
Simultaneous Reconstruction and Segmentation
of CT Scans with Shadowed Data

F. Lauze1 and Y. Quéau2 and E. Plenge1
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Abstract. We propose a variational approach for simultaneous recon-
struction and multiclass segmentation of X-ray CT images, with limited
field of view and missing data. We propose a simple energy minimi-
sation approach, loosely based on a Bayesian rationale. The resulting
non convex problem is solved by alternating reconstruction steps using
an iterated relaxed proximal gradient, and a proximal approach for the
segmentation. Preliminary results on synthetic data demonstrate the po-
tential of the approach for synchrotron imaging applications.

1 Introduction

X-ray Computerised Tomography (CT) attempts at reconstructing a 3D struc-
ture from a set of planar projections that consist of attenuated measurements
of X-rays across an object. In many domains, especially material sciences and
geosciences, this reconstructed structure is often a building block for segmen-
tation, which is further used to analyse some physical properties of the sam-
ple, such as porosity and tortuosity, or to perform some numerical simulations.
Traditionally, and because of its low cost, Filtered Back Projection reconstruc-
tion (FBP) is performed, followed by segmentation. This has the disadvantage
to propagate reconstruction errors in the segmentation. Other approaches have
thus been proposed that do not decouple these steps. Discrete tomography [1]
reconstructs an image with a small finite number of values, while Yoon et al.
reconstruct a segmented image, using a level set approach [12]. In this work we
follow a simultaneous reconstruction and segmentation (SRS) approach to pro-
duce both reconstructed image and its segmentation. This approach was first
proposed by van Sompel and Brady [10], using a Hidden Markov Measure Field
Model (HMMFM). Another was proposed by Ramlau and Ring in [8]. Romanov
et al. [9] assumed that information about the segmentation is known in the form
of prior knowledge on the parameters of a Gaussian Mixture Model for intensity
distribution, and some partial convexification is performed. A Potts-Model based
algorithm was proposed by Storah et al. in [11]. The present work is somewhat
similar, though we place ourselve in a limited Field of View situation, where
the detector extent is less than the object diameter. Algebraic Reconstruction
Techniques (ART) are know to perform properly ([7], Chap VI), though an extra
difficulty is that the signal may be partially blocked at certain angles, a situation



Fig. 1. Acquisition setup. Left: device holding the sample to be imaged. Right: limited
Field of View and obstacle.

somewhat similar, but not identical to limited-angle tomography. FBP solvers
can also reasonably deal with limited field of view by proper extension of the
sinogram data (see also [7], Chap. VI), however, noise is still propagated and
the presence of holes in the sinogram produces potentially severe streak artifacts
in the reconstruction affecting thereafter the segmentation quality. One of the
reasons for these streak artifacts is the fact that the absence of measurements is
interpreted as a zero-measurement in FBP. Ongoing work on extending microlo-
cal analysis [5] from the limited angle problem to this type of sinogram missing
data is also providing clues on potential singularities arising from them.

This work is targeted towards Synchrotron X-Ray tomography, as often the
case in material science. This means a simple, parallel beam geometry. We come
back to the SRS problem where we attempt to estimate all parameters dur-
ing the reconstruction and segmentation process. A clear modelling of what is
available allows to properly take into account missing data, both for FoV and
unrecorded data. Spatial regularisation, via Total Variation minimisation, and
positivity constraints reduce noise and artifacts, providing an inpainting-like
mechanism for the missing data. We couple it to a segmentation term which, in
the reconstruction phase, also acts as a reaction towards specific values. Because
out of the FoV, reconstructed values are not reliable, the segmentation is run
only inside the FoV.

The paper is organised as follows. Section 2 formalises SRS with limited field
of view and occluding geometry as a Bayesian inference problem. This yields an
energy-minimisation formulation which is numerically tackled in Section 3. Start-
ing from a rough initial reconstruction and segmentation obtained by standard
methods, the proposed algorithm iteratively refines the reconstruction, given the
current segmentation, and then the segmentation, given the current reconstruc-
tion. Both these steps are efficiently achieved by lagged proximal iterations. The
preliminary results presented in Section 4 confirm that this joint approach is
promising, in comparison with the standard sequential strategy.



