
CAPTCHA Recognition with Active Deep Learning

Fabian Stark, Caner Hazırbaş, Rudolph Triebel, and Daniel Cremers

Technical University of Munich, Germany
{fabian.stark,c.hazirbas,rudolph.triebel,cremers}@in.tum.de

Abstract. CAPTCHAs are automated tests to tell computers and humans
apart. They are designed to be easily solvable by humans, but unsolvable
by machines. With Convolutional Neural Networks these tests can also
be solved automatically. However, the strength of CNNs relies on the
training data that the classifier is learnt on and especially on the size
of the training set. Hence, it is intractable to solve the problem with
CNNs in case of insufficient training data. We propose an Active Deep
Learning strategy that makes use of the ability to gain new training data
for free without any human intervention which is possible in the special
case of CAPTCHAs. We discuss how to choose the new samples to re-train
the network and present results on an auto-generated CAPTCHA dataset.
Our approach dramatically improves the performance of the network if
we initially have only few labeled training data.

1 Introduction

A CAPTCHA [1] (Completely Automated Public Turing test to tell Computers
and Humans Apart) is an automated test to identify whether the user is a
human or not. CAPTCHAs are often used on the internet to prevent automated
programs from abusing online services. Nowadays, most service providers such
as email or online shopping sites require users to solve CAPTCHAs, which most
often consist of some distorted text that must be read and typed in correctly. For
humans this is a comparably simple task, but computers still have difficulties
here. Useful CAPTCHAs should be solvable by humans at least 80% of the times
while programs using reasonable resources should succeed in less than 0.01% of
the cases [4]. An example of a CAPTCHA is shown in Fig. 1.

Recently, researchers have started investigating automated methods to solve
CAPTCHAs. Many of these existing solutions first perform character segmenta-
tion and then recognition. However, they can not solve newer, more challenging
CAPTCHAs, where the letters are skewed so that they can not be separated by
vertical lines. Thus, rectangular windows can not be used for segmentation, and
more powerful classification methods are needed. One successful approach pro-
posed recently by Goodfellow et al . [9] uses a deep Convolutional Neural Network
(CNN), a framework that is also used in many other tasks such as object classifi-
cation [5, 6], automatic speech recognition [8, 10] or natural language processing
[3, 7]. However, a major requirement for training a deep CNN is a very large
training data set (for example the ImageNet [15] data for image classification),

2 F. Stark, C. Hazırbaş, R. Triebel, and D. Cremers

Fig. 1. Google’s reCAPTCHAs [2] consist of a distorted word and a word scanned
from a text book. The user must type both words, thereby helping to digitize printed
books.

and for CAPTCHA recognition, there is usually only a small annotated training
data set available. Furthermore, the appearance of CAPTCHAs can, in contrast to
objects in natural images, often change significantly from those in the training
data, e.g. due to major changes in the distortion applied to the text.

To address these problems, we propose in this paper an approach that is
based on Active Learning. The idea here is to start learning with a comparably
small training set and to add new training samples in every subsequent learning
round. The decision whether to add a sample to the training data is based on
the uncertainty that the classifier associates with a given prediction. Under the
assumption that this uncertainty estimation is well calibrated, the algorithm
selects the most informative samples to learn from, resulting in less training
samples required than in standard passive learning. As a further advantage,
the algorithm can adapt to new input data that differs in appearance from the
current training data. We note however that our problem is different to other
Active Learning settings in that we do not need a human supervisor to acquire
the ground truth labels for training. Instead, we use the return value that we
obtain automatically when solving a CAPTCHA. Thus, if the classifier is able to
solve a CAPTCHA correctly we can use that information for re-training, because
then the ground truth label is known. Of course, if the CAPTCHA is not solved
we don’t have that information, but we will show how learning can be done
from the correctly predicted samples only. In summary, we present three novel
contributions: First, we show how to compute uncertainty from a deep CNN
and how this relates to correct classification. Second, we peform Active Learning
with a deep CNN. And third, we show that already the correct, but uncertain
classified samples are enough for efficient learning, with the effect that we need
only little training data, and this is obtained without any human intervention.

