
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 94

On the Equivalence of Soft Wavelet
Shrinkage, Total Variation Diffusion, Total

Variation Regularization, and SIDEs

Gabriele Steidl, Joachim Weickert, Thomas Brox,
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Abstract

Soft wavelet shrinkage, total variation (TV) diffusion, total variation
regularization, and a dynamical system called SIDEs are four useful
techniques for discontinuity preserving denoising of signals and im-
ages. In this paper we investigate under which circumstances these
methods are equivalent in the 1-D case. First we prove that Haar
wavelet shrinkage on a single scale is equivalent to a single step of
space-discrete TV diffusion or regularization of two-pixel pairs. In the
translationally invariant case we show that applying cycle spinning to
Haar wavelet shrinkage on a single scale can be regarded as an ab-
solutely stable explicit discretization of TV diffusion. We prove that
space-discrete TV diffusion and TV regularization are identical, and
that they are also equivalent to the SIDEs system when a specific
force function is chosen. Afterwards we show that wavelet shrinkage
on multiple scales can be regarded as a single step diffusion filtering
or regularization of the Laplacian pyramid of the signal. We analyse
possibilities to avoid Gibbs-like artifacts for multiscale Haar wavelet
shrinkage by scaling the thesholds. Finally we present experiments
where hybrid methods are designed that combine the advantages of
wavelets and PDE / variational approaches. These methods are based
on iterated shift-invariant wavelet shrinkage at multiple scales with
scaled thresholds.
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1 Introduction

Image denoising is a field where one is typically interested in removing noise
without sacrificing important structures such as edges. This goal cannot be
achieved with linear filters. Consequently, a large variety of nonlinear strate-
gies has been proposed including rank-order filtering and mathematical mor-
phology [28, 37], global stochastic methods [35, 40, 69], adaptive smoothing
[7, 38, 54, 61], wavelet techniques [26, 27, 44], partial differential equations
(PDEs) [2, 50, 55, 67] and variational methods [5, 6, 12, 49, 57, 63, 66].
Although these method classes serve the same purpose, relatively few publi-
cations exist where their similarities and differences are juxtaposed and their
mutual relations are analysed. However, such an analysis is highly desirable,
since it can help to transfer results from one of these classes to the others.
Moreover, a deeper understanding of the differences between these classes
might be helpful for designing novel hybrid methods that combine the ad-
vantages of the different classes.
The goal of the present paper is to address this problem by analysing relations
between four important representatives of discontinuity preserving denoising
methods:

• wavelet soft thresholding [26]

• space-discrete total variation (TV) diffusion [3, 4]

2



• discrete total variation (TV) regularization [53, 1]

• SIDEs, a dynamical system that has been inspired from space-discrete
stabilized inverse diffusion equations [51]

Figure 1 gives an illustration of the denoising properties of soft wavelet
shrinkage and TV regularization methods. We observe that the results do
not differ very much. Indeed, we shall prove in our paper that all four before
mentioned methods are very closely related.
In order to keep things as simple as possible we base our analysis on the
1-D case. Our basic strategy is to start with the simplest cases for which
we can establish equivalence. Afterwards we extend these results to more
general situations. The higher dimensional case is beyond the scope of the
present paper, since it cannot be treated as a straightforward generaliza-
tion of the 1-D ideas. For some preliminary results in 2-D, we refer to [47],
where diffusion-inspired wavelet shrinkage with improved rotation invariance
is introduced.

Our paper is organized as follows: in Section 2 we give a very brief descrip-
tion of the general ideas behind wavelet shrinkage, nonlinear diffusion filter-
ing, variational image denoising and SIDEs. In Section 3 we specify these
paradigms to the simplest cases where equivalence can be shown. In this
section we restrict ourselves to 2-pixel signals, soft Haar wavelet shrinkage,
the total variation diffusivity and its corresponding regularizer. Under these
circumstances we prove equivalence between wavelet shrinkage, TV diffusion
and TV regularization. These results are extended in Section 4 to the trans-
lationally invariant case with N -pixel signals. In the wavelet setting, we use a
Haar wavelet based technique on a single scale with cycle spinning. We show
that it can be regarded as a single iteration of a stabilized explicit scheme for
TV diffusion, and we prove that this TV diffusion is equivalent to both TV
regularization and SIDEs with an appropriate force function. In Section 5 we
extend our wavelet results from a single scale to multiple scales. We show that
multiple scale Haar wavelet soft shrinkage can be regarded as TV diffusion,
TV regularization or SIDEs applied to a Laplacian pyramid decomposition
of the signal. In Section 6 we present experiments where we compare iterated
single scale filtering with noniterated and iterated multiscale filtering. The
paper is concluded with a summary in Section 7.

Related work. Earlier applications of wavelets in the context of PDE-based
denoising have been focusing on their use as basis functions in Galerkin
schemes for nonlinear diffusion filtering [32, 34]. More recently a number of
interesting connections between wavelet shrinkage of functions, regularization
methods and PDEs has been established. A book by Meyer [46] presents
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a unified view on wavelets and nonlinear evolutions, and Shen and Strang
[58, 59] have included wavelets into the solution of the linear heat equation.
Chambolle et al. [16] showed that one may interpret wavelet shrinkage of
functions as regularization processes in suitable Besov spaces. In particular
Haar thresholding was considered in [21]. Furthermore, Cohen et al. [20]
showed that the space of functions of bounded variation can be ,,almost”
characterized by wavelet expansions. Chambolle and Lucier [18] considered
iterated translationally invariant wavelet shrinkage and interpreted it as a
nonlinear scale-space, that differs from other scale-spaces by the fact that it
is not given in terms of PDEs. A stochastic interpretation of the connections
between wavelets and edge-preserving regularization is given by Belge et al.
[9].
There has also been a rapidly increasing interest in designing hybrid meth-
ods using both wavelet shrinkage and TV denoising methods. Durand and
Froment [29] proposed to address the problem of pseudo-Gibbs artifacts in
wavelet denoising by replacing the thresholded wavelet coefficients by coeffi-
cients that minimize the total variation. Their method is also close in spirit to
approaches by Chan and Zhou [19] who postprocessed images obtained from
wavelet shrinkage by a TV-like regularization technique. Coifman and Sowa
[23] used functional minimization with wavelet constraints for postprocess-
ing signals that have been degraded by wavelet thresholding or quantization.
Candes and Guo [15] also presented related work, in which they combined
ridgelets and curvelets with TV minimization strategies. Recently, Malgo-
uyres [42, 43] proposed a hybrid method that uses both wavelet packets and
TV approaches. His experiments showed that it may restore textured regions
without introducing ringing artifacts.
Regarding the relations between wavelet shrinkage denoising of discrete sig-
nals and TV reduction, not much research has been done so far. One notable
exception is a recent paper by Coifman and Sowa [24] where they propose
TV diminishing flows that act along the direction of Haar wavelets. Bao and
Krim [8] addressed the problem of texture loss in diffusion scale-spaces by
incorporating ideas from wavelet analysis. An experimental evaluation of the
denoising capabilities of 3-D wavelet shrinkage and nonlinear diffusion filters
is presented in a paper by Frangakis et al. [33].
This discussion shows that our paper differs from preceding work by the
fact that we investigate conditions under which we can prove equivalence
between wavelet shrinkage of discrete signals, space-discrete TV diffusion or
regularization, and SIDEs. Some preliminary results in this paper have been
presented at conferences [62, 13].
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2 The Basic Methods

The goal of this section is to give a brief introduction to the methods that
are considered in this paper: soft Haar wavelet shrinkage, total variation
diffusion, total variation denoising, and SIDEs.

2.1 Wavelet Shrinkage

During the last years wavelet methods have proved their use in various sig-
nal processing tasks. One of them is discontinuity-preserving denoising. The
discrete wavelet transform represents a one-dimensional signal f(x) in terms
of shifted versions of a dilated lowpass scaling function ϕ(x), and shifted and
dilated versions of a bandpass wavelet function ψ(x). In case of orthogonal
wavelets, this gives

f(x) =
∑

i∈Z

〈f, ϕje

i 〉ϕje

i (x) +

je
∑

j=−∞

∑

i∈Z

〈f, ψj
i 〉ψj

i (x),

where ψj
i (x) := 2−j/2ψ(2−jx − i) and where 〈·, ·〉 denotes the inner product

in L2(R). The wavelet representation employs scaling components only at
one level je, and wavelet components at levels j ≤ je add higher resolution
details to the signal.
If the measurements f are corrupted by white Gaussian noise, then this
noise is contained to small amount in all wavelet coefficients 〈f, ψj

i 〉, while the
original signal is in general determined by few significant wavelet coefficients.
Therefore wavelet shrinkage attempts to eliminate noise from the wavelet
coefficients by the following three-step procedure:

• Analysis: transform the noisy data f to the wavelet coefficients dj
i =

〈f, ψj
i 〉 and scaling function coefficients cje

i = 〈f, ϕje

i 〉.

• Shrinkage: apply a shrinkage function Sτ with a threshold parameter τ
related to the variance of the Gaussian noise to the wavelet coefficients,
i.e., Sτ (d

j
i ) = Sτ (〈f, ψj

i 〉).