2 Statement of the problem

For a monochromatic X-ray travelling along a line L, Lambert-Beer’s law asserts
that

IL = I0 exp

(
−
∫
L

f(x) dx

)
⇐⇒ yL := log

I0
IL

=

∫
L

f(x) dx (2.1)

where I0 is the initial intensity and f the attenuation coefficient function. Re-
covering f accounts thus to solving (2.1) for f when we have observed (yL)L.
More precisely, the Radon transform R : L1(D)→ L1(S1 ×R) of a function f is
defined as

Rf(θ, s) =

∫
θ⊥
f(sθ + y) dy, θ ∈ S1, s ∈ R. (2.2)

with D a bounded domain of R2, S1 the unit circle of R, and θ⊥ the line or-
thogonal to θ. The well celebrated inversion formula proven by Radon in 1917
states that when f is smooth with compact support, it can be recovered from
its Radon transform by the inverse Radon transform:

f(x) =
1

4π2

∫
S1

∫ ∞
−∞

∂
∂sRf(θ, t)

x · θ − t
dtdθ. (2.3)

This inversion is however ill-posed, and in our setting, we observe only Rf(θ, s)
for values (θ, s) in a potentially complex sub-domain of S1 × R, as illustrated
in Fig. 2. Filtered backprojection (FBP) is used to stabilise the inverse Radon
transform, and relatively simple tricks can deal with the limited Field of View
problem in the (FBP) settings. The shadowing caused by the presence of metallic
bars induces however serious artifacts in FBP. This has motivated us to follow
a discrete, direct approach.

Notations. We start by introducing notations used in the sequel. In the 2-
dimensional setting, the sought function f can be viewed as a discreteN×N → R
image x on a regular square grid, called tomogram and represented as a vector
of RN2

. It is assumed to be large enough to cover the object we want to image.
Each xn, n = 1 . . . N2, satisfies

xmin ≤ xn ≤ xmax (2.4)

with xmin ≥ 0, xmax ≤ +∞. This is a simple box constraint and we denote by C
the box [xmin, xmax]N

2

. In the 3D setting, x would be a N × B × P discrete
image, with similar box constraints. Yet, in this preliminary work we restrict
ourselves to the 2D case.

Because we are in the parallel beam geometry setting, each angular projection
is inherently 2D to 1D. Assume ` directions and a detector array of length d
withM elements, where d is larger that the diameter of the object under scrutiny.
Our aim is to recover the image x from samples of the Radon transform of the
underlying attenuation function f , which form an ` ×M discrete image called
sinogram, and represented as a vector y ∈ R`M . The corresponding projection



matrix / discrete Radon Transform R is thus an element of R`M×N2

such that
the sinogram is obtained as

y = Rx. (2.5)

This is a discrete analogue to the standard FBP setting. We choose here a
simple model where entry Rij represents the contribution of grid element j to
the line-ray encoded by i, as for instance the length of the intersection of this
line and the grid element. Other less local representations can be chosen, see [4]
for instance, for discussions on the generation of the discrete Radon transform
matrices.

When the detector array has a length d′ smaller than the object diame-
ter, some parts of the object are not traversed by X-rays, or these rays are not
recorded. If assuming the same resolution as for building R, the resulting projec-
tion matrix Q is made of a subset of lines of R. With m rays recorded per view,
Q is a R`m×N2

matrix obtained from R by a linear projector PF ∈ R`m×`M .
The reduced sinogram yF is yF = PFy.

In the situation described in Figure 1, the geometry of the missing data in
the sinogram will vary according to the ratio between bar radius and detector
extent. This is easily computed by projecting orthogonally the disks along the
detector, at each angle. Figure 2 illustrates this in two extreme cases, a very
large and a very narrow detector.

Fig. 2. Sinogram geometry induced by the occluding geometry of the bars of Figure 1.