2 Related Work

Conventional methods aim at detecting the text within natural images in two
disjoint steps [11]: localizing the regions of words or single characters within the
image, segmenting [17] and then recognizing them [19]. In addition, a dictionary
can be used to dismiss unlikely words. For example, Mori and Malik [18] proposed
a method to solve CAPTCHAs using a dictionary with all 411 words that the
considered CAPTCHAs contain. Chellapilla and Simard [4] also solve CAPTCHAs

CAPTCHA Recognition with Active Deep Learning 3

Fig. 2. Convolutional Neural Network for CAPTCHA Recognition. Our CNN is
composed of three convolution, three pooling and two fully-connected layers. The last
layer outputs the probability distributions for all digits for which we can compute the
prediction and uncertainty of the prediction.

by segmenting single characters and recognizing them, but without a dictionary.
However, in modern CAPTCHAs, single characters can not be segmented easily
with rectangular windows, as the characters can overlap each other (see Fig. 1).
These CAPTCHAs are more similar to hand-written text, and LeCun et al . [16]
proposed to use Convolutional Neural Networks (CNN) for recognition of hand-
written digits. These CNNs are designed to construct the hierarchy of the objects
layer by layer and perform classification. In 2014, Goodfellow et al . [9] proposed
to combine localization, segmentation and recognition of multi-character text
using deep CNNs. Training is done on millions of images using a cluster of
several computers. Jaderberg et al . [12] proposed a CNN for text recognition on
natural scene images. However, for training they artificially create a very large
set of text images. In contrast, we use a much smaller training set. By exploiting
Active Learning, we fine-tune the network during runtime, and our network is
fed with correctly classified but highly uncertain test samples.

3 A Deep CNN for CAPTCHA Recognition

We propose a deep CNN to solve the whole sequence of a CAPTCHA. Our purpose
is to recognize the full sequence without pre-segmentation. We use the network
structure shown in Fig. 2. We focus on CAPTCHAs with 6 digits. Each digit is
represented by 62 neurons in the output layer. We define a bijection Θ(x) that
maps a character x ∈ {‘0’,...‘9’, ‘A’,..., ‘Z’, ‘a’,..., ‘z’} to an integer l ∈ {0, ...61}:

Θ(x) =

0 . . . 9, if x = ‘0’ . . . ’9’
10 . . . 35, if x = ‘A’ . . . ’Z’
36 . . . 61, if x = ‘a’ . . . ’z’

. (1)

We assign the first 62 output neurons to the first digit of the sequence, the sec-
ond 62 neurons to the second digit and so on. Thus, for a digit xi the neuron
index n is computed as n = i · 62 + Θ(xi), where i ∈ {0, ..., 5} is the index
of the digit, i.e. the output layer has 6 · 62 = 372 neurons. To predict a digit,
we consider the corresponding 62 neurons and normalize their sum to 1. Fig. 4
shows an example of a network output. Here, the predicted character index for
the first digit is c0 = 52 and the predicted label is x = Θ−1(c0) = ‘q’.

4 F. Stark, C. Hazırbaş, R. Triebel, and D. Cremers

 Train
Classi er

 Predict
 Labels

 Ask
Labels

 Update

 Training
 Data

 Test
 Data Supervisor

 Learnt

 Model

Predictions,

Uncertainties

Additional

Training Data
Training Data

Fig. 3. Flow chart of Active Learning. We start with training on a small data set.
Then, the classifier is applied to some new data, resulting in a label prediction and
an associated uncertainty. From this uncertainty, the classifier decides whether to ask
for a ground truth label or not. In our case, this query is done by solving the given
CAPTCHA with the prediction and using it if it was correct. Then, the training data is
increased and learning is performed again. In our method, we use a deep CNN, which
can be efficiently re-trained using the newly added training samples.

Neuron index n
0 50 100 150 200 250 300 350

O
ut

pu
t o

f e
ac

h
ne

ur
on

0

0.05

0.1

0.15

0.2

0.25

0.3

Θ(x
1
)

0 10 20 30 40 50 60

O
ut

pu
t o

f e
ac

h
ne

ur
on

0

0.2

0.4

0.6

Fig. 4. Example output of the network for the CAPTCHA “qnnivm” in Fig. 2. Left:
There are 62 outputs for each digit. The black box shows the output for the first digit.
Right: Probability distribution for the first digit. The sum is normalized to 1.