• Synthesis: reconstruct the denoised version u of f from the shrunken
wavelet coefficients

u(x) :=
∑

i∈Z

〈f, ϕje

i 〉ϕje

i (x) +

je
∑

j=−∞

∑

i∈Z

Sτ (〈f, ψj
i 〉)ψj

i (x).
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In the literature a number of different shrinkage functions have been consid-
ered. In this paper we focus on one of the most popular strategies, namely
Donoho’s soft shrinkage [26]. It uses the soft thresholding with threshold
parameter τ > 0

Sτ (x) =

{

x− τ sgn (x) if |x| > τ,
0 if |x| ≤ τ,

(1)

which shrinks all coefficients towards zero. Other shrinkage functions will be
considered in a forthcoming paper.
Furthermore, in this paper we restrict our attention to Haar wavelets. They
are well-suited for recovering piecewise constant signals with discontinuities.
The Haar wavelet ψ(x) and the corresponding scaling function ϕ(x) are given
by

ψ(x) := 1[0, 1
2
) − 1[ 1

2
,1),

ϕ(x) := 1[0,1),

where 1[a,b) denotes the characteristic function of [a, b):

1[a,b)(x) :=

{

1 if x ∈ [a, b),
0 else.

Using the so-called “two-scale relation” of the wavelet and its scaling func-
tion, the coefficients cji and dj

i at higher level j can be computed from the
coefficients cj−1

i at lower level j − 1 and conversely. This results in fast al-
gorithms for the analysis step and synthesis step. For the Haar wavelets, we
obtain

cji =
cj−1
2i + cj−1

2i+1√
2

, dj
i =

cj−1
2i − cj−1

2i+1√
2

, (2)

and

cj−1
2i =

cji + dj
i√

2
, cj−1

2i+1 =
cji − dj

i√
2

. (3)

2.2 Diffusion Filtering

Let us now consider a function f(x) on some interval [a, b]. The basic idea
behind nonlinear diffusion filtering is to obtain a family u(x, t) of filtered
versions of the signal f(x) as the solution of a suitable diffusion process with
f(x) as initial condition and homogeneous Neumann boundary conditions
[50]:

ut = (g(u2
x) ux)x on (a, b) × (0,∞), (4)

u(x, 0) = f(x) for all x ∈ [a, b],

ux(a, t) = ux(b, t) = 0 for all t ∈ (0,∞),
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where subscripts denote partial derivatives, and the diffusion time t is a
simplification parameter: larger values correspond to stronger filtering.
The diffusivity g(u2

x) is a nonnegative function that steers the amount of
diffusion. Usually, it is decreasing in u2

x. This ensures that strong edges are
less blurred by the diffusion filter than noise and low-contrast details. In the
present paper, we focus on the total variation (TV) diffusivity

g(u2
x) :=

1

|ux|
. (5)

The resulting TV diffusion filter (also called total variation flow) has a num-
ber of interesting properties. It requires no additional parameters (besides t),
it is well-posed [3, 10, 30], it preserves the shape of some objects [10], and it
leads to constant signals in finite time [4].

2.3 Regularization Methods

Regularization methods constitute an alternative to diffusion filters when one
is interested in a discontinuity-preserving denoising method for a continuous
signal f(x) with x ∈ [a, b]. Here the basic idea is to look for the minimizer u
of the energy functional

E(u;α, f) :=

b
∫

a

(

(u− f)2 + αΨ(u2
x)
)

dx. (6)

The first term of this functional encourages similarity between the original
signal f(x) and its filtered version u(x), while the second term penalizes devi-
ations from smoothness. The increasing function Ψ is called penalizer (regu-
larizer), and the nonnegative regularization parameter α serves as smoothness
weight: larger values correspond to a more pronounced filtering.
As is explained in detail in [56], there are strong relations between regular-
ization methods and diffusion filters: A minimizer of (6) satisfies necessarily
the Euler–Lagrange equation

u− f

α
= (Ψ′(u2

x) ux)x,

with homogeneous Neumann boundary conditions. This equation may be
regarded as a fully implicit time discretization of the diffusion equation (4)
with diffusivity g(u2

x) = Ψ′(u2
x), initial value f(x), and stopping time α. Thus,

one would expect that the minimizer of (6) approximates the diffusion filter
(4), but is not identical to it.
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In the present paper, we are interested in one of the most popular nonlinear
regularization methods, namely total variation (TV) regularization [53, 1]. It
uses the penalizer

Ψ(u2
x) := 2 |ux|

which corresponds to the TV diffusivity (5). This regularization strategy
is well-known for its good denoising capabilities and its tendency to create
blocky, segmentation-like results. Well-posedness results have been estab-
lished in [17].

2.4 SIDEs

A SIDE is a dynamical system that has been inspired from a stabilized lim-
iting case of a space-discrete nonlinear diffusion filter [51]. The name SIDE
is an acronym for stabilized inverse diffusion equation.
Let us consider a discrete signal f = (fi)

N−1
i=0 . Then its SIDE evolution pro-

duces a sequence of filtered images u(t) = (ui(t))
N−1
i=0 with u(0) = f . In-

creasing the time t leads to a consecutive merging of regions. The evolution
between two merging events is governed by a dynamical system with discon-
tinuous right hand side.
Assume that at some time tj, a pixel with index i belongs to a constant
region of size mi,tj , i.e. there exist l ≥ 1 and r ≥ 0 with mi,tj = l + r,

ui−l+1 = . . . = ui = ui+1 = . . . = ui+r,

and
ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 2.

Then the SIDEs algorithm proceeds as follows:

(i) (Initialization)
Start at time t0 = 0 with the trivial segmentation, where each pixel i
is regarded as a region of size mi,0 = 1:

ui(0) = fi.

(ii) (Evolution)
Given some segmentation at time tj, the signal evolves according to

u̇i =















1
mi,tj

F (ui+r+1 − ui+r) if i− l = −1,
−1

mi,tj

F (ui−l+1 − ui−l) if i+ r = N − 1,
1

mi,tj

(F (ui+r+1 − ui+r) − F (ui−l+1 − ui−l)) else,

(7)
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where u̇i denotes the derivative of ui with respect to t and F is a
so-called force function that satisfies a number of formal requirements
[51]. The first case in (7) describes the evolution of the region at the left
signal boundary, the second case applies for the right boundary region,
and the third case specifies the evolution of all inner regions.
In [51], only the third case has been specified. We have supplemented
the other two cases here in order to be able to treat the boundary
regions in a proper way as well.
The evolution is stopped when two neighbouring regions attain equal
grey values. This determines the new merging time tj+1.

(iii) (Merging)
Merge the neighbouring regions with equal grey values.

(iv) (Loop Control)
Stop if all regions are merged to one, else go back to step (ii).

We see that the stabilization in SIDEs is achieved by an additional definition
that results in merging neighbouring regions when they approach each other.
This step is crucial for the performance of SIDEs, as it can be used for
reducing the state variables of the dynamical system. The analytical solutions
in the following sections will provide further theoretical justification for this
region merging step.
In [51] several theoretical results for sides are proved, including a maximum
principle, well-posedness properties and a finite extinction time.
The dynamic system suggests that for the specific case mi = 1, one may
regard a 1-D SIDE as a space discretization of the partial differential equation

ut = (F (ux))x

with homogeneous Neumann boundary conditions. This is a diffusion equa-
tion with flux function F . Since we are specifically interested in the total
variation case, we do not consider the specific choice in [51], but restrict
ourselves to the total variation (TV) force function

F (v) :=

{

1 if v > 0,
−1 if v < 0.

Then it is evident that, if mi = 1 for all i, TV diffusion is approximated.

3 Two-Pixel Signals

In this section, we analyse relations between soft wavelet shrinkage, TV dif-
fusion, TV regularization and SIDEs for the simplest signals, namely discrete
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signals with only two pixels. We will see that the restriction to two pixels al-
lows us to find analytical solutions for these degenerated nonlinear processes.

3.1 Soft Haar Wavelet Shrinkage of Two-Pixel Signals

Let us now consider a discrete two-pixel signal f = (f0, f1), and study its
change under soft Haar wavelet shrinkage.
The analysis step produces the coefficients

c =
f0 + f1√

2
, d =

f0 − f1√
2

of the scaling function and the wavelet. For simplicity, we have dropped the
sub- and superscripts for c and d.
This step is followed by the shrinkage operation Sτ (d) with the soft shrinkage
function (1) Then the synthesis step

u0 =
c+ Sτ (d)√

2
, u1 =

c− Sτ (d)√
2

gives the final result

u0 =

{

f0 + τ√
2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else,
(8)

u1 =

{

f1 − τ√
2
sgn (f1−f0) if τ < |f1−f0|/

√
2,

(f0 + f1)/2 else.
(9)

This shows that by increasing the shrinkage threshold τ , the grey values of
both pixels approach each other. For τ = |f1−f0|/

√
2, they merge, and for

larger τ , they remain merged.

3.2 TV Diffusion of Two-Pixel Signals

Next we are interested in the space-discrete diffusion of two-pixel signals
(f0, f1). The homogeneous Neumann boundary conditions are discretized by
setting flows over the signal boundary to zero. In this case a space-discrete
version of the TV diffusion equation

ut =

(

ux

|ux|

)

x
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can be written as

u̇0 =
u1 − u0

|u1 − u0|
, (10)

u̇1 = − u1 − u0

|u1 − u0|
, (11)

with initial conditions u0(0) = f0 and u1(0) = f1. Here, the dot denotes again
temporal differentiation, and the pixel size is set to 1.
Setting w(t) := u1(t) − u0(t) and η := f1 − f0, and subtracting (10) from
(11), we obtain the following initial value problem:

ẇ = −2
w

|w| , (12)

w(0) = η.

