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Abstract. We tackle the nonlinear problem of photometric stereo under
close-range pointwise sources, when the intensities of the sources are un-
known (so-called semi-calibrated setup). A variational approach aiming
at robust joint recovery of depth, albedo and intensities is proposed. The
resulting nonconvex model is numerically resolved by a provably conver-
gent alternating minimization scheme, where the construction of each
subproblem utilizes an iteratively reweighted least-squares approach. In
particular, manifold optimization technique is used in solving the corre-
sponding subproblems over the rank-1 matrix manifold. Experiments on
real-world datasets demonstrate that the new approach provides not only
theoretical guarantees on convergence, but also more accurate geometry.

1 Introduction

Photometric stereo [1] (PS) is a classic inverse problem arising from computer
vision. It consists in estimating the shape and the reflectance of a surface, given
m ≥ 2 images Ii : R2 → R, i ∈ [1,m], of this surface obtained from the same
angle, but under varying lighting si, i ∈ [1,m]. Figure 1 shows two PS images,
and the 3D-reconstruction result obtained by the proposed approach.

Traditional PS methods assume that the lighting is induced by infinitely
distant point light sources. Under this assumption, vector si ∈ R3 represents
a uniform light beam whose direction is that of the i-th source, and whose norm
is related to its intensity φi > 0. It is usually assumed that the sources intensi-
ties are known. From the user perspective, relaxing both these assumptions has
two advantages: assuming close-range sources allows using low-cost lighting de-
vices such as LEDs, and assuming unknown sources intensities (semi-calibrated
PS) simplifies the calibration procedure.

Fully uncalibrated (i.e. , unknown intensities and locations of the sources)
close-range photometric stereo has been studied in a few papers [2,3,4]. Never-
theless, calibration of the sources locations can easily be achieved using specular
spheres [5], and assuming known sources locations considerably simplifies the nu-
merical resolution. On the other hand, calibration of the sources intensities is not
so easy, since they are relative to the radiometric parameters of the camera [6].
Hence, semi-calibrated close-range photometric stereo represents an interesting
intermediate case: it retains the advantage of using known locations, but it is
robust to uncontrolled radiometric variations, which allows for instance using
the camera in “auto-exposure” mode.
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2 Y. Quéau, T. Wu, D. Cremers

Fig. 1: Left: 2 out of m = 8 images of a plaster statuette. Each image is acquired
while turning on one different nearby LED with calibrated position and orientation,
but uncalibrated intensity. Right: result of our semi-calibrated PS approach, which
automatically estimates the shape, the reflectance (mapped on the 3D-reconstruction
on the rightest figure) and the intensities.

However, existing methods for semi-calibrated PS [6,7] are restricted to dis-
tant sources. In addition, the semi-calibrated PS approach from [6] lacks robust-
ness, as it is based on non-robust least-squares. The recent method in [7] solves
this issue by resorting to a non-convex variational formulation: in the present
paper we use the same numerical framework, but extend it to the case of nearby
sources. Apart from fully uncalibrated ones [2,3,4], methods for PS with non-
distant sources do not refine the intensities, and sometimes lack robustness. For
instance, the near-light PS approach from [3] is based on least-squares, and it
alternatively estimates the normals and integrates them into a depth map, which
may be a source of drift. These issues are solved in [4] by using lp-norm optimiza-
tion, p < 1, to ensure robustness, and by treating the normals and the depth as
two different entities. Still, the normals and the depth should correspond to the
same geometry, hence approaches estimating directly the global geometry may
be better suited. This is achieved in [8] by mesh deformation, yet again in a least-
squares framework. PDE methods have also been suggested in [9]. The resulting
Fast Marching-based numerical scheme is the only provably convergent strategy
for near-light PS, yet it is restricted to the m = 2 images case, thus it has been
recently replaced by variational methods in [10]. Still, this ratio-based procedure
has several drawbacks: it results in a combinatorial number of equations to solve
(limiting the approach to few and small images), it does not provide the albedo,
and it biases the solution in shadowed areas.