Each point in the sinogram corresponds to a unique angle and detector posi-
tion and thus to a line of the projection matrix. Lines corresponding to missing
data points in the sinogram space should also be removed from the projection
matrix. This can be modelled as another projector PM ∈ RS×`m with S ≤ `m,
and the predicted incomplete sinogram data y can be written as

y = PMyF = PMPFRx = Ax. (2.6)

where A is of size S×N2. If the field of view is limited or if the geometry induces
occlusions, then S < N2 and the image x cannot be recovered directly from the
sinogram y by inverting A. It is necessary to introduce additional constraints: the
Bayesian framework provides a natural framework for such a task. We thus use
this framework to formulate the reconstruction problem, but also for segmenting
the reconstructed image x i.e., grouping its pixels into different segments δ.



Bayesian Inference and MAP. Bayesian inference has been used in several
SRS work to propose a posterior distribution of x and of a segmentation δ. In
the limited field of view, and limited data problem we proceed the same way,
incorporating the knowledge of the field of view F and occluding geometry M .

p(x, δ|y, F,M) =
p(y|x, δ, F,M)p(x, δ|F,M)

p(y|F,M)

∝ p(y|x, F,M)p(x, δ|F,M) (2.7)

The likelihood term p(y|x, F,M) expresses how the observed sinogram data may
deviate from the one predicted in (2.6). The conditional prior p(x, δ|F,M) links
image values, segmentation and geometry of the field of view and occluding
data. There is in general no hope to get a proper reconstruction out of the field
of view. This is what Figure 3, which records the amount of recorded X-rays
beams crossing each pixel, illustrates.

Fig. 3. X-ray visits of pixels during the acquisition.

It makes clear that between full field of view and restricted field of view
(left and centre image), a large amount of information is lost, while this loss is
much more moderate between centre and right image (restricted field of view and
occluding geometry), and thus suggests that if a restricted field of view recon-
struction is possible, then with proper priors, a reconstruction is also possible
with (moderate) occluding geometry. So in order to reconstruct a tomogram
and segment it, we choose a joint prior on (x, δ) independent of M , i.e., we
assume p(x, δ|F,M) = p(x, δ|F ). We may want to factorise it further by writing
p(x, δ|F ) = p(x|δ, F )p(δ|F ) = p(δ|x, F )p(x|F ), but the unfactorised expression
keeps the symmetry between δ and x.

A Maximum a Posteriori approach leads to minimisation of the neg-log-
posterior

(x∗, δ∗) = argminx,δ − log p(y|x, F,M)− log p(x, δ|F ). (2.8)

Sinogram noise in X-ray tomography is usually modelled as Poisson, and in
the high number of X-rays quanta, the limiting distribution can be considered



Gaussian [4], hence a least-squares term can be chosen for the first component
in (2.8). The joint prior encodes both priors on x and δ on F as well as their
mutual dependence. We propose a discrete TV prior for x, with box-positivity
constraints. For the interplay between x and δ, a simple Pott’s model term
is used. And for the prior on δ, we ask smoothness of the segments within a
HMMFM framework. For that purpose write δ = (v, c) where v : F → ∆K is
the label field, ∆K is the standard simplex of RK where K is the number of labels
(supposed to be known in advance), vn = (vn1, . . . , vnK) ∈ ∆k ⇐⇒ vnk ≥ 0,

k = 1 . . .K and
∑K
k=1 vnk = 1. A discrete squared-gradient magnitude is used

for regularisation of v. Putting all pieces together, we obtain the following cost
function:

E(x, c,v;y) =
1

2
‖Ax−y‖22+αJF (x)+

β

2

(
λ
∑
n∈F

K∑
k=1

vnk (xn − ck)
2

+
1

2
‖Dv‖22

)
,

0 ≤ xmin ≤ xn ≤ xmax ≤ +∞, vn ∈ ∆K . (2.9)

In this expression, c ∈ RK is the vector of mean segment values, JF (x) is
the discrete TV-semi norm of x over F , D is a matrix representing the finite
differences stencil used to approximate the gradient, and α, β and λ are user-
defined hyper-parameters that need to be tuned appropriately.