The right-hand side of this differential equation is discontinuous for w = 0
and thus requires a generalization of the concept of solution. We say that w
is a solution of (12) if it is an absolutely continuous function which fulfils

ẇ = −2 sgn (w), (13)

w(0) = η

almost everywhere, where

(I) sgn (w) := 1 if w > 0,
sgn (w) := −1 if w < 0
and may take any value in [−1, 1] if w = 0.

Note that this definition is in agreement with the frequently used concept of
differential inclusions for differential equations with discontinuous right-hand
sides [31], where absolutely continuous solutions of

−1

2
ẇ ∈







{1} if w > 0
{−1} if w < 0

[−1, 1] if w = 0

were considered. The solution of (13) can be obtained as follows: If η 6= 0,
then we have by straightforward computation for t < |η|/2 that w(t) =
η − 2 t sgn (η), and in particular by continuity of w that w(|η|/2) = 0. Assume
that w(t) 6= 0 for some t > |η|/2. Let without loss of generality w(t) > 0.
The opposite assumption w(t) < 0 can be handled in the same way. Then
w(t) = −2t+C, where we get by continuity of w, if t approaches |η|/2, that
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C = |η|, and consequently w(t) = 2(|η|/2 − t) < 0. This contradicts our
assumption. Thus w(t) = 0 for t ≥ |η|/2. In summary, we obtain the solution

w(t) =

{

η − 2 t sgn (η) if t < |η|/2,
0 if t ≥ |η|/2. (14)

This equation shows that the grey value difference w(t) = u1(t) − u0(t)
tends linearly to 0. Both pixels merge at time t = |f1 − f0|/2, and remain
merged afterwards. Thus, already the simple two-pixel model indicates a
finite extinction time for TV diffusion.
Since u̇0 + u̇1 = 0 and u0(0)+u1(0) = f0 +f1, we see further that the average
grey value is preserved:

u0(t) + u1(t) = f0 + f1 ∀ t ≥ 0. (15)

Using (14) and (15), we obtain the analytical solution

u0(t) =

{

f0 + t sgn (f1−f0) if t < |f1−f0|/2,
(f0 + f1)/2 else,

(16)

u1(t) =

{

f1 − t sgn (f1−f0) if t < |f1−f0|/2,
(f0 + f1)/2 else.

(17)

Interestingly, this result is identical to the results (8)–(9) for soft Haar wavelet
shrinkage if one identifies the diffusion time t with the threshold parameter
τ =

√
2t.

3.3 TV Regularization of Two-Pixel Signals

Let us now turn our attention to the regularization framework.
Again we are only interested in the two-pixel model (f0, f1). We consider a
space-discrete variant of (6) with a TV penalizer:

E(u0, u1;α, f) = (f0 − u0)
2 + (f1 − u1)

2 + 2α |u1 − u0|, (18)

Straightforward computation results in the following minimizer of (18):

u0 =

{

f0 + α sgn (f1−f0) if α < |f1−f0|/2,
(f0 + f1)/2 else.

u1 =

{

f1 − α sgn (f1−f0) if α < |f1−f0|/2,
(f0 + f1)/2 else.

This result coincides with the outcome of a single Haar wavelet shrinkage
step with shrinkage parameter τ =

√
2α. Moreover, it is identical to TV
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diffusion, if one replaces the diffusion time t by the regularization parameter
α. Thus, all three methods are equivalent by setting

τ =
√

2 t =
√

2α.

It is remarkable that TV diffusion and TV regularization give identical evolu-
tions in the two-pixel case. From the considerations in Section 2.3 one would
only expect that the processes approximate each other. In Section 4.3 we
will investigate if this equivalence also holds in the general space-discrete
case with N pixels.

3.4 SIDEs for Two-Pixel Signals

If we consider the SIDE evolution of a two-pixel signal (f0, f1), we obtain for
the case of a TV force function the dynamical system

u̇0 =
u1 − u0

|u1 − u0|
,

u̇1 = − u1 − u0

|u1 − u0|

with initial conditions u0(0) = f0 and u1(0) = f1.
This is the same evolution as in the TV diffusion case. Hence, its solution is
given by (16)–(17), and there is a finite merging time t = |f1 − f0|/2.

4 N-Pixel Signals

So far we have focused on the two-pixel case. Let us now investigate which
of the equivalences carry over to the general 1-D case with N pixels. To
this end we will consider shift invariant wavelet shrinkage on a single scale,
show that it performs a numerical approximation to TV diffusion, prove the
equivalence of space-discrete TV diffusion and discrete TV regularization by
deriving analytical solutions of both processes, and show that this solution
coincides with SIDEs with TV force functions.

4.1 Shift Invariant Wavelet Shrinkage on a Single Scale

Let us first reconsider the soft Haar wavelet shrinkage on a single scale with N
pixels, where N is even. Figure 2 illustrates this computation as two-channel

filter bank. As usual we apply the z-transform notation f(z) =
N−1
∑

i=0

fiz
−i.
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Then Hi(z) (i = 0, 1) denotes the convolution of f with the lowpass filter

(i = 0) and the highpass filter (i = 1), i.e. f(z)Hi(z), 2 ↓ and 2 ↑ down-
sampling and upsampling by 2, respectively, and the circle soft thresholding
by Sτ . Finally, • signifies addition; see also [64].

The use of Haar wavelets creates a natural decomposition of the signal into
two-pixel pairs of type (f2j , f2j+1) (j = 0, . . . , N/2 − 1). This two-pixel clus-
tering, however, also causes a lack of translation invariance which may be
responsible for visual artifacts.
One method to improve the quality of the denoised signal considerably is
to “average out” the translation dependence. This method was termed cycle
spinning by Coifman et al. [22]. For a single wavelet decomposition step, the
basic idea of cycle spinning on a single scale reads as follows:

(a) perform wavelet shrinkage (8), (9) on successive pairs of the original
signal,

(b) shift the signal one pixel to the right and perform wavelet shrinkage on
successive pairs of the shifted signal, shift the resulting signal one pixel
back to the left,

(c) average both results.

The shifting process requires the incorporation of boundary conditions for f .
Again we mirror the signal f at its ends. The steps (a)–(c) are equivalent to
denoising the signal using the nonsubsampled filter bank in Figure 3. More
sophisticated material on oversampled filter banks, corresponding wavelet
frames and undecimated wavelet transforms can be found in [25, 44].

4.2 Equivalence to a Numerical Scheme for TV Diffu-
sion

We have seen that, in order to improve the performance of wavelet shrinkage
and to make wavelet-based denoising translationally invariant, cycle spinning
can be used. Since there is an equivalence between Haar wavelet shrinkage
and TV diffusion in the two-pixel case, it would be natural to ask if there is a
TV diffusion scheme equivalent to translationally invariant soft Haar wavelet
shrinkage on a single level. This leads us to an interesting novel scheme for
TV diffusion.

Derivation of the Scheme. We have been able to derive an analytical
solution for TV diffusion in the two-pixel case. We can use this two-pixel
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solution to create a numerical scheme for N pixels. In order to derive such a
scheme for some time step size 4t, we proceed in three steps that are inspired
by the cycle spinning technique:

(a) perform TV diffusion with step size 24t on all pixel pairs (u2j, u2j+1),

(b) perform TV diffusion with step size 24t on all pixel pairs (u2j−1, u2j),

(c) average both results.

Obviously one step of this iterative scheme is equivalent to a translationally
invariant Haar wavelet shrinkage with threshold τ = 2

√
24t on a single level.

So let us investigate this scheme in more detail.

At iteration level k, we assume that our signal is given by (uk
i )

N−1
i=0 . We denote

the resulting signal of step (a) by (vk+1
i )N−1

i=0 and the spatial grid size by h.
From our analysis of the two-pixel situation, it follows that vi in some even
pixel i = 2j is given by

vk+1
i =

uk
i + uk

i+1

2
−







max
(

uk
i+1

−uk
i

2
− 24t

h
, 0
)

if uk
i+1 ≥ uk

i ,

min
(

uk
i+1

−uk
i

2
+ 24t

h
, 0
)

if uk
i+1 < uk

i .
(19)

To simplify the notation, we assume only in this subsection instead of the
third agreement in (I) that sgn(0) := 0. It is not difficult to see that (19) can
be rewritten as

vk+1
i = uk

i +
24t
h

sgn (uk
i+1 − uk

i ) min

(

1,
h

44t |u
k
i+1 − uk

i |
)

. (20)

Step (b) leads to a resulting signal (wk+1
i )N−1

i=0 . For i = 2j it is given by

wk+1
i = uk

i −
24t
h

sgn (uk
i − uk

i−1) min

(

1,
h

44t |u
k
i − uk

i−1|
)

. (21)

Thus, the averaging step (c) gives the final scheme for TV diffusion:

uk+1
i = uk

i +
4t
h

sgn (uk
i+1 − uk

i ) min

(

1,
h

44t |u
k
i+1 − uk

i |
)

− 4t
h

sgn (uk
i − uk

i−1) min

(

1,
h

44t |u
k
i − uk

i−1|
)

. (22)

The same scheme can also be derived if i is odd, since the construction (a)–(c)
ensures that the result is translationally invariant. Hence it holds for every
inner pixel i ∈ {1, . . . , N − 2}. It is even valid for the boundary pixels i = 0
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and i = N −1, if we realize the homogeneous Neumann boundary conditions
by introducing dummy values uk

−1 := uk
0 and uk

N := uk
N−1.

