. The computationof the partition
function Z is intractable due to the exponential number of possible labelingsl′. Instead, we
compute thepseudo-likelihood, which approximatesp(l | s) and is defined by the product of all
likelihoods computed on themarkov blanket(direct neighbors) of nodei, i.e.

p(l | s) ≈ pl(l | s) =
N

∏

i=1

ϕ(si , l i)
∏

s j∈N(si )

ψ(s j ,si , l j , l i)

∑

l′

(

ϕ(si , l
′
i )

∏

s j∈N(si )

ψ(s j ,si , l
′
i , l
′
j)
)

. (14)

Here,N(si) denotes the set of direct neighbors of nodei. In the training phase, we compute the
weightsu = (un,ue) that minimize the negative log pseudo-likelihood together with a Gaussian
shrinkage prior as proposed by Ramos et al. [2007]:

L(u) = − logpl(l | s)+
(u− û)T(u− û)

2σ2
. (15)
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For the minimization ofL, we use the L-BFGS gradient descent method [Liu and Nocedal,
1989]. Once the weights are obtained, they are used in the inference phase to find the labelsl
that maximize Eqn. (11). Here, we do not need to compute the partition functionZ, as it is not
dependent onl. We use max-product loopy belief propagation (BP) to find the distributionsof
each labell i . The final labels are then obtained as those that are most likely for each node.

In our case the Delaunay triangulation among segments defines the structureof the net-
work. We use a set of statistical and geometrical features for the nodes of the CRF, e.g. width,
circularity, standard deviation, kurtosis, etc. [for a full list see Spinello and Siegwart, 2008].
However, we do not use these features directly in the CRF, because, asstated by Ramos et al.
[2007] and also from our own observation, the CRF is not able to handle non-linear relations
between the observations and the labels. Instead, we apply AdaBoost [Freund and Schapire,
1997] to the node features and use the outcome as features for the CRF. For our particular
classification problem with multiple classes, we train one binary AdaBoost classifier for each
class against the others. As a result, we obtain for each classc a set ofM weak classifiershc

i
(in this case decision stumps) and corresponding weight coefficientsαc

i so that the sum

gc(si) :=
M
∑

i=1

αc
i h

c
i (si) (16)

is positive for observations assigned with the class labelc and negative otherwise. Note that
the absolute value ofgc can be interpreted as a classification quality. To obtain a classification
likelihood, we apply the logistic functiona(x) = (1+e−x)−1 to gc. We do this for two reasons:
first the resulting values are between 0 and 1 and can be interpreted as likelihoods of corre-
sponding to classc. Second, by applying the same technique also for the edge features, the
resulting potentials are better comparable. Thus, the node feature functionfn of the segment
featuressi and the labell i is computed as

fn(si , l i) = a(gl i (si)). (17)

For the edge featuresfe we compute two values, namely the Euclidean distance between the
centroidsci andc j of the segmentsSi andS j , along with a valuegi j defined as

gi j (si ,s j) = sign(gi(si)g j(s j)) · (|gi(si)|+ |g j(s j)|). (18)

Thus, the value ofgi j has a positive sign if AdaBoost classifiessi ands j into the same class,
and otherwise it is negative. The absolute value ofgi j is the sum of the classification qualities
of AdaBoost. Ifgi(si) andg j(s j) are far from 0 thengi j has a high value, and viceversa. To
summarize, we define the edge features as

fe(si ,s j , l i , l j) =

{

(

a(‖ci − c j‖) a(gi, j(si ,s j))
)T if l i = l j

(0 0)T otherwise.
(19)

The intuition behind equation (19) is that edges that connect segments with equal labels have
a non-zero feature value and thus yield a higher potential. The latter is sometimes referred to
as the generalized Potts model [see Potts, 1952].
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6 Object Tracking and Sensor Fusion

In this section we explain how to combine the two sensor modalities together. Range and image
data is used for “early fusion” and then combined in the tracking system. Theearly fusion step
consists in a technique to constrain the vision-based detector in salient image regions. The
tracker combines detection results from camera and laser data and solves the data association.