Hence, there is still a need for a near-light PS method which is robust, prov-
ably convergent, and able to estimate the intensities. Our aim is to fill this gap.
The proposed approach relies on a new variational formulation of PS under close-
range sources, which is detailed in Section 2. Section 3 proposes an alternating
minimization strategy to tackle the nonconvex variational model numerically.
The construction of each subproblem utilizes the iteratively reweighted least-
squares method. Convergence analysis on the generic version of the proposed
algorithm is conducted in Section 4. Section 5 demonstrates an empirical evalu-
ation of the new method, and Section 6 summarizes our achievements.
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2 Variational Model for Semi-Calibrated Near-Light PS

Photometric Model. Assuming m ≥ 3 images of a Lambertian surface, the
graylevel in a pixel p ∈ R2 conjugate to a surface point x ∈ R3 is given by:

Ii(p) = ρ̃(x)φi
{
si(x) · n(x)

}
+
, i ∈ [1,m], (1)

where:

– ρ̃(x) > 0 is the albedo in x (unknown);
– φi > 0 represents the intensity of the i-th light source (unknown);
– si(x) ∈ R3 is a vector representing the i-th incident lighting (see Eq. (3));
– n(x) ∈ S2 ⊂ R3 is the outgoing normal vector to the surface in x (unknown);
– {·}+ encodes self-shadows (cf. Figure 2-b), and it is defined as follows:

{t}+ = max {t, 0} . (2)

We consider the imperfect Lambertian light source model, representing the
i-th source by the parameters {nis,xis, µi, φi}, where nis ∈ S2 is the (unit-length)
principal direction of the source, xis ∈ R3 is its location, µi > 0 is its anisotropy
parameter and φi > 0 is its unknown intensity. Apart from φi, all the sources pa-
rameters are assumed to be known: anisotropy is provided by the manufacturer,
the locations of the sources can be estimated by using reflective spheres [4,5],
and their orientations can be deduced from images of a plane [5]. Vector si(x)
in Eq. (1) is then written as follows:

si(x) =

(
nis ·

[
x− xis
‖x− xis‖

])µi

1

‖x− xis‖
2

[
xis − x

]
‖x− xis‖

, ∀i ∈ [1,m], (3)

where the first factor represents attenuation due to anisotropy, the second factor
stands for attenuation due to distance (inverse-of-square falloff), and the third
one gives the unit-length lighting direction. This is illustrated in Figure 2-a.

Geometric Setup. Under perspective projection, the conjugation relationship
between x and p = [x, y]

>
reads as:

x(x, y) = z̃(x, y)K−1
[
x, y, 1

]>
, (4)

with z̃ : Ω ⊂ R2 → R the depth map over the reconstruction domain Ω, and K
the (calibrated) intrinsics matrix [11]:

K =

fx s x0
0 fy y0
0 0 1

 . (5)

The normal vector n(x) in Eq. (1) is the unit-length vector proportional to
∂xx(x, y) × ∂yx(x, y). Using (4) and introducing the logarithmized depth z =
log z̃, we obtain after some algebra:

n(x) =
1

d(p; z(p))
J(p)>

[
∇z(p)
−1

]
, (6)
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Fig. 2: (a) Near-light PS setup. Surface point x is conjugate to pixel p according to
the pinhole camera model (4), where z̃(p) is the unknown depth. According to Eq. (3),
the lighting in x induced by the first source is strongly attenuated by anisotropy, while
that induced by the second source is strongly attenuated by the distance to the source.
(b) Pixel p appears shadowed in both images I1 and I2, because x is self-shadowed
w.r.t. the first light source (s1(x) · n(x) < 0), and the second light source is occluded
by the surface (cast-shadow). The first case is handled by our model (Eq. (2)), and the
second one is treated as an outlier within a robust estimation framework (Eq. (12)).

where we denote:

z(p) = log z̃(p), J(p) =

fx −s −(x− x0)
0 fy −(y − y0)
0 0 1

 , d(p; z(p)) =

∥∥∥∥J(p)>
[
∇z(p)
−1

]∥∥∥∥ .
(7)

Discrete Variational Model. Instead of estimating the albedo ρ̃(p) in each
pixel p, we follow [7] and rather estimate the following “pseudo”-albedo:

ρ(p) :=
ρ̃(p)

d(p, z(p))
, (8)

which eliminates the nonlinearity due to the denominator. Once the scaled albedo
and the depth map are estimated, the “real” albedo is easily deduced.