Stability. Let us now investigate the stability properties of the explicit finite
difference scheme (20). Since (20) satisfies

min(uk
i , u

k
i+1) ≤ vk+1

i ≤ max(uk
i , u

k
i+1)

and (21) fulfils the estimate

min(uk
i−1, u

k
i ) ≤ wk+1

i ≤ max(uk
i−1, u

k
i )

we can conclude that

min(uk
i−1, u

k
i , u

k
i+1) ≤ uk+1

i ≤ max(uk
i−1, u

k
i , u

k
i+1).

With the initial condition u0
j = fj for j = 0, . . . , N − 1, it follows that the

two-pixel scheme (20) satisfies the discrete maximum-minimum principle

min
j
fj ≤ uk+1

i ≤ max
j
fj

for all pixels i ∈ {0, . . . , N − 1}, all iteration levels k = 0, 1, 2,. . . , and all
time step sizes 4t > 0. In particular, this shows that the scheme is absolutely
stable in the maximum norm.
We may regard (22) as a stabilization of the naive explicit scheme

uk+1
i = uk

i +
4t
h

sgn (uk
i+1 − uk

i ) −
4t
h

sgn (uk
i − uk

i−1) (23)

which becomes unstable for arbitrary small time steps if neighbouring values
become arbitrarily close.

Consistency. The absolute stability in scheme (22) is at the expense that
its consistency is no longer unconditional. This effect is typical for absolutely
stable explicit schemes; see for example the DuFort–Frankel scheme for linear
diffusion [60]. In our case, equation (22) is an O(4t+ h2) approximation to
the continuous TV diffusion for

4t ≤ h

4
min

(

|uk
i+1 − uk

i |, |uk
i − uk

i−1|
)

,

since it coincides with scheme (23) then. For larger time step sizes, the scheme
performs averaging within the neighbourhood of each pixel. By using small
time step sizes, these averaging effects only appear in regions that are already
almost flat such that the difference to real TV diffusion becomes invisible.
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This two-pixel scheme may be regarded as an alternative to classical finite
difference schemes that are based on the regularized TV flow

ut =

(

ux
√

ε2 + u2
x

)

x

. (24)

The ε-regularization is necessary for making the diffusivity bounded. It has a
similar effect as the deviation from consistency in the two-pixel scheme (22):
For small |ux|, a PDE is approximated that differs from TV diffusion and
has better stability properties. Indeed, in Section 6 we shall see that both
schemes give very similar results.

Related Schemes. The idea to split up a diffusion process into pairwise in-
teractions has also proved to be fruitful in other fields. In the context of fluid
dynamic problems, related schemes have been formulated by Richardson,
Ferrell and Long [52]. These authors, however, use multiplicative splittings,
i.e. they first compute the diffusion of the pairs of type (u2j, u2j+1), which is
then used as initial state for the subsequent diffusion of the shifted pairs. In a
general nonlinear setting, such a scheme is not translationally invariant. Our
approach computes the diffusion of the pairs and the shifted pairs in parallel
and averages afterwards. This additive splitting guarantees translation in-
variance. The splitting into two-pixel interactions distinguishes scheme (22)
from other additive operator splittings [41, 68]. They use directional split-
tings along the coordinate axis.

4.3 Equivalence of Space-Discrete TV Diffusion and

Discrete TV Regularization

The equivalence of TV diffusion and TV regularization in the two-pixel case
gives rise to the question whether this equivalence also holds in the N -pixel
situation. In order to clarify this, we now derive analytical solutions for both
processes.

4.3.1 Space-Discrete TV-Diffusion

We consider the following dynamical system designed to describe space-
discrete TV flow on a one-dimensional signal with N pixels:

u̇0 = sgn(u1 − u0),

u̇i = sgn(ui+1 − ui) − sgn(ui − ui−1) (i = 1, . . . , N − 2),

u̇N−1 = −sgn(uN−1 − uN−2),

u(0)= f.



















(25)
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In the following, we further set u−1 := u0 and uN := uN−1. Since the right-
hand side of this system is discontinuous, we need again a more detailed
specification of when a system of functions is said to satisfy these differential
equations. A vector-valued function u is said to fulfil the system (25) over
the time interval [0, T ] if the following holds true:

(II) u is an absolutely continuous vector-valued function which satisfies (25)
almost everywhere, where sgn is defined by (I) on Page 11.

(III) If u̇i(t) and u̇i+1(t) exist for the same t, and ui+1(t) = ui(t) holds, then
the expression sgn(ui+1(t) − ui(t)) occurring in both the right-hand
sides for u̇i(t) and u̇i+1(t) must take the same value in both equations.

Proposition 4.1 (Properties of Space-Discrete TV Diffusion)
The system (25) has a unique solution u(t) in the sense of (II) and (III). This
solution has the following properties:

(i) (Finite Extinction Time)
There exists a finite time T ≥ 0 such that for all t ≥ T the signal
becomes constant:

ui(t) =
1

N

N−1
∑

k=0

fk for all i = 0, . . . , N − 1.

(ii) (Finite Number of Merging Events)
There exists a finite sequence 0 = t0 < t1 < . . . < tn−1 < tn =
T such that the interval [0, T ) splits into sub-intervals [tj, tj+1) with
the property that for all i = 0, . . . , N − 2 either ui(t) = ui+1(t) or
ui(t) 6= ui+1(t) throughout [tj, tj+1). The absolute difference between
neighbouring pixels does not become larger for increasing t ∈ [tj, tj+1).

(iii) (Analytical Solution)
In each of the sub-intervals [tj, tj+1) constant regions of u(t) evolve
linearly:
For a fixed index i let us consider a constant region given by

ui−l+1 = . . . = ui = ui+1 = . . . = ui+r (l ≥ 1, r ≥ 0) (26)

and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i+ r ≤ N − 1

18



for all t ∈ [tj, tj+1). We call (26) a region of size mi,tj = l + r. For
t ∈ [tj, tj+1) let 4t = t− tj. Then ui(t) is given by

ui(t) = ui(tj) + µi,tj

24t
mi,tj

,

where µi,tj reflects the relation between the region containing ui and
its neighbouring regions. It is given as follows:
For inner regions (i.e. i− l ≥ 0 and i+ r ≤ N − 1) we have

µi,tj =







0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1)
(27)

and in the boundary case (i− l+1 = 0 or i+ r = N − 1), the evolution
is half as fast:

µi,tj =











0 if m = N,
1
2

if ui is minimal in (ui−l, ui, ui+r+1),

−1
2

if ui is maximal in (ui−l, ui, ui+r+1).

(28)

Proof: Let u be a solution of (25). We show that u is uniquely determined
and satisfies the rules (i)–(iii).
Our proof proceeds in four steps.

1. If u̇(t) exists at a fixed time t and ui(t) lies at this time in some region

ui−l+1(t) = . . . = ui(t) = . . . = ui+r(t) (l ≥ 1, r ≥ 0),

ui−l(t) 6= ui−l+1(t) if i− l ≥ 0, ui+r(t) 6= ui+r+1(t) if i + r ≤ N − 1

of size mi,t, then it follows by (25) and (III) in the non-boundary case
i− l ≥ 0 and i + r ≤ N − 1 that

ui(t) =
1

mi,t

r
∑

k=−l+1

ui+k(t),

and therefore

u̇i(t) =
1

mi,t

r
∑

k=−l+1

u̇i+k(t)

=
1

mi,t
(sgn (ui+r+1(t) − ui(t)) − sgn (ui(t) − ui−l(t)))

= µi,t
2

mi,t
, (29)
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where µi,t describes the relation between the region containing ui and
its neighbours at time t as in (27). In the boundary case i− l + 1 = 0
or i + r = N − 1 we follow the same lines and obtain (29) with µi,t

defined by (28).

2. Let u̇(t) exist in some small interval (τ0, τ1) and assume that ui(t) 6=
ui+1(t) for some i ∈ {0, . . . , N − 2} and all t ∈ (τ0, τ1). By continuity of
u we may assume that ui(t) < ui+1(t) throughout (τ0, τ1). The opposite
case ui(t) > ui+1(t) can be handled in the same way. Then we obtain
by (29) and definition of µi,t for all t ∈ (τ0, τ1) that

u̇i(t) ≥ 0 if i− l ≥ 0, (30)

u̇i(t) > 0 if i− l + 1 = 0, (31)

u̇i+1(t) ≤ 0 if i+ r ≤ N − 2, (32)

u̇i+1(t) < 0 if i+ r = N − 1. (33)

Set w(t) := ui+1(t) − ui(t). Then the mean value theorem yields

w(τ1) − w(τ0) = (τ1 − τ0) ẇ(t∗)

for some t∗ ∈ (τ0, τ1) and we get by (30)–(33) that

w(τ1) − w(τ0) ≤ 0

with strict inequality in the boundary case. Consequently, the differ-
ence between pixels cannot become larger in the considered interval.
In particular, by continuity of u, pixels cannot be split. Once merged
they stay merged.

