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Abstract. Convex relaxation techniques allow computing optimal or
near-optimal solutions for a variety of multilabel problems in computer
vision. Unfortunately, they are quite demanding in terms of memory
and computation time making them unpractical for large-scale prob-
lems. In this paper, we systematically evaluate to what extent narrow
band methods can be employed in order to improve the performance
of variational multilabel optimization methods. We review variational
methods, we present a narrow band formulation and demonstrate with
a number of quantitative experiments that the narrow band formulation
leads to a reduction in memory and computation time by orders of mag-
nitude while preserving almost the same quality of results. In particular,
we show that this formulation allows computing stereo depth maps for
6 Mpixels aerial image pairs on a single GPU in around one minute.

1 Introduction

1.1 Convex Multilabel Optimization and Narrow Band Methods

Most of the relevant algorithmic challenges in computer vision correspond to
energy minimization problems with non-convex energies. While traditional ap-
proaches to segmentation [10], stereo [3] and optical flow [8] aimed at finding
acceptable solutions by local minimization starting from an “appropriate” ini-
tialization, in the last few years researchers have proposed convex relaxation
techniques which allow to compute optimal or near-optimal solutions [15, 14, 17,
11, 4, 6]. The key idea in these algorithms which was inspired by Ishikawa’s graph
theoretic approach [9] is to increase the dimension of the optimization problem
by enhancing the spatial dimensions with the label dimension. Specifically, it was
shown in [15] that the non-convex stereo reconstruction problem in two spatial
dimensions is equivalent to a convex optimization problem in three dimensions.

While bringing about a clear gain in optimality, this increased dimension
comes with an important sacrifice in memory and computation since the size
of these lifting methods increases linearly with the number of labels used for
the reconstruction. As a consequence, these algorithms have limited practical
use – even for smaller problems of around 640× 480 pixel stereo reconstructions
they can easily take a minute of computation time. Moreover, the direct ap-
plication to large-scale aerial images of several megapixels is entirely infeasible
due to memory limitations. A popular strategy to accelerate such algorithms
and reduce their memory requirements is to apply coarse-to-fine narrow band
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Left input image Stereo reconstruction

Fig. 1. A large scale reconstruction (right) on two 2600 x 2400 aerial images1 (left)
with 300 disparity levels is performed on a NVIDIA GTX 680 GPU with 4 GB of
memory. Memory demand for reconstruction is 2.6 GB with a runtime of 77 seconds.

methods [1, 12, 2]. Since in these algorithms the optimal stereo reconstruction is
given by the isolevel of an embedding function defined on the 3D grid, one can
compute the embedding function in a coarse to fine manner, considering on each
scale of the hierarchy a narrow band of a few levels around the current solution.
While this strategy does not preserve optimality for the finest scale – small un-
connected fine-scale structures potentially being lost – it allows to drastically
reduce memory and computation time.

1.2 Contribution

While there are local methods (e.g. [7]) which can handle large scale stereo recon-
struction, we intend in this paper to systematically evaluate the tradeoff between
the loss in accuracy and the increase in speed and memory brought about by
narrow band methods for variational multilabel optimization. More specifically,
we focus on the problem of stereo reconstruction using a variational approach
with non-convex data term and convex total variation regularizer. In Section 2,
we briefly review the variational approach of Pock et al. [15] for globally optimal
stereo reconstruction. In Section 3, we will present a narrow band formulation
of this approach. In Section 4, we will present a detailed quantitative analysis
of the performance gain brought about by the narrow band formulation. We
also study how the accuracy increases with the width of the narrow band. In
particular, we will show that near-optimal solutions can be computed with dras-
tically reduced memory and computation time. We can recover high-resolution
stereo depth reconstruction from 6 megapixels images in around one minute on a
single end-user GPU. These experiments demonstrate that in combination with
narrow band methods, convex relaxation techniques for multilabel optimization
exhibit an enormous practical potential for highly accurate large-scale recon-
struction. An example of a large scale reconstruction is given in Figure 1. While

1 Image courtesy of Heiko Hirschmüller, German Aerospace Center (DLR) Institute
of Robotics and Mechatronics.
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the input image pair exceeds 6 megapixels in resolution, we were able to per-
form the reconstruction using 300 depth labels on a consumer graphics card.
The memory requirement is around 2.6 GB and is a drastic gain compared to
a reconstruction with dense label space that would require 43 GB of memory
which no commercially available graphics cards can offer.