An important factor in our multisensor system is the extrinsic calibration betweencamera
and laser. The internal camera parameters are estimated using the camera calibration method
by Zhang [1999]. Then, we employ the method explained by Pless and Zhang [2004] to cal-
ibrate the 2D laser rangefinder with the camera. The procedure consists insimultaneously
collecting image and range data of a planar checkerboard placed in frontof a robot at differ-
ent positions and orientations. For each pose of the planar pattern, the method constrains the
extrinsic parameters by registering the laser scanline on the planar pattern with the estimated
plane computed from the image. The solution uses nonlinear optimization that minimizes the
re-projection error.

6.1 Early fusion: using laser segments to bound the voting space

The early fusion method is concerned with the definition of constraints in the ISMe voting
space of the image-based detector, in order to generate more precise object hypotheses. The
idea is to project segments extracted from the laser data as 3D boxes in the voting space. If
we consider a single laser segment, it could be projected as a box with a height set to a fixed
value, a width defined by the extremal points of the segmentSi , and a depth defined by the
scale toleranceϑSi . These 3D boxes define boundaries in the voting space for hypothesis
selection for the image detector. Before the image hypothesis selection is run,the early fusion
takes place and removes hypotheses that are not compatible with the boundaries. The generous
dimensions of the boxes allow the survival of imprecise detections in position and scale.

In order to consider range-images in the early fusion process, we needto setϑSi for each
object class. Precisely, we need to computeϑSi as a function of the laser segment distance. We
assume, for practical reasons, that the relationship between these two variables is linear, even
though this is not true due to lens distorsions. The idea is to perform a linear least-squares
regression that relates the objects’ pixel heightsωωωs with the object distancesωωωd:

ωd
i = β1ω

s
i +β2, (20)

where (β1,β2) are the parameters of the line computed with the regression from a collection of
measured object heights and distances. Thus, we are able to compute ahallucinateddistance
for each object category from a given input scale (and viceversa).

The scaleωs estimated for each segment distance is then converted into the depth of the
3D region of interest in the ISMe voting space in order to easily prune falseimage detection
hypotheses:

ϑSi = (ωs
i −ϑ

∗
S
,ωs

i +ϑ
∗
S
), (21)

18



Figure 6: Early laser-camera fusion. Laser segments are projected into the visual-based object
detection voting space as 3D boxes. Image detection hypotheses located into one of these regions
are considered valid, the others are discarded. Votes are shown as red circles. Object hypotheses
x̄i are shown in yellow. For clarity, features voting for the object centers (defined by position and
scale) are shown only on the left pedestrian.

whereϑ∗
S

is a constant which is fixed beforehand. An image detection hypothesis is considered
valid if it is found inside one of the 3D boxes that define the constraints of thevoting space. A
visual explanation can be seen in Fig. 6.
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The last part of the early fusion step solves the data association problem between segments
and corresponding image hypotheses. We assume that each segment belongs to a single object.
For each segment we compute the distance and compute the hallucinated scale accroding to
Eqn. (20). We solve the assignment problem in a greedy manner: given asegmentSi , we assign
from all valid image detection hypotheses found in the projected segment volume that one to
the segmentSi , which minimizes the absolute difference between the scale of the hypothesis
and the hallucinated scale. The remaining processing of hypothesis selection for detection in
camera images follows the technique explained in Section (4.4).

6.2 Combined detection using Kalman Filtering

The aim of multimodal object detection is to provide useful information to a navigation or
a driver assistance module. For this reason, a natural output choice for our detector is to
label laser segments with their class probability. The proposed fusion methodcombines the
detectors’ information and provides output that consists in laser segment positions and object
category labels.

We use tracking as a mean of integrating class probabilities over time and as an additional
algorithm output, to provide prediction information. We aim to design a reliable tracking
method that does not rely on single data association hypotheses and that scales gracefully with
the number of objects. Several methods have been developed in the tracking literature for
handling complex data association at a high computational cost, including Multi-hypothesis
tracking [Reid, 1979, Cox and Hingorani, 2002] and JPDA filters [Bar-Shalom and Li, 1995].
Our tracking algorithm is designed to be computationally inexpensive and copes well with the
motion model of several kinds of object categories.