3. Now we start at time t0 = 0. Let t1 be the largest time such that
u̇(t) exists and no merging of regions appears in (0, t1). Then, for all
i ∈ {0, . . . , N−1}, a function ui is in the same region with the same re-
lations to its neighbouring regions throughout [0, t1). Thus, we conclude
by (29) that

u̇i(t) = µi,0
2

mi,0

(t ∈ (0, t1))

and consequently

ui(t) = µi,0
2t

mi,0
+ Ci,0

= fi + µi,0
2t

mi,0
(t ∈ [0, t1]),

where the last equality follows by continuity of ui if t approaches 0.
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4. We are now in the position to analyse the entire chain of merging events
successively.
Next we consider the largest interval (t1, t2) without merging events in
the same way, where we take the initial setting u(t1) instead of f into
account. Then we obtain

ui(t) = µi,t1

2t

mi,t1

+ Ci,t1 ,

where by continuity of ui ui(t1) = µi,t1
2t1

mi,t1

+ Ci,t1 , and consequently

ui(t) = ui(t1) + µi,t1

2(t− t1)

mi,t1

.

Now we can continue in the same way by considering [t2, t3) and so on.
Since we have only a finite number N of pixels and some of these pixels
merge at the points tj the process stops after a finite number of n steps
with output

ui(tn) =
1

N

N−1
∑

k=0

fk

for all i = 0, . . . , N − 1.

Conversely, it is easy to check that a function u with (i)–(iii) is a solution of
the system (25). This completes the proof of the proposition. �

4.3.2 Discrete TV Regularization

Next we will prove that discrete TV regularization satisfies the same rules as
space-discrete TV diffusion. For given initial data f = (f0, . . . , fN−1) discrete
TV regularization consists in constructing the minimizer

u(α) = min
u
E(u;α, f) (34)

of the functional

E(u;α, f) =
N−1
∑

i=0

(

(ui − fi)
2 + 2α|ui+1 − ui|

)

, (35)

where we suppose again Neumann boundary conditions u−1 = u0 and uN =
uN−1.

21



For a fixed regularization parameter α ≥ 0, the minimizer of (35) is
uniquely determined since E(u;α, f) is strictly convex in u0, . . . , uN−1. Fur-
ther, E(u, α; f) is a continuous function in u0, . . . , uN−1, α. Consequently,
u(α) is a (componentwise) continuous function in α.
The following proposition implies together with Proposition 4.1 the equiva-
lence of space-discrete TV diffusion and discrete TV regularization.

Proposition 4.2 (Properties of Discrete TV Regularization)
The function u(α) in (34) is uniquely determined by the following rules:

(i) (Finite Extinction Parameter)
There exists a finite A ≥ 0 such that for all α ≥ A the signal becomes
constant:

ui(α) =
1

N

N−1
∑

k=0

fk for all i = 0, . . . , N − 1.

(ii) (Finite Number of Merging Events)
There exists a finite sequence 0 = a0 < a1 < . . . < an−1 < an = A
such that the interval [0, A) splits into sub-intervals [aj, aj+1) with
the property that for all i = 0, . . . , N − 2 either ui(α) = ui+1(α) or
ui(α) 6= ui+1(α) throughout [aj, aj+1). The absolute difference between
neighbouring pixels does not become larger for increasing α ∈ [aj, aj+1).

(iii) (Analytical Solution)
In each of the sub-intervals [aj, aj+1) constant regions of u(α) evolve
linearly:
For a fixed index i let us consider a constant region given by

ui−l+1 = . . . = ui = ui+1 = . . . = ui+r (l ≥ 1, r ≥ 0) (36)

and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 2 (37)

for all α ∈ [aj, aj+1). We call (36) a region of size mi,aj
= l + r. For

α ∈ [aj, aj+1) let 4α = α− aj.
Then ui(α) is given by

ui(α) = ui(aj) + µi,aj

24α
mi,aj

,
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where µi,aj
reflects the relation between the region containing ui and

its neighbouring regions. It is given as follows:
For inner regions (i.e. i− l ≥ 0 and i+ r ≤ N − 2) we have

µi,aj
=







0 if (ui−l, ui, ui+r+1) is strictly monotonic,
1 if ui is minimal in (ui−l, ui, ui+r+1),

−1 if ui is maximal in (ui−l, ui, ui+r+1)
(38)

and in the boundary case (i− l+1 = 0 or i+ r = N − 1), the evolution
is half as fast:

µi,aj
=











0 if m = N,
1
2

if ui is minimal in (ui−l, ui, ui+r+1),

−1
2

if ui is maximal in (ui−l, ui, ui+r+1).

(39)

Proof: Our proof proceeds in four steps.

1. Let us first verify the solution u(α) of (34) for an arbitrary but fixed
α > 0.
If ui(α) is contained in some region of size mi,α with (36), (37), then,
in case i− l ≥ 0 and i+ r ≤ N − 2, we have that u(α) can be obtained
as minimizer of

E(u0, . . . , ui−l, ui, ui+r+1, . . . , uN−1;α, f) =
r
∑

k=−l+1

(ui − fi+k)
2 + 2α (|ui − ui−l| + |ui+r+1 − ui|)

+ F (u0, . . . , ui−l, ui+r+1, . . . , uN−1)

with some function F independent of ui. By (36), (37) the partial
derivative of E with respect to ui exists and is given by

∂E

∂ui

= 2
r
∑

k=−l+1

(ui − fi+k) − 4αµi,α.

Here µi,α describes the relation between the region containing ui and
its neighbours for the regularization parameter α as in (38). Setting the
partial derivative to zero, we obtain that

ui(α) =
1

mi,α

r
∑

k=−l+1

fi+k + µi,α
2α

mi,α
. (40)

In the boundary case i− l+ 1 = 0 or i+ r = N − 1 we follow the same
lines and obtain (40) with µi,α defined by (39).
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2. Next we show that initially merged pixels will not be split for any α in
a small interval [0, a1].

For α = 0 we have that u(0) = f . Let fi = ui(0) be contained in some
region of the form

fi−l0+1 = . . . = fi = fi+1 = . . . = fi+r0
(l0, r0 ≥ 1)

and

fi−l0 6= fi−l0+1 if i− l0 ≥ 0, fi+r0
6= fi+r0+1 if i + r0 ≤ N − 2.

By continuity of u(α) we can choose α1 > 0 so that ui(α) 6= ui−l0(α)
and ui+1(α) 6= ui+r0

(α) throughout [0, α1). Assume that there exists
α ∈ (0, α1) so that ui(α) 6= ui+1(α), where we may assume that

ui(α) < ui+1(α). (41)

The opposite case ui(α) > ui+1(α) can be handled in the same way.
Note that at time α more pixels than ui and ui+1 may be separated.
However, we have by (40) with some 1 ≤ l ≤ l0 and some 1 ≤ r ≤ r0
that

ui(α) =
1

l

0
∑

k=−l+1

fi+k + µi,α
2α

l
= fi + µi,α

2α

l
,

ui+1(α) =
1

r

r
∑

k=1

fi+k + µi+1,α
2α

r
= fi + µi+1,α

2α

r
,

where we see by (41) and (38), (39) that µi,α ≥ 0 and µi+1,α ≤ 0. Thus,
ui(α) ≥ ui+1(α) which contradicts (41). Consequently ui(α) = ui+1(α)
throughout [0, α1), i.e., the pixels of our initial region stay merged.

Let a1 > 0 denote the largest number such that no merging of regions
appears in [0, a1). Then we have for all i = 0, . . . , N − 1 and all α ∈
[0, a1) that µi,α = µi,0 and regarding that u(α) is continuous that

ui(α) = fi + µi,0
2α

mi,0

(α ∈ [0, a1]). (42)

3. Now we show that the absolute difference between neighbouring regions
cannot become larger with increasing α ∈ [0, a1).
Without loss of generality let for some fixed index i

ui−l+1 = . . . = ui < ui+1 = . . . = ui+r (l, r ≥ 1)
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and

ui−l 6= ui−l+1 if i− l ≥ 0, ui+r 6= ui+r+1 if i + r ≤ N − 2.

We consider the non-boundary case i − l ≥ 0 and i + r ≤ N − 2 first.
By (42) we obtain for α + δ ∈ [0, a1), δ > 0 that

di(α) = ui+1(α) − ui(α) = fi+1 − fi + 2α
(µi+1,0

r
− µi,0

l

)

,

di(α + δ) = ui+1(α + δ) − ui(α + δ)

= fi+1 − fi + 2(α+ δ)
(µi+1,0

r
− µi,0

l

)

and consequently

di(α + δ) − di(α) = 2δ
(µi+1,0

r
− µi,0

l

)

.

By (38) it follows that

µi+1,0

r
− µi,0

l
=



















0 if ui−l < ui < ui+1 < ui+r+1,

−1
r

if ui−l < ui and ui+1 > ui+r+1,

−1
l

if ui−l > ui and ui+1 < ui+r+1,

−1
r
− 1

l
if ui−l > ui and ui+1 > ui+r+1

which yields the desired property di(α) ≥ di(α + δ).

In case of boundary regions we follow the same lines but replace (38)
by (39). Then we see that the absolute difference between neighboring
regions becomes smaller with increasing α ∈ [0, a1).

4. We are now in the position to analyse the entire chain of merging events
successively.
For α > a1 and 4α = α− a1, we consider

ũi(4α) = min
u
E(u;4α, u(a1)).