2 A Convex Formulation of Multi Label Stereo

2.1 Continuous Setting

In this work we devote ourselves to the study of how to efficiently minimize the
following variational problem:

min
u

{∫
Ω

|Du(x)|+
∫
Ω

%(u(x), x)dx

}
, (1)

where Ω ⊂ R2 denotes a continuous image domain, and u : Ω → Γ an unknown
function which maps each point in Ω to a real valued range Γ := [t0, tend]. The
second term in equation (1) assigns a point-wise cost for each pixel taking on
a certain value from Γ . The data term in our application can be arbitrary and
not necessarily convex as we will see in the convex relaxation Section 2.2. In
order to impose a spatial regularity while preserving its discontinuity we make
use of the total variation of function u given by the left term of equation (1).
Note that Du is the gradient in the distributional sense since function u must
not be differentiable as in the case of natural images. The energy given in (1)
can be considered as the continuous counterpart of the discrete setting described
by Ishikawa et al [9].

2.2 Convex Relaxation

Although the total variation regularizer in energy (1) is a convex functional,
many interesting problems from vision are associated with a non-convex data
term. This makes computing the global minimizer of the energy almost impos-
sible and the straightforward minimization of the functional above is prone to
getting stuck in local minimizers. We next describe an approach given in [15]
which tackles the problems shown above.

The functional lifting approach: The authors in [15] devise a level set for-
mulation of energy (1):

min
v∈C

{∫
Ω×Γ

|∇xv(x, t)|+ %(x, t) |∇tv(x, t)| dxdt
}
, (2)

where ∇x and ∇t denote the spatial gradient in Ω and respectively the gradient
with respect to the label dimension Γ and where

C = {v(x, t) : Ω × Γ → {0, 1}, v(·, t0) = 1, v(·, tend) = 0}. (3)
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This new formulation is now a functional of the function v which is the indicator
function of the subgraph of u hence

v(x, t) =

{
1 if t <= u(x)

0 else.

Energy (2) becomes convex if we relax the range of indicator function v to the
unit interval [0, 1]. Hence we constrain v by the relaxed constraint

C̃ = {v(x, t) : Ω × Γ → [0, 1], v(·, t0) = 1, v(·, tend) = 0}. (4)

The non-differentiability of the total variation is tackled by using its dual
formulation which gives us overall the following saddle-point problem:

min
v∈C̃

{
sup
Φ∈K

∫
Ω×Γ

Φ · ∇v dxdt
}
, (5)

with the dual variable Φ(x, t) = (Φx(x, t), Φt(x, t))T constrained by the following
convex set:

K =
{
Φ(x, t) : Ω ×∆→ R3, |Φx(x, t)| ≤ 1,

∣∣Φt(x, t)∣∣ ≤ %(x, t)
}
.

Note that the saddle-point formulation (5) is linear in both its dual variable
Φ and its primal variable v and is endowed with a convex constraint set. This
renders our problem solvable using so called primal dual algorithms.

2.3 Convex Optimization

In order to solve problem (5) we make use of a first order primal-dual algorithm
devised in [5] which essentially performs a gradient ascent in the dual variable
and a gradient descent in the primal variable with subsequent orthogonals pro-
jection onto the respective convex sets. For more details see [5].

In the following, we detail solving the saddle-point problem using the primal
dual scheme. We initialise ((ṽ)0, (ϕ)0) ∈ C̃ × K, let (v̂)0 = (ṽ)0 and choose the
time-steps σ and τ according to a preconditioning scheme presented in [13]. Then
the iterates of the primal dual algorithm can be written as follows:

(Φ)n+1 = projK((Φ)n + σ(∇v̂n)),

(ṽ)n+1 = projC̃((ṽ)n + τ(divΦn+1)),

(v̂)n+1 = 2(ṽ)n+1 − (ṽ)n,

(6)

where the discretized divergence operator div is chosen to be adjoint to the
discretisation of the gradient ∇. For the data term we choose a simple sum of
the channel-wise absolute differences between the rectified right and left image
for every disparity level t ∈ Γ i.e.

%(x, t) =
1

3
λ

∑
i∈{r,g,b}

∣∣IiL(x)− IiR(x+ (0, t)T )
∣∣ .
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Fig. 2. An illustration of the narrow band method for 2 scales on a binary segmentation
example. After coarsening the input image twice, a solution on the coarsest scale is
computed. Using this solution the narrow band (red contour) of the next fine scale is
computed and we perform the optimization solely on that region.

3 Narrow Band Formulation of Multilabel Optimization

While we are able to compute the global minimizer of energy (1), we pay the
price of adding an additional dimension to the optimization problem. The in-
creased amount of variables increases the runtime and the memory usage of
our optimization algorithm tremendously. This makes the functional lifting ap-
proach scale bad with increasing resolution of the input images. Additionally,
it becomes difficult computing depth maps of even moderate image sizes on
consumer GPU’s because of their limited memory. For example the dense recon-
struction of a 6 megapixels image using 300 disparity levels, would require 43
GB of GPU memory which cannot be found on any graphics card on the market.
In the following, we elaborate on the so called narrow band method which is a
promising approach for leveraging these problems – see Figure 2.