4 Active Learning to Reduce the Required Training Data

For a good classification accuracy, CNNs usually require a very large training set.
However, collecting millions of hand-labeled CAPTCHAs is infeasible. Therefore,
we propose to use Active Learning (see Fig. 3). The main idea of this is to add
new training data only if necessary, i.e. if the sample is informative enough for
re-learning. This is decided based on the uncertainty of the prediction, which we
compute using the best-versus-second-best strategy [14], as described next.

4.1 Obtaining the uncertainty

As mentioned above, we estimate the predictive distribution of each digit by
normalizing the sum of the corresponding network outputs to 1. From this we
compute the overall uncertainty η using “best-vs-second-best” as

η =
1

d
·
d∑
i=1

arg max {P(xi) \ arg maxP(xi)}
arg maxP(xi)

, (2)

CAPTCHA Recognition with Active Deep Learning 5

where P(xi) is the set of all network outputs for digit di. Thus we divide the
second best by the best prediction for every digit.

4.2 Querying Ground Truth Information

Our CAPTCHA recognition problem is unique in the sense that we can perform
learning without human intervention. We achieve this by only using those data
samples for re-training, for which the classifier already provided a correct label.
For these, the CAPTCHA can be solved and we know what the correct text is.
However, simply using all these correctly classified samples for re-training would
be very inefficient. In fact, training would be done more and more often, be-
cause the classifier will be better over time and therefore classify more samples
correctly. Thus, with every new correctly classified sample a retraining would
be necessary. To avoid this, we use the uncertainty values presented above: We
sort the correctly classified test samples in each learning round by prediction
uncertainty and use only the most uncertain ones for re-training. This results in
a lower number of required training samples, but as we will show in the experi-
ments, the most uncertain samples are also the most informative for learning.

5 Experimental Evaluation

We present the results of our approach on auto-generated CAPTCHAs. All exper-
iments have been executed using the Caffe [13] deep learning framework on an
NVIDIA GeForce R© GTCTM 750 Ti GPU.

5.1 Dataset Generation

As there is no hand-labeled CAPTCHA dataset, we use our own scripts to generate
CAPTCHAs. During the auto-generation, we ensure that there is no duplication
in the dataset.

We use the Cool PHP CAPTCHA framework to generate CAPTCHAs. They
are composed of distorted text with a fixed length of 6 similar to Google’s
reCAPTCHA. They have a size of 180 × 50. We have modified the framework
to generate black and white images. Furthermore we have disabled shadows and
the line through the text. We also do not use dictionary words, but random
characters. Therefore we have removed the rule that every second character has
to be a vowel. We fix the font to “AntykwaBold”. Fig. 5 shows some examples
of our auto-generated CAPTCHAs.

5.2 Network Design

We use the network illustrated in Fig. 2. The convolutional layers have a size of
48, 64 and 128. They all have a kernel size of 5× 5 and a padding size of 2. The
pooling layers have a window size of 2 × 2. The first and third pooling layers
and also the first convolutional layer have a stride of 2. Then the network has

6 F. Stark, C. Hazırbaş, R. Triebel, and D. Cremers

qnnivm oigjpj ijcvyl pqmwfj eilrqi

cvodvt njbgzp pzcqee hepfpf ijlmqw

Fig. 5. Example CAPTCHAs used in the experiments.

one fully connected layer with a size of 3072 and a second fully connected layer
(classifier) that has an output size of 372. We also add rectified linear units and
Dropout after every convolutional and the first fully connected layer. The batch
size for every iteration is 64.

5.3 Qualitative Evaluation

We train the network with the SGD algorithm. However, in contrast to other
methods we train the network for all digits independently. The learning rate
changes by the rule α = α0 · (1+γ · t)−β where the base learning rate α0 = 10−2,
β = 0.75, γ = 10−4 and t is the current number of iteration. We set momentum
µ = 0.9 and regularization parameter λ is 5 · 10−4.

As the most expensive part is to get the training samples, our approach
aims at decreasing the required size of the initial training set. So we first of all
train our network with a very small initial training set of 104 images for 5 · 104

iterations. We only achieve an accuracy of 9.6% which even decreases with more
iterations. Because of that, we want to make use of Active Learning.