We can repeat the same considerations as in Part 2 of the proof but
with initial setting u(a1) instead of f . It follows that there exists a2 such
that for all i = 0, . . . , N − 2 either ũi(4α) = ũi+1(4α) or ũi(4α) 6=
ũi+1(4α) throughout [a1, a2), where the absolute difference between
neighbouring pixels does not become larger for increasing 4α. Further,
we obtain by (42) and (40) that

ũi(4α) = ui(a1) + µi,a1

24α
mi,a1

=
1

mi,a1

∑

j∈Ri,a1

fj + µi,a1

2a1

mi,a1

+ µi,a1

24α
mi,a1

,
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where Ri,α = {j : uj(α) is in the region of ui(α)} while mi,a1
denotes

the size of the region containing ui(a1) and µi,a1
reflects the relation

between the region containing ui(a1) and its neighbouring regions. Since
the relations between regions do not change for 4α ∈ [0, a2 − a1) we
can rewrite ũi(4α) as

ũi(4α) =
1

mi,a1+4α

∑

j∈Ri,a1+4α

fj + µi,a1+4α
2(a1 + 4α)

mi,a1+4α

=
1

mi,α

∑

j∈Ri,α

fj + µi,α
2α

mi,α
.

On the other hand, we have by (40) that

ui(α) =
1

mi,α

∑

j∈Ri,α

fj + µi,α
2α

mi,α
.

Thus, ui(α) = ũi(4α).

Now we can continue in the same way by considering [a2, a3) and so
on. Since we have only a finite number N of pixels and some of these
pixels merge at the points aj the process stops after a finite number of
n steps with output u(an) which by (40) reads as

ui(an) =
1

N

N−1
∑

k=0

fk

for all i = 0, . . . , N − 1. This completes the proof. �

Analytical results for some convex regularization problems applied to specific
test signals have been presented by Li [39]. Strong [65] derived analytical re-
sults in the case of continuous TV regularization methods with step functions
as initializations. Equivalent results have been obtained by Mammen and van
de Geer [45] for the taut-string algorithm in statistics; see also [36]. Our re-
sults are in accordance with these findings, but our proof shows that they
can be derived in a different way: The structure of our proof is in complete
analogy with the proof for the TV diffusion case. After the submission of our
manuscript, an alternative way of deriving explicit solutions for TV diffu-
sion has been proposed by Bellettini et al. [11] by considering an eigenvalue
problem.
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4.4 Equivalence to SIDEs with TV Force Functions

In Section 2.4 we have seen that 1-D SIDEs with region size 1 and TV force
function are identical to space-discrete TV diffusion. Moreover, in Section
4.3 we have derived analytical solutions of space-discrete TV diffusion and
discrete TV regularization that show the same merging behaviour as SIDEs
with TV force functions. Consequently, 1-D SIDEs can be interpreted as an
exact solution of space-discrete TV diffusion or regularization in general.
This also confirms that the merging steps in the SIDE evolution are much
more than a heuristic stabilization that speeds up the evolution: They are
a natural consequence of the degenerated diffusivities that are unbounded
in 0. Last but not least, our considerations can be regarded as a theoret-
ical justification of region merging in terms of variational and PDE-based
techniques.

5 Multiple Scales

So far we have only considered soft wavelet shrinkage on a single scale. In
almost all practical applications, however, wavelet shrinkage is performed
on multiple scales. In this section, we interpret multiscale soft shrinkage
with Haar wavelets as application of nonlinear TV-based diffusion to two-
pixel groups of hierarchical signals. First we consider the standard situation
without shift invariance, then we discuss the shift-invariant case. Finally, we
address a frequent problem that occurs with wavelet shrinkage on multiple
scale: the presence of Gibbs-like artifacts. We analyse ways to circumvent
this phenomenon by using scale-dependent thresholds.
Throughout this section we deal with signals of length N = 2n (n ∈ N).

5.1 Standard Case without Shift Invariance

Haar wavelet shrinkage on two scales is described by the filter bank in Figure
4. To obtain more than two scales we further split up the upper branch of
the inner filter bank and so on until we arrive at scale n = log2N , where the
successive downsampling by 2 results in a one-pixel signal.
Next we briefly recall the concept of Gaussian and Laplacian pyramids [14]
with respect to the Haar filters. The Gaussian pyramid we are interested in is
the sequence of H0-smoothed and downsampled versions of an initial signal
f given by

f = f (0) −→ f (1) = Rf −→ . . . −→ f (n) = Rnf,
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where R denotes the operator for H0-smoothing and subsequent downsam-
pling by 2, i.e.,

f
(j+1)
i = (Rf (j))i =

f
(j)
2i + f

(j)
2i+1√

2
(j = 0, . . . , n− 1; i = 0, . . . , N

2j+1 − 1).

Let Pf (j) denote the prolongated version of f (j) given by

(Pf (j))2i = (Pf (j))2i+1 =
f

(j)
i√
2

(j = 1, . . . , n; i = 0, . . . , N
2j − 1). (43)

Then the corresponding Laplacian pyramid is the sequence

f − Pf (1) −→ f (1) − Pf (2) −→ . . . −→ f (n−1) − Pf (n) −→ f (n).

By
f (j) = Pf (j+1) +

(

f (j) − Pf (j+1)
)

(j = n− 1, . . . , 0)

we can reconstruct f from its Laplacian pyramid.
Let diff t denote the operator of nonlinear diffusion with TV diffusivity and
stopping time t, applied to the successive two-pixel parts of a signal. By
Subsection 3.2 we know that diff t performs like a single wavelet shrinkage
step with soft threshold parameter τ =

√
2t. In other words, the result of the

filter bank in Figure 2 is u = diff t(f). Further, we see that the upper branch
of this filter bank produces Pf (1) so that the lower branch must produce
diff t(f) − Pf (1). By (43) and (3.1) it is easy to check that the nonlinear
operator difft fulfils

difft(f) − Pf (1) = diff t(f − Pf (1)).

Thus, one wavelet shrinkage step is given by

u = Pf (1) + difft(f − Pf (1)).

Now the multiscale Haar wavelet shrinkage up to scale n can be described
by successive application of diff t to the Laplacian pyramid:

u(n) = f (n), (44)

u(j) = Pu(j+1) + difft(f
(j) − Pf (j+1)) (j = n− 1, . . . , 0). (45)

The result of the multiscale wavelet shrinkage is u = u(0).
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5.2 Shift-Invariant Case

Now we consider translation invariant multiscale wavelet shrinkage. In the
multiscale setting we apply cycle spinning over the range of all N shifts of f .
This is equivalent to denoising using the undecimated or stationary wavelet
transform [25, 27, 44]. The filter bank which corresponds to two scales of
translation-invariant Haar wavelet shrinkage is shown in Figure 5. Note that
the inner filter bank uses z2 instead of z in Hi (i = 0, 1). In general we have to
replace z by z2j−1

at scale j. While ordinary wavelet shrinkage requires O(N)
arithmetic operations, its translation invariant version needs O(N log2N)
arithmetic operations.
In Subsection 4.2 we have deduced a numerical scheme for TV diffusion. Each
iteration is given by (22). This coincide with a single translation invariant
Haar wavelet shrinkage step with threshold τ = 2

√
2t. Using our operator

diff · and the operator S which shifts a signal one pixel to the right, the result
u of the single scale translation invariant filter bank in Figure 3 is given by

u =
1

2

(

diff2t(f) + S−1diff2t(Sf)
)

.

Now the multiscale translation invariant Haar wavelet shrinkage can be in-
terpreted as application of diff · to a multiple Laplacian pyramid. We define
a multiple Gaussian pyramid by

f (0,0) −→
(

f (1,0), f (1,1)
)

−→
(

f (2,0), f (2,1), f (2,2), f (2,3)
)

−→ . . .

−→
(

f (n,0), . . . , f (n,2n−1)
)

,

where f = f (0,0). Here f (j,k) is obtained by successive application of the
operators R and RS on f as follows: Let 0 denote the application of R and 1
the application ofRS, then these operators are applied to f in the order of the
binary representation (kj−1, . . . , k0)2 of k, where we start from the left. For
example we get f (2,1) = f (2,(0,1)2) = RS Rf and f (2,2) = f (2,(1,0)2) = RRSf .
Then the multiple Laplacian pyramid is given by

(

f (0,0) − Pf (1,0), Sf (0,0) − Pf (1,1)
)

−→
(

f (1,0) − Pf (2,0), Sf (1,0) − Pf (2,1), f (1,1) − Pf (2,2), Sf (1,1) − Pf (2,3)
)

−→ . . . −→
(

f (n,0), . . . , f (n,2n−1)
)
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and the translation invariant version of (44)–(45) can be obtained from this
multiple Laplacian pyramid by

u(n,k) = f (n,k) (k = 0, . . . , 2n − 1),

u(j,k) =
1

2

(

Pu(j+1,2k) + diff2t(f
(j,k) − Pf (j+1,2k))

+ S−1
(

Pu(j+1,2k+1) + diff2t(Sf
(j,k) − Pf (j+1,2k+1))

))

(j = n− 1, . . . , 0; k = 0, . . . , 2j − 1).

The result of the multiscale translation invariant wavelet shrinkage is u =
u(0,0).