3.1 The Narrow Band Idea

The basic idea of the narrow band method is to compute a solution on a coarse
scale and use a narrow band around the 0-1 interface of its up-sampled version
to construct a solution on the fine scale. This procedure can also be done for
multiple scales where we propagate the computed solution via up sampling until
we reach the original resolution. The coarsening process is done by resizing the
two rectified images at each scale to half of their width and height. We use these
down-sampled stereo pairs to compute the data term on each scale for the voxels
that are represented by the NB and solve equation (1) by means of algorithm
(6). Overall we perform the following steps for a NB method with K scales :

1. Construct an image pyramid of the input rectified image pairs and calculate
a dense data term only for the lowest scale.
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2. Compute solution v∗0 on the coarsest scale.

3. For k : 1 · · ·K−1 do the following: Construct a banded domain Ω̂k using the
neighbourhood of the 0-1 interface of the rounded solution v∗k−1 (for details

see next section) and compute v∗k on Ω̂k.

An illustration of above algorithm can be found in Figure 2. Next section
details the computation of the banded domain Ω̂.

3.2 Creating the Narrow Band

In the following we denote the discretisation of the domain by the superscript h.
Creating an efficient representation for the narrow band in the domain Ωh×Γh
is not straightforward. This is due to the loss of the natural grid indexing in the
domain Ωh × Γh which requires a new strategy. We create the banded domain
Ω̂k+1 by the following 4 steps:

1. We transform the voxel (k = 0) and respectively the narrow band (k ≥ 1)
representation of the rounded solution v∗k into a two dimensional array
Ik : Ωhk → Γhk which holds for each pixel the individual label number.

2. Upsamling by factor of 2 from Ik to Ik+1 by doubling the width and the
height of the image domain as well as the label range.

3. Narrow Band creation: We implicitly represent the narrow band by creating
an upper Uk+1 : Ωhk+1 → Γhk+1 and lower bound Lk+1 : Ωhk+1 → Γhk+1 on the
voxel lying in the narrow band as follows:

Lk+1(x, y) = min
(v,w)∈B(x,y)

(Ik(v, w))− NBT

2
+ 1

Uk+1(x, y) = max
(v,w)∈B(x,y)

(Ik(v, w)) +
NBT

2

where B(x, y) denotes a ball around pixel (x, y) and NBT is the chosen
Narrow Band Thickness. We chose B to be an L1 ball with the NBT as the
diameter hence:

B(x, y) =

{
v, w

∣∣∣ |v − x|+ |w − y| ≤ NBT

2

}
.

We use min(v,w)∈B(x,y)(Ik(v, w)) and max(v,w)∈B(x,y)(Ik(v, w)) in order to
account for the biggest jumps in the neighbourhood B(x, y) and include
these in the narrow band.

4. Now that we have located the banded domain Ω̂k+1 by solely using the
bounds Lk+1 and Uk+1, we can store the narrow band efficiently without
having to use the original domain. To this end we make use of a self referential
array of the following structs:

struct { f loat value ; int vox index , n1 , n2 , n3 ;} NB;
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We calculate the indices of the local neighbourhood of each voxel according
to the narrow band and store these in the variables n1,n2 and n3, which
allows us to calculate the differential operators in algorithm 6. The vari-
able vox index stores the index that the struct element would have in the
original voxel space. This is necessary for the transformation in step 1. In
contrast to a linked list implementation the array implementation makes the
approach easily parallelizable, since we can pass each NB struct element
independently to different cores.

4 Experimental Evaluation

In this section we perform experimental evaluations of the narrow band method.
To this end we will provide qualitative and quantitative results in order to empir-
ically show that using a small bandwidth i.e. a fraction of the original domain we
can approximate the true minimizer of the energy to an extent that most of the
times is neither visible nor quantitative differences are to be seen . Addionally,
we show that using merely a consumer low end card we are able to reconstruct
depth information with a resolution that is not even possible on high end GPU’s.
The approach also scales well with recent graphics cards. Lastly we elaborate on
the loss of fine details depending on the NBT. (c.f. Figure 1).

4.1 Setup

The hardware setting for our experiments is a Intel(R) Core(TM)2 Quad CPU
Q8300 @ 2.50Ghz computer equipped with a low end graphics card of the type
NVIDIA GeForce GTX 285 with 1 GB memory, which possesses 240 CUDA
cores. The parallel implementation of the narrow band algorithm is based on
NVIDIA’s CUDA framework. We set the parameter for the dataterm to the
value λ = 50 for all TV computations. All the results are based on a 2 scale NB
method which works well for both small and large input stereo pairs. For the
evaluation we used image pairs from the Middlebury datasets [16].