First of all, we again train our network with 104 training images for 5 · 104

iterations. Afterwards, we classify 5 · 104 test images. Then, we pick new train-
ing samples from the correctly classified ones. We can take all of them, or we
only pick 5 · 103 samples based on their uncertainty: Either with the highest
uncertainty, the lowest uncertainty, or randomly. Uncertainty is computed as
described in Section 4.1. Once the new selected samples are added to the train-
ing set, we re-train the network for 5 · 104 iterations. Subsequently we follow
the same procedure. We apply this algorithm for in total 20 Active Learning
rounds (epochs). The accuracy is computed after every 5 · 103 iterations on a
fixed validation set. We get the best performance with the correct but uncertain
predictions (see top plot in Fig. 6). All results are the average out of two runs.

However increasing the number of samples in the training set requires more
storage. Moreover, one should increase the number of iterations to benefit more
from the cumulated set which will cause longer training time. For all these rea-
sons, we suggest to use only the selected samples at each iteration to re-train
the network. Therefore we again train with 104 initial training images for 5 · 104

iterations. Then we classify 105 test images and replace the training set with 104

of the correct classified ones and train for 2.5 ·105 iterations again. Subsequently
we follow the same procedure and decrease the number of iterations after each
epoch according to the following rule: 2.5·104 iterations until epoch 6, 2·104 until

CAPTCHA Recognition with Active Deep Learning 7

Iterations ·104
0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100

added correct and uncertain samples
added all correct samples
added random correct samples
added correct and certain samples

Iterations ·104
0 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100
used correct and uncertain samples
used random correct samples
used correct and certain samples

Fig. 6. Learning curves for Active Deep Learning. Top: The training set is
increased with the selected samples after each iteration. When using all the correct ones
(black curve), we stop adding new images to the training set after 50 · 104 iterations,
because the size of the training set already exceeds 3 · 106. Bottom: Network is re-
trained only on the new samples. Vertical black lines denote the end of every Active
Learning epoch.

epoch 11, 1.5 ·104 until epoch 16, 1 ·104 until epoch 21 and 5 ·103 until epoch 40.
We again get the best performance with the correct but uncertain predictions
(see bottom plot in Fig. 6). This is reasonable as the network in fact classifies
the images correctly, but still is very uncertain about the prediction. Hence it
can learn from the fact that it was indeed right with its classification. One can
argue that learning with misclassified samples should yield better results. This
is indeed the case, however not possible in practice.

6 Conclusion

We propose a CAPTCHA solving technique that uses initially a very small set
of images to train a deep CNN and then improves the classifier by exploiting
the test samples. New training samples are chosen from the test set based on
their uncertainty. Our results show that the performance of the network can be
significantly improved with the correctly classified but uncertain test samples.

Acknowlegments The work in this paper was partly funded by the EU
project SPENCER (ICT-2011-600877).

8 F. Stark, C. Hazırbaş, R. Triebel, and D. Cremers

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai prob-
lems for security. In: EUROCRYPT (2003)

2. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha:
Human-based character recognition via web security measures. Science (2008)

3. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. The Journal of Machine Learning Research 3, 1137–1155 (2003)

4. Chellapilla, K., Simard, P.Y.: Using machine learning to break visual human in-
teraction proofs (hips). In: NIPS (2004)

5. Claudiu Ciresan, D., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep
big simple neural nets excel on handwritten digit recognition. arXiv preprint
arXiv:1003.0358 (2010)

6. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Int. Conf. on Artificial Intell. and Statistics. pp. 215–223 (2011)

7. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th inter-
national conference on Machine learning. pp. 160–167. ACM (2008)

8. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. Audio, Speech, and Language
Processing, IEEE Transactions on 20(1), 30–42 (2012)

9. Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S., Shet, V.: Multi-digit number
recognition from street view imagery using deep convolutional neural networks.
ICLR (2014)

10. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE 29(6), 82–97 (2012)

11. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In:
CVPR (2014)

12. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild
with convolutional neural networks. IJCV (2015)

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

14. Joshi, A., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image
classification (2009)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

17. Lu, Y.: Machine printed character segmentation; an overview. Pattern Recognition
28(1), 67–80 (1995)

18. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual
captcha (2003)

19. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: 2013 12th International Confer-
ence on Document Analysis and Recognition. vol. 2, pp. 958–958. IEEE Computer
Society (2003)