5.3 Scale-Dependent Thresholds

Cycle spinning techniques can be used to make wavelet shrinkage not only
translationally invariant, but also to reduce artifacts. However, it is still pos-
sible that oscillatory (Gibbs-like) artifacts appear if multiple scales are used.
We want to demonstrate that the use of the scale-dependent thresholds

τj =
τ

√
2

j−1 (j = 1, . . . , n) (46)

suppresses oscillations in the shrinkage process.
In this subsection, we consider signals f = (f0, . . . , fN−1) with periodic
boundary conditions. Note that mirror boundary conditions can easily be
transferred into periodic ones by doubling the signal.
The decimated Haar wavelet shrinkage with full n-scale decomposition and
thresholds (46) consists of three operations. It starts with the linear trans-
form (2) of f yielding the wavelet coefficients (cn, dn, dn−1, . . . , d1), where
dj := (dj

0, . . . , d
j
N/2j−1

). The wavelet coefficients then undergo the soft wavelet
thresholding

sj
i := Sτj

(dj
i ) (j = 1, . . . , n; i = 0, . . . , N/2j − 1)

followed by the inverse linear transform (3) of (cn, sn, sn−1, . . . , s1) which
gives the denoised signal u(τ). In particular we have u(0) = f . Note that by
the semigroup property

Sτ+τ̃ (x) = Sτ̃ (Sτ (x))

of our shrinkage function (1), the signal u(Kτ) obtained by one n-scale
wavelet shrinkage cycle with threshold Kτ coincides with the signal which re-
sults from K times repeating one n-scale wavelet shrinkage cycle with smaller
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threshold τ . Of course this is no longer true for the translation-invariant
wavelet transform. In our examples in the next section we will consider iter-
ated translation-invariant Haar wavelet shrinkage with small thresholds τ .
Since oscillatory (Gibbs-like) artifacts are characterized by the emergence of
new local extrema, we study the behaviour of local extrema of the signal
under the shrinkage process. We call ui an extremal pixel, if either ui−1 < ui,
ui > ui+1 or ui−1 > ui, ui < ui+1.
First we consider the dynamics of “infinitesimal translation-invariant soft
Haar wavelet shrinkage”, i.e. the speed at which pixels of the signal evolve
with respect to the threshold τ ∈ [0, T ] in the limit case T → 0.

Proposition 5.1 (Suppression of Gibbs-like Artifacts by Scaled
Thresholds)
Under infinitesimal translation-invariant soft Haar wavelet shrinkage, an ex-
tremal pixel fi evolves as follows:

(i) The value of the extremal pixel decreases, i.e. u̇i < 0, if it is a maximum
and increases, i.e. u̇i > 0, if it is a minimum. Here the dot denotes
differentiation with respect to τ .

(ii) The absolute value of the difference of the extremal pixel to each of
its two neighbours decreases, i.e. u̇i − u̇i±1 < 0 for a maximum and
u̇i − u̇i±1 > 0 for a minimum.

Statement (i) holds also for the decimated Haar wavelet shrinkage while
statement (ii) cannot be established in that setting.

Proof: For the decimated Haar wavelet shrinkage with full n-scale decom-
position and thresholds (46) it is easy to check that the resulting signal ũi is
given by

ũi = µ+

n
∑

j=1

2−j/2εj(i)s
j
bi/2jc,

where bxc denotes the largest integer ≤ x. Moreover, µ := 1
N

∑N−1
i=0 fi is the

average value, and

εj(i) :=

{

1 if bi/2j−1c is even,
−1 if bi/2j−1c is odd.

For the translation-invariant Haar wavelet shrinkage, the sum on the right-
hand side of this equation is replaced by the average of N sums of the same
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kind containing the back-shifted shrunken wavelet coefficients of N forward-
shifted initial signals, i.e.

ui = µ+
1

N

N−1
∑

ν=0

n
∑

j=1

2−j/2εj(i+ ν)sj
b(i+ν)/2j c,ν (47)

where sj
i,ν denotes the i-th coefficient of the j-th level of the ν-shifted initial

signal, and the coefficients are treated N/2j-periodic with respect to i. Of
course, some coefficients coincide for different ν, more precisely

sj
b(i+ν)/2j c,ν = sj

b(i+ν+r2j)/2jc,ν+r2j (ν = 0, . . . , 2j−1; r = 0, . . . , N/2j−1).

This equation allows us to rewrite (47) as

ui = µ+
1

2
√

2

(

ε1(i)s
1
bi/2c,0 + ε1(i + 1)s1

b(i+1)/2c,1
)

+
1

N

n
∑

j=2

2−j/2
2j−1
∑

ν=0

N/2j−1
∑

r=0

εj(i + ν + r2j)sj
b(i+ν+r2j)/2jc,ν+r2j ,

= µ+
si,+ − si,−

2
√

2
+

n
∑

j=2

2−3j/2
2j−1
∑

ν=0

εj(i+ ν)sj
b(i+ν)/2j c,ν ,

where si,+ := Sτ (di,+) = Sτ

(

(fi−fi+1)/
√

2
)

and si,− := Sτ (di,−) = Sτ

(

(fi−1−
fi)/

√
2
)

. Now the evolution of ui under infinitesimal soft wavelet shrinkage
is described by

u̇i =
ṡi,+ − ṡi,−

2
√

2
+

n
∑

j=2

2−3j/2

2j−1
∑

ν=0

εj(i + ν)ṡj
b(i+ν)/2jc,ν , (48)

where

ṡj
· =

dSτj
(dj

· )

dτj
· dτj

dτ
=

− sgn(dj
· )√

2
j−1 .

Inserting this into (48), we obtain

u̇i =
− sgn(di,+) + sgn(di,−)

2
√

2
− Ai, (49)

where

Ai :=
√

2

n
∑

j=2

4−j

2j−1
∑

ν=0

εj(i+ ν) sgn(dj
b(i+ν))/2jc,ν).

32



By the triangle inequality we can estimate

|Ai| ≤
√

2

n
∑

j=2

2−j <
1√
2
. (50)

If fi is an extremal pixel, then we have that sgn(di,+) = − sgn(di,−) = 1 for
a maximum and −1 for a minimum. This implies by (49) and (50) that

sgn(u̇i) = − sgn(di,+) (51)

proving statement (i) of the proposition.
By subtracting from (49) its counterpart for pixel ui+1, we obtain by di,+ =
di+1,− that

u̇i − u̇i+1 =
sgn(di,−) − 2 sgn(di,+) + sgn(di+1,+)

2
√

2
− (Ai − Ai+1). (52)

In

Ai − Ai+1 =
√

2
n
∑

j=2

4−j
2j−1
∑

ν=0

(

εj(i + ν) sgn(dj
b(i+ν)/2jc,ν)

−εj(i + 1 + ν) sgn(dj
b(i+1+ν)/2jc,ν)

)

the values in the inner brackets cancel except for the two indices ν = νj
k ∈

{0, . . . , 2j − 1} (k = 0, 1) with νj
k + 1 + i ≡ 0 mod 2j−1. For these indices the

signs of εj(i + νk) and εj(i + 1 + νk) are opposite. Consequently, for each j,
the inner sum contains only four summands, and we can estimate

|Ai − Ai+1| ≤
√

2
n
∑

j=2

4−j · 4 <
√

2

3
. (53)

By inserting this into (52), it becomes clear that for an extremal pixel fi we
get

sgn(u̇i − u̇i+1) = − sgn(di,+). (54)

We have therefore proven that the difference of an extremal pixel to its right
neighbour decreases under infinitesimal soft wavelet shrinkage. Analogous
considerations apply to the left neighbour which completes the proof of (ii).

�

It follows particularly from Proposition 5.1 that under iterated infinitesimal
soft wavelet shrinkage, no oscillatory (Gibbs-like) artifacts can appear. Any
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artifact of this type would include at least one local extremum evolving from
a flat region which would, for continuity, have to grow over a finite time
interval in contradiction to Proposition 5.1.
It should be noted that a single step of infinitesimal shrinkage does not
effectively change the signal any more since T → 0. To investigate true
changes of the signal by the shrinkage procedure, one has to consider iterated
shrinkage. Summing up τ over all iteration steps, a “total evolution time” t is
obtained; for fixed t, the number of iteration steps tends to infinity as τ goes
to zero. Infinitesimal translation-invariant soft Haar wavelet shrinkage thus
becomes a dynamic process parametrized by t and Proposition 5.1 describes
its behaviour at a single point of time.
Of course, this analysis can be extended to a time interval. Then one has
to take care of the discontinuity of sgn at 0. Similarly as in the proof of
Proposition 4.1 this can be done by splitting the time axis into intervals
in which no sign changes of wavelet coefficients occur. However, since once-
merged pixels can (and will in general) split again in the process considered
here, sgn(0) will in most cases occur only in discrete time points.

Now we turn to consider finite-size shrinkage steps τ . The ideas used in the
proof of Proposition 5.1 can also be applied to analyse soft wavelet shrinkage
with finite threshold τ by simply replacing the derivatives u̇i, ṡ

j
i,ν by differ-

ences ∆ui := ui(τ) − ui(0) and ∆sj
i,ν := sj

i,ν − dj
i,ν, respectively. Then we

obtain instead of (49) that

∆ui =
(si,+ − di,+) − (si,− − di,−)

2
√

2
+ Ai,

where

Ai =
n
∑

j=2

2−3j/2
2j−1
∑

ν=0

εj(i+ ν)∆sj
b(i+ν)/2j c,ν .

By (46) and (1) we obtain instead of (50) the estimate

|Ai| ≤ τ
√

2
n
∑

j=2

2−j <
τ√
2
.