Combining Eqs (1), (6), (7) and (8), photometric model (1) is turned into
the following system of nonlinear PDEs in (ρ : Ω → R, z : Ω → R, {φi ∈ R}i):

Ii(p) = φiρ(p)

{[
J(p)si(p; z(p))

]> [∇z(p)
−1

]}
+

, ∀i ∈ [1,m], ∀p ∈ Ω, (9)

where si(p; z(p)) stands for si(x) as defined in Eq. (3), knowing that x depends
on z and p according to Eq. (4), and where we denote from now on ρ(p) instead
of ρ(x), knowing that there exists a bijection between x and p (Eq. (4)).

Instead of continuous images Ii : Ω → R, we are given a finite list of
graylevels over a discrete subset Ω of a 2D grid. Let us denote j = 1 . . . n the
corresponding pixel indices, Iij the graylevel at pixel j in image Ii, z ∈ Rn and
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ρ ∈ Rn the stacked depth and albedo values, sij(zj) ∈ R3 the lighting vector si

at pixel j, which smoothly depends on zj , and Jj ∈ R3×3 the matrix J defined
in Eq. (7) at pixel j. Then, the discrete counterpart of Eq. (9) is written as:

Iij = φiρj

{
(sij(zj))

>J>j

[
(∇z)j
−1

]}
+

, ∀i ∈ [1,m], ∀j ∈ [1, n], (10)

where (∇z)j ∈ R2 represents a finite differences approximation of the gradient of
z at pixel j (in our implementation, we used first-order forward finite differences
with Neumann boundary conditions).

Our goal is to jointly estimate the albedo values ρ ∈ Rn, the depth values
z ∈ Rn and the intensities φ ∈ Rm from the set of nonlinear equations (10). Let
M be the set of all rank-1 n-by-mmatrices (known to be a smooth manifold [12]),
TM(θ) the tangent space ofM at θ, and PTM(θ) (·) the (linear) projection onto
TM(θ). By introducing the rank-1 matrix θ ∈ M such that θij ≡ φiρj , we
consider the following discrete optimization problem:

min
z,θ: θ∈M

F (θ, z) =

n∑
j=1

m∑
i=1

Φ
(
rij(θ, z)

)
. (11)

Here, Φ is a robust estimator (possibly non-convex), e.g. Cauchy’s estimator:

Φ(x) = λ2 log(1 + x2/λ2) (12)

for some user-defined parameter λ > 0 (in our implementation λ = 0.1).
We also define

rij(θ, z) = θij
{
Ψ ij(z)

}
+,δ
− Iij , Ψ ij(z) = (sij(zj))

>J>j

[
(∇z)j
−1

]
,

where it is convenient to avoid non-differentiability by smoothing {·}+ with

{t}+,δ =


t− δ/2 if t ≥ δ,
t2/(2δ) if 0 ≤ t < δ,

0 otherwise,

for some δ > 0. If δ = 0, we regain {·}+,δ = {·}+.

3 Optimization

Now we present a generic scheme which minimizes the nonconvex model (11) al-
ternatively over variables θ and z. In each subproblem, we solve a local quadratic
model of (11) with positive definite approximation of the Hessian. A backtrack-
ing line search is then performed to guarantee a sufficient descent in the ob-
jective. In particular, we note that in the θ-subproblem the rank-1 constraint
is handled implicitly, and the resulting subproblem represents a weighted least-
squares problem over the rank-1 matrix manifold. In the sequel, 〈·, ·〉 denotes
scalar product for either vectors or vectorized matrices.
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Algorithm 1 (alternating minimization scheme)

Require: ε, δ > 0.
1: Initialize z(0) ∈ Rn, θ(0) ∈ Rn×m with θ(0) ∈M.
2: for k ∈ {0, 1, 2, . . . } do