In contrast to cars, which have a comparably simple motion model given by the Acker-
mann model [Ackermann, 1818], pedestrians are much harder to describe with a single motion
model: they can stop, suddenly turn on spot, invert their trajectory etc. Therefore, we use a
pedestrian tracker in which each track is described by multiple Kalman Filters, each providing
a different motion model. The advantage of this method is that the number of estimating filters
scales linearly with the number of objects to track. Moreover, multiple hypotheses regarding
object motions are produced for each time step. For this work we employed twokind of mo-
tion models, described by linear velocity and Brownian motion. The motivation for selecting
Brownian motion is the ability to model sudden direction and speed changes, a condition that
occurs especially in case of people tracking. Nevertheless, a constantvelocity model, in short
intervals, well approximates a variety of smooth curved trajectories. The proposed tracking
technique is a way of combining tracking filters and it is very generic: other motion models,
linear and non-linear, could be also used.

Tracks are managed by atracking managerthat solves data association, and creates or
deletes tracks. We assume that each track is associated at most to one singlesegment.N is the
number of laser segments present in a laser scan,R the number of tracks andM is the number
of Kalman Filters present for each track, each with a different motion model. Data association,
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i.e. the problem of assigning laser segments to tracks, is solved in two steps. The first step
is to compute which motion model to use for each track. In each track, the distance between
the Kalman Filters (KF) prediction and theN laser segments centroids are computed. This
process generates for each trackM Mahalanobis distances for each observation [Mahalanobis,
1936]. In each track, the closest distance for each observation is taken and the KF generating
that prediction is tagged. At the end of the first step of the association of laser segments, every
track obtains a set ofN distances fromN observations.

The second step of data association is used to select which observation is assigned to which
track. We want to assignN hypotheses toR tracks (whereN ,R). A rectangular matrix of size
R×N is generated in which rows represent track indices and columns observation indices. The
previously computed distances are inserted as values of the assignment matrix. The solution of
the combinatorial minimal weight assignment has been found with the extension of Munkres’
method for rectangular assignment matrices proposed by Bourgeois and Lassalle [1971]. If
there are more segments than tracks, thenR−N new tracks are created. Instead, if more tracks
than segments are present in a certain moment, the tracks that are not updated with a new
observation are maintained until their variance in (x,y) reaches a fixed maximum threshold
δx,y.

We now give a mathematical formulation for the tracks and for the fusion of thedetection
outputs. We track cluster centroids in 2D range data using two KF, each with adifferent motion
model:

xm1 =
(

(x̂S, ŷS), ( ˙̂xS, ˙̂yS), (p1, . . . , pC)
)

(22)

xm2 =
(

(x̂S, ŷS), (p1, . . . , pC)
)

, (23)

where (x̂S, ŷS) are the coordinates of the cluster centroid, (˙̂xS, ˙̂yS) is its velocity andp1, . . . , pn

are the probabilities of allC classes. The observation vectorz(k)i , at timek, consists of the
position of the cluster centroid and the category’s probability estimates for each detection
modality:

zi =
(

x̂Si , ŷ
S
i , (c1, . . . ,cn)1, . . . , (p1, . . . , pC)ς

)

. (24)

Here, (x̂S, ŷS) is an observation of a cluster centroid andς denotes the number of sensors. Each
block (p1, . . . , pC) is the estimate given by the range or image based classifier.

The Kalman Filter is formulated by a prediction and an update step. Prediction attimek is
computed by

x(k)−mi = Amix(k−1)−mi. (25)
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We write the state matricesAmi in the case of two motion models and two classes as

Am1 =





















































1 0 ∆k 0 0 0
0 1 0 ∆k 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1































. (26)

If the matrixV1 indicates the state covariance andV2 the sensor covariance, we compute

P(k)−mi = AmiP(k−1)AT
mi+V1. (27)

The tracker manager selects which KF of each track is closer to the observation zi . Then
it solves the data association between the winning KF of each track and observations using
the assignment optimization proposed by Bourgeois and Lassalle [1971]. The observations
are assigned to the tracks and the filters are updated. The observation is used to update all
the filters of the track. The update step is calculated by computing the Kalman gainG and
updatingx(k)mi and the covariance matrixP, i.e.