3 Optimisation

The cost function is convex in x, in v and in c, but not jointly convex in x,v, c.
We propose to optimise it iteratively by alternating between updates of x, v
and c. We first describe updates for the different arguments, from the simplest
to the most complex one. Then we describe the full algorithm. As segmentation is
difficult to obtain without reconstruction, a few iterations of a TV-reconstruction
algorithm, followed by a K-means segmentation, are performed prior to start
the joint optimisation. These iterations are actually simplifications of the joint
optimisation when one or the other arguments are known.

3.1 The problem in c

The problem in c is classical and trivial: each ck is given by

ck =

∑N2

n=1 vnkxn∑N2

n=1 vnk
. (3.1)

3.2 The problem in v

Call UK = ∆F
K the set of functions from F to ∆K . After simplification of (2.9),

the part of the cost function of interest in v is F(v) = 1
2‖Dv‖22+λ 〈g,v〉+ιUK

(v)

with g =
(
(x− c1)2, . . . , (x− cK)2

)T
, 〈−,−〉 is the Euclidean inner product on



Algorithm 1 Sketch of the full algorithm.

Input: Sinogram y, field of view F , sinogram mask M , number of classes K, weight
parameters α, β, λ, ART parameter ρ ∈ (0, 2), maximum number of iterations LRS .

Output: Reconstruction x and segmentation (v, c) of x on F .
Initialisation: Run approximate reconstruction to produce x0. Run a K-means or

Otsu clustering to produce (c0,v0) from x0 and F .
for i = 0 to LRS do
. Solution in x

Solve for xi+1 from xi, ci and vi.
. Solution in c
Solve for ci+1 from xi+1 and vi.
. Solution in v

Solve for vi+1 from xi+1 and ci+1.
end for

RN2K and ιUK
the indicator function of UK incorporating the constraints on v.

We write h(v) = 1
2‖Dv‖22 +λ 〈g,v〉. A classical solution is the proximal method

which consists in computing vi+1 iteratively, by using the following lagged j-
iterations:

vj+1 = proxti F (vj) = argminv∈UK

{
h(v) +

1

2ti
‖v − vj‖22

}
= PUk

(
vj − ti∇̃h(vj+1)

)
(3.2)

with ti a diminishing gradient step, constant over a sweep i and set to ti =
1/(1 + i), and ∇̃h(vj+1) the subgradient of h at vj+1 [3]. As h is in fact smooth,
the subgradient is just its usual gradient ∇h(vj+1): ∇h(v) = DTDv + λg with
−DTD a discrete “vector Laplacian”. In practice replace it by the two-steps
method

ṽj+1 =
(
DTD + t−1j idF

)−1 (
t−1j vj − λg

)
(3.3)

vj+1 = PUK

(
ṽj+1

)
. (3.4)

Reflective boundary conditions are used to solve (3.3) while the projection onto
UK can for instance be implemented using classical simplex projection algo-
rithms.

3.3 The problem in x

With c and v fixed, the problem in x still presents two difficulties that prevent
a direct approach: 1) the TV-seminorm term JF (x) and the size of the ma-
trix A. Row / block of rows action methods and iterated proximal algorithms
provide a way to deal with it, following [6]. Before describing it, we rewrite the
segmentation term in a more compact way.

Let ΠF : x 7→ x|F the restriction to F . Let also NF denote the amount
of pixels in the field of view F , so that ΠF can be identified with a projection



RN2 → RNF . Then

1

2

∑
n∈F

K∑
k=1

vnk (xn − ck)
2

=
1

2
‖VΠFx− L(V, c)‖22 (3.5)

where we have set V = (V1, . . . ,VK)
T

with Vk = diag(v1k, . . . ,vnk)
1
2 and

L(V, c) =
(

(c1V11NF
)
T
, . . . , (cKVK1NF

)
T
)T

, 1NF
= (1, . . . , 1)T ∈ RNF . Note

that VTV = idRNF . Dividing A in p blocks (one per viewing angle, if the view
is non-empty), we have