3: Choose a positive definite linear operator H
(k,k)
θ : Rn×m → Rn×m. Let

θ̂(k)(τθ) be a local minimizer of the following problem:

min
θ∈M

τθ

〈
∂F

∂θ
(θ(k), z(k)),θ − θ(k)

〉
+

1

2

〈
θ − θ(k), H(k,k)

θ (θ − θ(k))
〉
. (13)

4: Set θ(k+1) := θ̂(k)(τ
(k)
θ ), where τ

(k)
θ is the largest element in {1, 1/2, 1/4, ...}

satisfying the following descent condition:

F (θ̂(k)(τ
(k)
θ ), z(k)) ≤ F (θ(k), z(k))− ε‖θ̂(k)(τ

(k)
θ )− θ(k)‖2. (14)

5: Choose a positive definite linear operator H
(k+1,k)
z : Rn → Rn. Let ẑ(k)(τz)

be the (global) minimizer of the following problem:

min
z

τz

〈
∂F

∂z
(θ(k+1), z(k)), z− z(k)

〉
+

1

2

〈
z− z(k), H(k+1,k)

z (z− z(k))
〉
. (15)

6: Set z(k+1) := ẑ(k)(τ
(k)
z ), where τ

(k)
z is the largest element in {1, 1/2, 1/4, ...}

satisfying the following descent condition:

F (θ(k+1), ẑ(k)(τ
(k)
z )) ≤ F (θ(k+1), z(k))− ε‖ẑ(k)(τ (k)z )− z(k)‖2. (16)

7: if the stopping criterion is satisfied then
8: return θ(k+1), z(k+1).

The iterates generated by the above algorithm are guaranteed to converge
(subsequentially) to a critical point of the problem (11); see detailed analysis in
Section 4.

Yet, the practical efficiency of the overall algorithm hinges on the choices of

the scaling matrices H
(k,k)
θ and H

(k+1,k)
z and the subroutines for solving (13) and

(15). In this work, our choices for H
(k,k)
θ and H

(k+1,k)
z (see formulas (18) and (21)

below) will be structured Hessian approximations motivated from the iteratively
reweighted least-squares (IRLS) method [13,14]. The solution of the resulting
subproblem can be interpreted as a regularized Newton step; see [15,16,17].

For the ease of presentation, we introduce the following notations:

(r(k̃,k))ij = rij(θ
(k̃), z(k)), (w(k̃,k))ij = Φ′((r(k̃,k))ij)/(r

(k̃,k))ij ,

(Ψ (k))ij = Ψ ij(z
(k)), (χ(k))ij =

{
Ψ ij(z

(k))
}′
+,δ

,
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where k̃ is either k or k + 1. Note that(
∂F

∂θ
(θ(k), z(k))

)i
j

= (w(k,k))ij(r
(k,k))ij

{
(Ψ (k))ij

}
+,δ

. (17)

By choosing Hk,k
θ such that

〈
θ, H

(k,k)
θ θ

〉
=

n∑
j=1

m∑
i=1

(w(k,k))ij

({
(Ψ (k))ij

}
+,δ

θij

)2

, (18)

for all θ ∈ Rn×m, the θ-subproblem (13) with τθ = 1 is equivalent to the following
weighted least-squares problem:

min
θ∈M

n∑
j=1

m∑
i=1

(w(k,k))ij

∣∣∣∣{(Ψ (k))ij

}
+,δ

θij − Iij
∣∣∣∣2 . (19)

Analogously for the z-subproblem, we note that

∂F

∂z
(θ(k+1), z(k)) =

n∑
j=1

m∑
i=1

(w(k+1,k))ij(r
(k+1,k))ij(θ

(k+1))ij(χ
(k))ij(Ψ

i
j)
′(z(k)),

(20)

and choose H
(k+1,k)
z such that〈

z, H(k+1,k)
z z

〉
=

n∑
j=1

m∑
i=1

(w(k+1,k))ij

(
(θ(k+1))ij(χ

(k))ijz
>(Ψ ij)