Kmi = P(k)−miG
T
(

GP(k)−mi G
T +V2

)−1
(28)

P(k)mi = (I −KmiG)P(k)−mi (29)

x(k)mi = x(k)−mi+Kmi

(

z(k)a−Gx(k)−mi

)

, (30)

wherez(k)a represents the assigned observation vector to the track. The matrixG models
the mapping from states to the predicted observation and is defined asG = (GT

x GT
s1 . . .G

T
sC)T ,

whereGx maps to pose observations and theGs1 map to class probabilities per sensor. For
example, for one laser, one camera and constant velocity we have:

Gs1 =

(

1 0 0 0 0 0
0 1 0 0 0 0

)

Gs1 =Gs2 =

(

0 0 0 0 1 0
0 0 0 0 0 1

)

. (31)

7 Experimental Results

In this section, we present experimental results and quantitative comparisons with other tech-
niques in order to validate our method.

7.1 Experimental Platform

To acquire the data, we employed our urban mobile platformSmartter. The robot is based on
a standard Smart car that has been equipped with distance laser sensors, cameras, a differential
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Num Frames 1675
Laser range data resolution0.25deg
Image resolution 640×480px
Laser positioning horizontal, 48cm from ground
Camera lens Telelens, 45deg f.o.v.
Num of car samples 510
Num of people samples 376

Table 1: Urban Scenario testing dataset, collected in downtown Zürich, Switzerland

GPS unit, an Inertial Measurement Unit (IMU), an optical gyroscope and several processing
computers. For this work, we acquired data with a camera equipped with a telelens and a 2D
laser range finder mounted in front. The camera was mounted on a metal rig onthe rooftop of
the vehicle and the logging system has been optimized to reduce frame drops.

7.2 Real World Dataset: Urban Scenario

We evaluated our technique on a challenging urban scenario dataset. We set the laser angular
resolution to 0.25 degrees in order to obtain a high resolution laser dataset. Data is collected
inside Zurich, Switzerland in a loop of circa 1km length to retrieve cars and pedestrians in
a real busy urban environment. We synchronized camera and laser datafor a total of 1675
frames. The imagery is manually labeled with rectangle boxes indicating pedestrians and cars.
Annotations in images are marked if at least half of an object is shown or the object width
in the image is greater than 80 pixels. Laser range data has been manually labeled by using
associated image frames as reference for the ground truth. Labeling is obtained by manually
selecting and assigning a class label to the segments in the range data. A suite of MATLAB
scripts has been used to simplify this process.

7.3 ISMe image detector training

Several ISM codebooks need to be trained due to the complexity of the multiclass (cars, pedes-
trians) classification task. Experience shows [Leibe et al., 2007] that lateral views of pedestri-
ans generalize well to front/back views. Therefore, we used a set composed of 400 images of
persons with a height of 200 pixels at different positions, dressed with different clothing and
accessories such as backpacks and hand bags in a typical urban environment. The category
’car’ has been learned from 7 different viewpoints as in Leibe et al. [2007] (see also Figure 7,
left). 200 training images are used for each view. Car codebooks are learned using Shape Con-
text (SC) descriptors [Belongie et al., 2002] at Hessian-Laplace interest points [Mikolajczyk
and Schmid, 2005]. The pedestrian codebook uses lateral views and SCdescriptors at Hessian-
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Figure 7: Left: For car classification, we use codebooks from 7 different views. For training,
mirrored images are included for each view to obtain a wider coverage.Right: For pedestrians
we use a codebooks of side views with mirroring. Lateral views have sufficient information to
generalize frontal/back views.

Laplace and Harris-Laplace interest points for more robustness. We selected SC due to their
low dimensionality (36D): this shortens the time for feature extraction, for the agglomerative
clustering of the codebook generation and for feature matching with codebooks. In the work
of Leibe et al. [2006], the authors compare several descriptors for object detection and they
show that SC descriptors are very good features for object detection.