4.2 Memory Efficiency

Based on our implementation, we provide a memory demand estimator (MDE ),
for both the dense as well as the NB approach:

MDEdense = height · width · (levels · 24byte + 28byte)

MDENB = height · width · (C̄ · 56byte + 36byte)

The factor C̄ is the average number of voxels to be stored for each pixel
in order to encode the narrow band around the graph of indicator variable u
in our application. The graph is a manifold that describes the surface of the
reconstructed 3D scenery which is bigger than the image size itself. Because of
that C̄ is at least as large as the chosen NBT. Experimentally C̄ is in the order
of the NBT. For example, the values for C̄ in the experiments in Figure 4 are
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Fig. 3. Left input im-
age1 and solution for
NBT = 4, with 500
iterations. Computa-
tion time is 31.7 s.

Fig. 4. The plot shows the memory consumption for dif-
ferent problem sizes. Scaling=0.1 stands for 152 x 132
pixels and 20 levels and scaling=1 corresponds to 1520
x 1320 x 200. Figure 3 shows the left input image and a
solution example.

in the range 5.8 to 6.3 for an NBT of 4. Note that in the NB approach the
third factor only depends on C̄. Hence we practically obtain a complexity of a
variational problem in 2D. The above estimators are specific for our algorithmic
approach, but the core idea that the complexity is independent of the number
of levels is the same with any implementation.

4.3 Runtime Evaluation

For comparison we take a dense reconstruction (i.e. on the full domain) obtained
after 15000 iterations as reference. We use 80 values for the discretization of the
disparity space Γ . Figure 5 shows the left input image and a reconstruction
example. To measure the quality of a solution we use the average pixel color dif-
ference between the reference result and the computed disparity. Figure 6 shows
the runtime convergence comparison between the NB approach and the compu-
tation on a dense label space. We observe that the NB method outperforms the
dense approach in terms of runtime.

4.4 Narrow Band Thickness and Fine Details

In this section we provide an empirical correlation between the NBT and the
quality of the reconstruction. Figure 7 (b) shows the quality of reconstructions
using NBT ’s between 4 and 12 depending on the number of iterations. The plot
shows that the quality increases with the NBT. Problems arise for fine detail
structures and a low NBT as can be seen in the close up pictures of the reindeer
for different NBT ’s in Figure 7. Only at a NBT of 10 the area around the
legs of the reindeer is well represented. Therefore the approach introduces the
drawbacks of classical coarse to fine schemes to multi-label optimization. This
issue remains a challenging future work.
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Fig. 5. The Solution
corresponds to the
black circle in Fig. 6.

Fig. 6. Quality vs runtime plots for an 444 x 372 input
image using 80 disparity levels, see Figure 5. The com-
parison is done by using pixel mean value error.

5 Conclusion

We provided a systematic experimental validation of narrow band methods for
variational multilabel optimization. We revisited convex relaxation approaches
to variational multilabel optimization, presented a coarse-to-fine narrow band
formulation and experimentally evaluated the tradeoff between accuracy of re-
covered solutions on one hand and speed and memory requirements on the other.
Considering the simplicity of our functional, our experiments demonstrate that
the narrow band reformulation allows to reduce memory and computation time
by orders of magnitude with moderate loss in accuracy. These experiments in-
dicate that in conjunction with narrow band formulations, convex relaxation
techniques for multilabel optimization exhibit the potential for solving large
scale reconstruction problems.

References

1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces.
Journal of Computational Physics 118, 269–277 (1994)

2. Baeza, A., Caselles, V., Gargallo, P., Papadakis, N.: A narrow band method for
the convex formulation of discrete multilabel problems. Multiscale Modeling &
Simulation 8(5), 2048–2078 (2010)

3. Barnard, S.: Stochastic stereo matching over scale. International Journal of Com-
puter Vision 3(1), 17–32 (1989), http://dx.doi.org/10.1007/BF00054836

4. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions.
J. Imaging Sci. 5(4), 1113–1158 (2012)

5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision 40(1),
120–145 (2011)



10 Franz Stangl, Mohamed Souiai and Daniel Cremers

(a) (b)

NBT 2 NBT 4 NBT 6 NBT 8 NBT 10 NBT 12

Fig. 7. (a) A 448 x 372 input image and the reconstruction on a dense 80 label space.
(b) quality comparison for different NBT ’s. Below are 6 close up pictures of the reindeer
for different NBT ’s.

6. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-
valued labeling. SIAM Journal on Imaging Sciences (2013), to appear

7. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 30(2), 328–
341 (2008)

8. Horn, B., Schunck, B.: Determining optical flow. A.I. 17, 185–203 (1981)

9. Ishikawa, H.: Exact optimization for markov random fields with convex priors.
IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)

10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision 1(4), 321–331 (1988)
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