′(z(k))
)2
, (21)

for all z ∈ Rn. As a result, the z-subproblem (15) with τz = 1 becomes

min
z

n∑
j=1

m∑
i=1

(w(k+1,k))ij

∣∣∣(r(k+1,k))ij + (θ(k+1))ij(χ
(k))ij(z− z(k))>(Ψ ij)

′(z(k))
∣∣∣2.
(22)

We remark that H
(k,k)
θ and H

(k+1,k)
z above are only sure to be positive

semidefinite. To enforce their (uniform) positive definiteness along iterations
(as being assumed in the convergence theory), one may always add cI (with ar-

bitrarily small c > 0) to H
(k,k)
θ and H

(k+1,k)
z . This, however, seems unnecessary

according to our numerical experiments.

In addition, it is empirically observed that τ
(k)
z = 1 and τ

(k)
z = 1 are always

accepted by the backtracking line search, i.e. Steps 4 and 6 of Algorithm 1, for
certain small ε even if δ is set zero. Thus, in practice, Algorithm 1 reduces to
the following alternating reweighted least-squares (ARLS) scheme.
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Algorithm 2 (alternating reweighted least-squares scheme)

Require: δ = 0.
1: Initialize z(0) ∈ Rn, θ(0) ∈ Rn×m with θ(0) ∈M.
2: for k ∈ {0, 1, 2, . . . } do
3: Compute θ(k+1) as an approximate (local) solution of (19).
4: Compute z(k+1) as an approximate solution of (22).
5: if the stopping criterion is satisfied then
6: return θ(k+1), z(k+1).

Concerning the subproblem solvers in Steps 3 and 4 of Algorithm 2, (22) can
be solved by conjugate gradient iterations. Meanwhile, (19) represents the least-
squares problem over the rank-1 matrix manifold, for which a local minimizer is
pursued by a simple Riemannian gradient descent scheme in Algorithm 3. We
refer to [18] for possibly more efficient numerical schemes for the same purpose.

Algorithm 3 (weighted rank-1 pursuit)

Require: W i
j := (w(k,k))ij

{
(Ψ (k))ij

}2
+,δ

, Y ij := Iij/max
({

(Ψ (k))ij
}
+,δ

, ε
)

, τ :=

1/‖W‖, θ(k) ∈M.
1: Initialize s(0)u(0)(v(0))> = θ(k) for some s(0) > 0 and unit vectors u(0) ∈ Rn,
v(0) ∈ Rm,

2: for l ∈ {0, 1, 2, . . . } do
3: Set (Ḡ(l))ij := W i

j (s
(l)u

(l)
j v

(l)
i − Y ij ).

4: Set G(l) := u(l)(u(l))>Ḡ(l) + Ḡ(l)v(l)(v(l))> − u(l)(u(l))>Ḡ(l)v(l)(v(l))>.
5: Compute δs(l) := −(u(l))>G(l)v(l), δu(l) := (−G(l)v(l)−u(l)δs(l))/s(l), and

δv(l) := (−(G(l))>u(l) − v(l)δs(l))/s(l).
6: Compute s(l+1) := s(l) + τδs(l), u(l+1) := u(l) + δu(l)/(1/τ + δs(l)/s(l)),

v(l+1) := v(l) + δv(l)/(1/τ + δs(l)/s(l)).
7: if the stopping criterion is satisfied then
8: return θ(k+1) := s(l)u(l)(v(l))>.

4 Convergence Analysis

This section is devoted the convergence analysis of the Algorithm 1. We shall
assume that the iterates {(θ(k), z(k))} are contained in a bounded subset over
which both ∂F

∂θ and ∂F
∂z are Lipschitz continuous. We also assume that {θ(k)} are

uniformly bounded away from 0, thus avoiding the pathological case of having
0 as a limit point. In addition, there exist constants c, C > 0 such that cI �
H

(k,k)
θ � CI and cI � H

(k+1,k)
z � CI for all k. Without loss of generality, let

∂F
∂θ (θ(k), z(k)) and ∂F

∂z (θ(k+1), z(k)) be nonzero throughout the iterations.

Lemma 1 The admissible step sizes τ
(k)
θ and τ

(k)
z in Algorithm 1 can be found

in finitely many trials.