7.4 Boosted CRF range detector training

Our laser training data consists of 600 annotated scans containing pedestrians, cars and back-
ground randomly sampled from a typical urban scenario. 5158 car data points, 2379 people
data points and 25251 background labeled points have been used for training. There is no dis-
tinction of car views in the laser data as the variation in shape is low. The rangedata is limited
to a maximum range of 15m. As a first step, the AdaBoost classifier of range data features
is trained on this set. Then we use the output of the trained classifier to produce node feature
values for the CRF. Then, the CRF is trained in order to set the node and edge features weights.
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7.5 Quantitative and Qualitative evaluation

In this section we present results in form of precision-recall curves. They summarize the
complete performance of a classifier:

Precision=
TruePos

TruePos+FalsePos
Recall= TruePos

TruePos+FalseNeg (32)

Precision-recall curve has the advantage of computing a classifier performance measure with-
out knowing the number of true negatives. Specially in case of image and range data classifi-
cation, setting this number can be ambiguous because the quantity of possible true negatives
in such data is not easy to define.

We run a comparison of the proposed multiclass image detection algorithms with ourprevi-
ous work [Spinello et al., 2008b], as shown in Figure 13. Our vision based multiclass detection,
named ISMe2.0 in the plots, is compared to the standard ISM, our previous single class detec-
tor ISMe1.0 and with an AdaBoost detector trained on Haar features (ABH). We can see that
our method yields the best results. It is important to see that the multiclass method obtains
higher recall values than the previous ISMe1.0, mostly due to the refinementsintroduced in
the hypothesis selection step, namely the object subparts and the shape templates.

We then run the system for the challenging Urban Scenario dataset. Pedestrian detection
with camera is shown in Fig. 8-left.

In the evaluation of results we compare the performance of several detectors by using equal
error rate (EER) error metric on a precision-recall graph. EER is a measure to compare the
accuracy of classifier. This measure is often used, especially in biometrics[K.P. Li, 1988]
and in computer vision [Leibe et al., 2005]. In general, the classifier with thelowest EER is
most accurate. EER is the point in which false positive rate and false negative rate have the
same value. The lower the EER, the more accurate the system is considered tobe. The higher
the diagonal crossing point in the precision-recall curve, the lower EER, the less the errors
computed by the classifier.

We compared our image detector with respect to a Haar-AdaBoost based classifier and, in
case of the pedestrian detector, with the Histogram of Oriented Gradients technique developed
by Dalal and Triggs [2005]. In case of HOG and ABH we used the early fusion technique
explained in Section 6.1 in order to reduce the image search space. Our multiclass detector,
shortly named ISMe, clearly outperforms the other methods. Precision at equal error rate
(EER) is: 60.01% for ISMe, 52.21% for HOG, 11.17% for ABH. In general, if one is willing
to accept a high rates of false positives, the ISMe detector could achievea> 70% Recall. At
that values the difference with respect to the other methods is even more evident. We then
evaluated the laser based detector for pedestrian detection in Figure 8-right. There we show a
comparison between the Boosted CRF and a standard AdaBoost classification of JDC segments
(AJDC) in order to visualize the introduced performance enhancements. AJDC classifies JDC
segments regardless of the neighboorhood state. It is interesting to notice that the consideration
of the segments’ neighborhood in the CRF plays an important role in the ability to increase the
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Figure 8: Quantitative evaluation for pedestrian detection. Our approach outperforms the other
methods for both sensor modalities. The image based detection is compared with Histogram of
Oriented Gradients detector (HOG) and an AdaBoost classifierusing Haar features (ABH). We
show a comparison between Boosted CRF and AdaBoost classification of JDC segments (AJDC)
in order to visualize the introduced performance enhancements.

detection rate and reduces the number of false positives, the AJDC curveis always below the
CRF one and it decreases earlier than the CRF curve. In this case precision at EER is 64.23%
for the CRF and 57.09% for AJDC.

We then evaluated the performance of our system in case of car detection (see Figure 10).
The ISMe car image detector outperforms the ABH detector. The latter has been trained on
trunks, sides and frontal views of cars. It is important to remark that the results shown in
Figure 10-left are averaged between the 7 car views of ISMe. the Equal Error Rate is crossed
at 72.54% for ISMe and 18.93% for ABH. The performance of the laser based classifier is
compared with AJDC in Fig. 10-right and also in this case CRF has better results with respect
to AJDC. Precision at EER is 74.89% for CRF and 70.57% for AJDC. It is interesting to notice
that cars are in general easier to detect with respect to pedestrians. Intuitively, cars are rigid
objects with much less geometrical and visual variability than visually complex pedestrians.