E(x) =

p∑
q=1

1

2
‖Aqx− yq‖22 + αJF (x) +

βλ

2
‖Vx− L(V, c)‖22 (3.6)

where we abusively denote V := VΠF for sake of compactness.
We write E(x) =

∑p+2
q=1 fq(x) with

fq(x) =
1

2
‖Aqx− yq‖22, q = 1 . . . p (3.7)

fp+1(x) = αJF (x), (3.8)

fp+2(x) =
βλ

2
‖Vx− L(V, c)‖22. (3.9)

Using one of the schemes (RIPG-I or RIPG-II) from [6], we obtain the following
iterative scheme. With ρ ∈]0, 2[ and an initial estimate set for the i-th sweep, a
full update on xi is given as follows.
Set x0

i = xi. Then for q = 1 up to p+ 2:

zq = proxtifq (xqi )

xq+1
i = PC(ρzq + (1− ρ)xqi )

and set xi+1 = xp+2
i . The first p steps are updates from the Radon transform,

step p + 1 is a TV regularisation, while the last step is a reaction towards the
current segmentation. PC is the box constraint projection from (2.4).

The proximality operators for the first p equations and the last one have the
form proxtϕ(x) where ϕ(x) is quadratic, ϕ(x) = δ

2‖Hx− z‖22 with H ∈ RL×N2

and z ∈ RL. By definition of the prox operator, one has

proxtϕ(x) = argmin
u∈RN2

{
tδ

2
‖Hu− z‖22 +

1

2
‖u− x‖22

}
. (3.10)

Writing the normal equations, one get

proxtϕ(x) =

(
HTH +

1

tδ
idRN2

)−1(
HT z +

1

tδ
x

)
. (3.11)



Using the classical relation valid for all τ 6∈ spec(MMT )∪{0} and all M ∈ Rn×m,(
MTM + τ idRm

)−1
MT = MT

(
MMT + τ idRn

)−1
(3.12)

Eq. (3.11) can be rewritten as

proxtϕ(x) = x−HT

(
HHT +

1

tδ
idRL

)−1
(Hx− z) (3.13)

and HT
(
HHT + 1

tδ idRn

)−1
is a regularised or damped pseudoinverse of H. We

use it for the first p equations with H = Aq, δ = 1, t = ti. This correspond
to a block-damped ART approach. With a standard discretization of the Radon
transform, the image resolution being given by detector resolution, AqA

T
q is at

most (and most often) tridiagonal, its values can be cached for reuse in subse-
quent updates.

A FISTA scheme [2] is used for the TV-regularization proximal step origin-
bating from decomposition (3.8) (see also discussion in [6]).

For the segmentation reaction equation, H = VΠF and HTH = ΠT
FV

TVπF =
ΠT
FΠF and y = ΠT

FΠFx is given by ys = xs if s ∈ F and ys = 0 if not. The
proximal calculation is actually straightforward. Pixels out of F are not modified
(in accordance of course with our prior hypothesis and the form (2.9) of the cost
function), while in F , they are updated via the simple formula: the s-component
of zq is given by

zqs =

∑K
k=1 vskck + (tiβλ)

−1
(xqi )s

1 + (tiβλ)
−1 (3.14)

4 Experiments

To evaluate our variational SRS strategy, we consider the synthetic dataset from
Figure 4. We created a 2D tomogram of size N × N with N = 300, contain-
ing randomly generated circular patterns. To simulate various materials, each
circular pattern was attributed one out of K = 3 scalar values within the set
{0, 128, 255}. From this tomogram, we generated the corresponding sinogram
using l = 720 directions (corresponding to a equally reparted 1D slices at every
angle of 0.25 radians within [0, π]). To simulate limited field of view, only the
central part of the tomogram is considered for reconstruction and segmentation,
leading to a sinogram of size 720 × 282. Gaussian noise was then added to the
sinogram. Eventually, some measurements in the sinogram were set to the null
value, in order to simulate occluding geometry.