Proof. We only prove the case for τ
(k)
θ , since the other case is analogous (if not

easier). Define

κ(τθ) = F (θ̂(k)(τθ), z
(k))− F (θ(k), z(k)) + ε‖θ̂(k)(τθ)− θ(k)‖2.
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Note that θ̂(k)(0) = θ(k), κ(0) = 0, and κ′(0) =
〈
∂F
∂θ (θ(k), z(k)), θ̂′(k)(0)

〉
. It

suffices to show κ′(0) < 0.

Since θ̂(k)(τθ) is a local minimizer of (13), it must hold that

τθ
∂F

∂θ
(θ(k), z(k)) +H

(k,k)
θ (θ̂(k)(τθ)− θ(k)) + η(τθ) = 0, (23)

where η(τθ) belongs to the normal space of M at θ̂(k)(τθ) for all τθ ≥ 0 and
η(0) = 0. By differentiating (23) at τθ = 0, and since η′(0) = 0, we obtain

∂F

∂θ
(θ(k), z(k)) +H

(k,k)
θ θ̂′(k)(0) = 0. (24)

It follows that κ′(0) = −
〈
∂F
∂θ (θ(k), z(k)), (H

(k,k)
θ )−1 ∂F∂θ (θ(k), z(k))

〉
< 0. ut

Theorem 1 The iterates {(θ(k), z(k))} generated by Algorithm 1 satisfy

lim inf
k→∞

PTM(θ(k))

(
∂F

∂θ
(θ(k), z(k))

)
= 0, lim inf

k→∞

∂F

∂z
(θ(k), z(k)) = 0.

Proof. Again, we only prove lim infk→∞ PTM(θ(k))

(
∂F
∂θ (θ(k), z(k))

)
= 0. Since

F (θ(k), z(k)) ≤ F (θ(k+1), z(k)) ≤ F (θ(k+1), z(k+1)) for all k and F (·, ·) is bounded

from below, we have limk→∞ ‖θ(k+1) − θ(k)‖ = 0. For brevity, we denote g
(k)
θ =

∂F
∂θ (θ(k), z(k)) in the remainder of the proof.

We first consider the case where lim infk→∞ τ
(k)
θ > 0. In particular, the iden-

tity in (23) yields

PTM(θ(k+1))

(
τ
(k)
θ g

(k)
θ +H

(k,k)
θ (θ(k+1) − θ(k))

)
= 0,

and ultimately limk→∞ PTM(θ(k))

(
g
(k)
θ

)
= 0.

Now consider the case τ
(k)
θ → 0 along a subsequence indexed by k̃. Assume,

for the sake of contradiction, that
∥∥∥PTM(θ(k))

(
g
(k)
θ

)∥∥∥ is uniformly bounded away

from 0. Due to the nature of the backtracking line search, we have

F (θ̂(k̃)(2τ
(k̃)
θ ), z(k̃))− F (θ(k̃), z(k̃)) + ε‖θ̂(k̃)(2τ

(k̃)
θ )− θ(k̃)‖2 > 0,

which further implies 2τ
(k̃)
θ

〈
g
(k̃)
θ , θ̂′

(k̃)
(0)
〉

+ o(2τ
(k̃)
θ ) > 0. Thus, we must have

lim inf k̃→∞

〈
g
(k̃)
θ , θ̂′

(k̃)
(0)
〉
≥ 0. Recalling (24), we obtain the contradiction:

0 ≤ lim inf
k̃→∞

〈
g
(k̃)
θ , θ̂′

(k̃)
(0)
〉

∥∥∥PTM(θ(k̃))

(
g
(k̃)
θ

)∥∥∥2 = lim inf
k̃→∞

−

〈
g
(k̃)
θ , (H

(k̃,k̃)
θ )−1g

(k̃)
θ

〉
∥∥∥PTM(θ(k̃))

(
g
(k̃)
θ

)∥∥∥2
≤ lim sup

k̃→∞
−

〈
g
(k̃)
θ , (H

(k̃,k̃)
θ )−1g

(k̃)
θ

〉
∥∥∥PTM(θ(k̃))

(
g
(k̃)
θ

)∥∥∥2 ≤ lim sup
k̃→∞

−

∥∥∥g(k̃)θ

∥∥∥2
C
∥∥∥PTM(θ(k̃))

(
g
(k̃)
θ

)∥∥∥2 ≤ −
1

C
.