Tracking and fusion for the pedestrian category is evaluated in Fig. 9. Weshow the
precision-recall graph and a ’Recall-false positives per frame’ plot inorder to show the per-
formance increase. It is interesting to see in the plot of Fig. 9-left that the camera and laser
detectors are very complementary sources of information: their combined contribution allows
to have a fused detection that is higher that each single one; this phenomenon is even more evi-
dent when precision is low. The tracked and fused precision at EER is 69.8%. In Figure 9-right
we show that we improved also that: by fixing a certain false positive rate perframe, we obtain
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Figure 9: Quantitative evaluation of tracking and fusion for pedestrian detection. Precision-Recall
graph (left) and ’Recall-false positives per frame’ show that the fusion method enhances the results
of single classifiers.

a higher Recall value. Tracking and fusion for cars is shown in Fig. 11.Similar conclusions
to the sensor fusion on pedestrians could be given. Tracking allows a better detection rate than
each single classifier and a reduced number of false positives per frame; precision at EER is
78.4%. This value of precision is significantly higher than the pedestrian category due to the
higher performances of vision and laser detectors.

From this experiments we can draw some interesting conclusions. Image and range data are
two very different sensor modalities, with very different characteristics. With this experiments
we proved that image and range based detectors can be combined for obtaining a fused detector
that is more robust than its components. Range data has the advantage of a precise and instan-
taneous target localization and it helps to distinguish objects that have a low image information
content, for instance people in shadow areas, or partial views of cars.Image, instead, plays an
important role when range data is ambiguous, for instance when a person isobserved from the
side or in presence of clutter. Both of this examples show how single sensormodalities could
fail and how the multimodal fusion overcomes this flaws. Moreover it is interesting to notice,
that in case of limited visibility, poor/no light conditions or camera failure, this approach still
produces a usable output, see for instance Figure 12-middle or Figure 12-bottom.

Certainly, this approach presents shortcomings. The technique is limited to the range of
15m due to sparsity of the retrieved laser data points. At such distance cars and specially
people are described by too few points to obtain good range data classification results. Severe
street slopes could also contribute toshort-sightednessof the fused detector. This aspect has
been addressed in a previous work Spinello et al. [2008b] by using 3D ground plane estimate
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Figure 10: Quantitative evaluation for car detection. Our approach outperforms the other methods
for both sensor modalities. The image based detection is compared with an AdaBoost classifier
using Haar features (ABH). We show a comparison between Boosted CRF and AdaBoost classifi-
cation of JDC segments (AJDC) in order to visualize the introduced performance enhancements.
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Figure 11: Quantitative evaluation of fusion for car detection. Precision-Recall graph (left) and
’Recall-false positives per frame’ show that the fusion method enhances the results of single clas-
sifiers.

with a 3D laser.
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Some qualitative results are shown in Figure 12 where a passing car and a crossing pedes-
trian are correctly detected and tracked. It is important to notice that even though images and
laser data show very low contrast, partial occlusions and clutter, the system manages to detect
and track the objects in the scene. For a video extracted from the experiments see Extension 1
(Appendix A).

8 Conclusions

We have presented a method to reliably detect and track multiple object classesin outdoor
scenarios using vision and 2D laser range data. We showed that the overall performance of
the system is improved using a multiple-sensor system. We have introduced several extensions
to the ISM based image detection to cope with multiple classes. We showed that laser detec-
tion based on Boosted CRFs performs better than a simpler AdaBoost classifier and presented
tracking results on combined data. Finally, we showed the usefulness of our approach through
extended experimental results and comparisons on real-world data.

Future developments of this research are concerned specially with the integration of long
range people detection. People at long range are described by only a few pixels in the image
and few to none laser points. The idea is to integrate small scale detection methods [Spinello
et al., 2009] in the multimodal system by considering a more advanced trackingable to cope
with very unreliable hypotheses. Other research directions involve the development of robust
data association filters, like MHT or JPDAF, adapted to the multimodal detection problem.
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Figure 12: Cars and pedestrian detected and tracked under occlusion, clutter and partial views.
In the camera images, left column, blue boxes indicate car detections, orange boxes pedestrian
detections. The colored circlise on the upper left corner ofeach box is the track identifier. Tracks
are shown in color in the right column and plotted with respect to the robot reference frame. Green
vectors show direction of motion for cars.
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