Figure 5 shows that standard FBP is not only sensitive to noise, but also
efficient only when there is no missing data in the sinogram. This justifies the
need for a joint reconstruction and segmentation strategy, instead of a sequential
treatment.

Figure 6 presents our initial guess for the reconstruction (TV-reconstruction,
without segmentation) and for the segmentation (K-means applied to the TV-
reconstruction result). The results are already much better than the standard



(a) (b)

Fig. 4. Dataset used for evaluation. (a) Ground truth image, of size 1000× 1000. The
field of view is indicated by the central circle. (b) Sinogram computed from (a), of size
720× 282, with missing data and additive, zero-mean, Gaussian noise (with standard
deviation equal to 1% of the signal amplitude.

Fig. 5. Left: FBP reconstruction result, in the case where the sinogram does not contain
missing data. Although it is quite sensitive to noise, the reconstruction is satisfactory
and can be used for segmentation. Middle: same, when the sinogram contains missing
data. Right: K-means segmentation applied to the middle reconstruction, which is not
informative.

FBP approach of Figure 5, but thin structures are missed by the TV-reconstruction,
which biases the subsequent segmentation.

Starting from this inital guess, we let our SRS algorithm iteratively refine
the reconstruction and segmentation for 500 iterations, which required around
10 mn of computation on a recent I7 processor with 32 GB of RAM, using
non-parallelised Python codes. Figure 7 shows that the final reconstruction and
segmentation are much more accurate than the initial result from Figure 6. By
plotting the evolution of the reconstruction and segmentation error as functions
of the iteration number (Figure 8-a), we observe that most of the gain is achieved
during the first iterations, a τ = 90% segmentation accuracy being reached after
only 50 iterations. This indicates that accurate results can be expected within
a reasonable time, which could be further reduced using parallelisation. Next,
we question in Figure 8-b and Figure 8-c the robustness of our method to the
choice of parameters and to increasing noise level. The method is quite sensitive
to the choice of parameters, but the same set of parameters can be used for a
reasonable range of noise (here, it is only with σ = 10% that the reference set of
parameters is inappropriate).



RMSE = 58.37 τ = 0.81

Fig. 6. Initial 3D-reconstruction and segmentation. From left to right: TV-
reconstruction of the image; absolute difference between (a) and ground truth (Fig. 4-
a): black is 0, white is 255, and RMSE is the root mean square error; K-means Otsu
clustering obtained from (a); classification map, where black indicates good classifica-
tion, white indicates bad classification, and τ is the rate of good classification. Sharp
structures are not very well recovered, and small areas are badly segmented.

RMSE = 25.28 τ = 0.96

Fig. 7. Top: 3D-reconstruction and segmentation after 500 iterations, with the same
convention as in Fig. 6. At convergence, fine structures are recovered and small areas
are finely segmented.
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Fig. 8. (a) Evolution of the RMSE on the reconstructed image, and of the good clas-
sification rate on the segmentation, as functions of the iteration. As the iterations
go, both the 3D-reconstruction and the segmentation are improved. (b) Evaluation of
the reconstruction and the segmentation as functions of iterations, for different sets
of model parameters (noise level: σ = 1%). (c) Ditto, with increasing noise level (the
same reference parameters are used in all four experiments).



5 Conclusion

In this paper we proposed a joint image reconstruction and segmentation for
Limited Field of View shadowed tomographic data. Data shadowing / occlusion
makes it difficult, if not impossible, to recover a tomogram using the classi-
cal filtered backprojection approach. However, we showed that from an inverse
problem viewpoint, when the amount of missing data is reasonable due to the
shadowing effect, recovery is possible and by coupling it with segmentation, we
avoid resolution loss in the latter stage.

Other types of segmentations can be used, the main memory and time bot-
tleneck is the reconstruction part, though some method modifications may allow
for a high degree of parallelism with reasonable block reconstruction approaches
which open for fast GPU implementations. Investigating such acceleration tech-
niques would be particularly worthwile regarding real-world applications to syn-
chrotron imaging, which involve tremendous amount of data.
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