This completes the whole proof. ut
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5 Empirical Evaluation

We first consider the plaster statuette from Figure 1, and compare existing cali-
brated near- and distant-light PS methods with the proposed near-light one. For
competing methods, we used the calibrated intensities. For the proposed semi-
calibrated one, intensities were initially set to the arbitrary (and wrong) values
φ ≡ 1. The result of distant-light PS was used as initial guess for the shape and
the albedo, and then the proposed alternating scheme was run until the relative
residual of the energy falls below 10−3. Standard PS was used as initialization
to accelerate the reconstruction, but we observed that this initalization had no
impact on the final result. To evaluate our semi-calibrated method, this initial
guess was obtained while assuming wrongly that φ ≡ 1. The proposed method
is thus entirely independent from the initial estimates of the intensities.

As shown in Figure 3, the distant light assumption induces a bias, which
is corrected by state-of-the-art calibrated near-light PS [10]. Yet, this result re-
mains unsatisfactory in shadowed areas, because it treats self-shadows as outliers
instead of modeling them. Our near-light approach provides more accurate re-
sults, because it explicitly accounts for self-shadows (cf. Eq. (1)) and it utilizes
a more robust estimator (Cauchy’s, instead of the L1 norm one used in [10]).
Interestingly, the semi-calibrated approach is more accurate than the calibrated
one: this proves that calibration of intensities always induces a slight bias, which
can be avoided by resorting to a semi-calibrated approach.

Standard PS [1] Mecca et al. [10] Ours - Calibrated Ours - Semi-calibrated

Mean: 3.53 mm Mean: 2.54 mm Mean: 1.19 mm Mean: 0.98 mm

std: 2.66 mm std: 3.06 mm std: 0.96 mm std: 0.86 mm

Fig. 3: Comparison of several 3D-reconstructions obtained by PS. Top: 3D-
reconstruction. Bottom: absolute error between the PS reconstruction and laser-scan
ground truth (blue is zero, red is > 1 cm. State-of-the-art calibrated near-light PS [10]
corrects the bias due to the distant-light assumption [1], yet it remains unsatisfactory
in shadowed areas (e.g. , the ears), and it requires knowledge of the lighting intensities.
Our approach is more robust, and it can be used without calibration of the intensities.
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Figure 4 confirms on another dataset that the proposed method is more
robust to shadows than state-of-the-art, because self-shadows are explicitly taken
into account in the model and a robust M-estimator is used. Overall, the state-of-
the-art is thus advanced both in terms of accuracy, simplicity of the calibration
procedure, and convergence analysis.

Fig. 4: Top: 3 out of m = 8 images of a box, and 3D-model (3D-reconstruction and esti-
mated albedo) recovered by our semi-calibrated approach. Bottom: 3D-reconstructions
using (from left to right) standard distant-light PS [1], the calibrated near-light method
from [10], the proposed one with calibrated intensities, and the proposed one with un-
calibrated intensities. The top face of the box is severely distorded with the distant-
light assumption. This is corrected by the near-light method from [10], yet robustness
to shadows is not granted, which biases the 3D-reconstruction of both the other faces.
Our approach is robust to shadows (self-shadows are handled in the model), and it
removes the need for calibration of the intensities.

6 Conclusion

We have proposed a new variational approach for solving the near-light PS
problem in a robust manner, considering unknown lighting intensities (semi-
calibrated setup). Our numerical strategy relies on an alternating minimization
scheme which builds upon manifold optimization. It is shown to overcome the
state-of-the-art in terms of accuracy, while being the first approach to remove
the need for intensity calibration and to be provably convergent.

As future work, the proposed approach could be extended to the fully uncal-
ibrated case, by including inside the alternating scheme another step aiming at
refining the positions and orientations of the sources.
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