However, the implication from inequality (50) to equation (51) can be trans-
ferred only if |di,+| ≥ τ and |di,−| ≥ τ .
Similarly, we conclude instead of (52) that

∆ui − ∆ui+1 =
−∆si,− + 2∆si,+ − ∆si+1,+

2
√

2
+ (Ai − Ai+1) (55)
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and estimate the later difference by

|Ai − Ai+1| ≤ τ
√

2
n
∑

j=2

4−j 4 <
τ
√

2

3
. (56)

However, the conclusion from (53) to (54) can be transferred only if |∆si,−−
2∆si,+ +∆si+1,+| ≥ 4τ/3. The latter holds true if (but not only if) |di,+| ≥ τ
and |di,−| ≥ τ , i.e., if fi − fi±1 ≥

√
2τ . In this case we obtain by (55), (56)

and their counterparts for the left neighbours of fi that

−τ
√

2

3
≤ ui(τ) − ui±1(τ) ≤ fi − fi±1 −

τ
√

2

6

if fi is a maximum. Analogous inequalities hold true if fi is a minimum. We
can therefore state the following corollary.

Corollary 5.2 (Behaviour of Extrema under Haar Wavelet Shrink-
age)
Under translation-invariant soft Haar wavelet shrinkage with thresholds (46)
an extremal pixel fi, which differs at least by

√
2τ from each of its neighbours,

evolves as follows:

(i) The value of the extremal pixel decreases, i.e. ∆ui < 0, if it is a maxi-
mum and increases, i.e. ∆ui > 0, if it is a minimum.

(ii) The absolute value of the difference of the extremal pixel to each of its
two neighbours decreases; in particular, one has ∆ui −∆ui±1 < 0 for a
maximum and ∆ui − ∆ui±1 > 0 for a minimum.

It can be shown by examples that each of the statements (i) and (ii) of the
corollary can be violated if the extremal pixel fi differs from its neighbours
by not more than

√
2τ . In summary, it follows that Gibbs-like artifacts can

in principle still occur under finite-size steps of soft Haar wavelet shrinkage
but are restricted in amplitude.

6 Experiments

In this section we illustrate the interplay of iterations and multiscale soft Haar
wavelet shrinkage by two examples. As in the previous section we consider
initial signals f = (f0, . . . , fN−1), where N = 2n is a power of 2. Furthermore,
we restrict our attention to reflecting (Neumann) boundary conditions. Then
we can perform multiscale wavelet shrinkage up to some assigned scalem ≤ n.
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We start with a simple example which demonstrates the influence of the
interplay between iterations and multiscale wavelet shrinkage on Gibbs-like
artifacts and its relation to TV diffusion. We consider the initial signal in
Fig. 6 and apply iterated translation-invariant single-scale and multi-scale
soft Haar wavelet shrinkage with various threshold parameters. The resulting
signals are presented in Fig. 7.
Consider the left column of Figure 7. In Subsection 4.2 we have shown that
translation-invariant soft Haar wavelet shrinkage corresponds to a stable nu-
merical scheme for TV diffusion which represents real TV diffusion if the
shrinkage parameter τ is small enough. The first row demonstrates the local
effect of the single-scale wavelet shrinkage with threshold τ = 1. The K-
times iterated processes with thresholds τ = 1/K in the second and third
rows spreads the information globally over the signal. For K = 1000, the
scheme is a very good approximation to TV diffusion.
The middle and the right columns of Fig. 7 deal with multi-scale wavelet
shrinkage which does not fully correspond to TV diffusion. Already a single
iteration results in global effects here. Iterating the multiple-scale wavelet
shrinkage flattens homogeneous regions, as desired also in TV diffusion. In the
middle column, we can observe Gibbs-like phenomena. In the right column,
they are avoided by scaling the thresholds.

In our second example we are concerned with the initial signal in Fig. 8
obtained using the WaveLab package [44]. Figure 9 presents the denoised
signal, where the parameter of each method (threshold value or number of
iterations) was chosen to optimize the signal-to-noise ratio on the output.
We have applied the following techniques:

A. 1 level, regularized TV scheme (24) with ε = 0.04
2
√

2
, iterated with τ = 0.01

2
√

2
,

K = 53707 iterations

B. 1 level two-pixel scheme (22), iterated with τ = 0.01, K = 53707 itera-
tions

C. 13 levels, 1 iteration, uniform threshold τ = 37.4

D. 13 levels, iterated, τ = 0.01, K = 3244 iterations

E. 13 levels, 1 iteration, scaled thresholds, τ = 92.6

F. 13 levels, iterated, τ = 0.01, K = 7800 iterations

Table 1 shows the signal-to-noise ratio of the denoised signals. In Table 1,
the best restoration results in terms of the signal-to-noise ratio are obtained
using the regularized TV diffusion scheme (A), iterated single-scale wavelet
shrinkage (B) or the iterated n-scale wavelet shrinkage with adapted thresh-
olds (E). Although these methods are not exactly equivalent, they reveal a
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method SNR K · τ
A. regularized TV flow 24.6 537.1
B. single-level two-pixel scheme, iterated 24.5 537.1
C. multi-level, single threshold, single step 18.3 37.4
D. multi-level, single threshold, iterated 21.3 32.4
E. multi-level, scaled thresholds, single step 21.9 92.6
F. multi-level, scaled thresholds, iterated 24.3 78.0

Table 1: Numerical evaluation of the filtering performance of several methods
on the data of Fig. 8. The filtered data are shown in Fig. 9.

high level of visual similarity and provide a good piecewise constant approx-
imation to the original signal. The single step multi-scale wavelet shrinkage
with scale-adapted threshold (E) performs slightly worse. The single step and
iterated multi-scale wavelet shrinkage techniques with a uniform threshold
on all scales (C, D) are less satisfactory, also visually.
These experiments show that TV denoising (which approximates iterated
shift-invariant soft Haar wavelet shrinkage on a single scale) outperforms
many soft wavelet shrinkage strategies. On the other hand, this is at the
expense of a relatively high numerical effort. In order to make wavelets com-
petitive, the shrinkage should be shift invariant, iterative, and use multiple
scales with scaled thresholds. In those cases where it is possible to reduce
the number of iterations without severe quality degradations, one obtains
a hybrid method that combines the speed of multiscale wavelet techniques
with the quality of variational or PDE-based denoising methods. For more
experiments on multiscale ideas versus iterations and for an evaluation of the
computational complexity of these techniques, we refer to [48].

7 Summary

The goal of the present paper was to investigate under which conditions
one can prove equivalence between four discontinuity preserving denoising
techniques in the 1-D case: soft wavelet thresholding, TV diffusion, TV reg-
ularization, and SIDEs. Starting from a simple two-pixel case we were able
to derive analytical solutions. These two-pixel solutions have been used

• to establish equivalence between soft Haar wavelet shrinkage with
threshold parameter τ and TV diffusion of two-pixel signal pairs with
diffusion time t = τ/

√
2.
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• to prove also equivalence to TV regularization of two-pixel pairs with
regularization parameter α = τ/

√
2.

• to conjecture equivalence of space-discrete TV-diffusion and discrete
TV regularization for general N -pixel signals. This conjecture has been
proven in a later section.

• to prove that space-discrete TV diffusion and discrete TV regularization
are also equivalent to a SIDE evolution when a TV-based force function
is used. This gives a sound theoretical justification for the heuristically
introduced evolution rules for SIDEs.

• to design a novel numerical scheme for TV diffusion of N -pixel signals.
It is based on an additive operator splitting (AOS) into two-pixel in-
teractions where analytical solutions exist for arbitrary large time step
sizes. Thus, the numerical scheme is explicit and absolutely stable.

We showed that wavelet shrinkage on multiple scales can also be regarded
as two-pixel TV diffusion or regularization on the Laplacian pyramid of the
signal. On the wavelet side, our experiments show that one can improve the
denoising performance by rescaling the thresholds for each wavelet level, and
by iterating the translation-invariant wavelet shrinkage. On the PDE side, it
is possible to achieve a speed-up without significant quality deterioration by
using iterated multiple scales instead of iterated single scale denoising. Thus,
the resulting hybrid methods combine the advantages of wavelet and PDE
based denoising.
In our future work we intend to consider more advanced wavelet methods
(other shrinkage functions, different wavelets) and to analyse the multidi-
mensional case. In 2-D, first results on diffusion-inspired wavelet shrinkage
with improved rotation invariance are presented in [47]. We will also consider
extensions of the numerical two-pixel schemes for TV diffusion.
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[57] C. Schnörr, Unique reconstruction of piecewise smooth images by min-
imizing strictly convex non-quadratic functionals, Journal of Mathemat-
ical Imaging and Vision, 4 (1994), pp. 189–198.

[58] J. Shen, A note on wavelets and diffusion, Journal of Computational
Analysis and Applications, 5 (2003), pp. 147–159.

43



[59] J. Shen and G. Strang, On wavelet fundamental solutions to the
heat equation – heatlets, Journal of Differential Equations, 161 (2000),
pp. 403–421.

[60] G. D. Smith, Numerical Solution of Partial Differential Equations:
Finite Difference Methods, Clarendon Press, Oxford, third ed., 1985.

[61] S. M. Smith and J. M. Brady, SUSAN: A new approach to low-level
image processing, International Journal of Computer Vision, 23 (1997),
pp. 45–78.

[62] G. Steidl and J. Weickert, Relations between soft wavelet shrinkage
and total variation denoising, in Pattern Recognition, L. Van Gool, ed.,
vol. 2449 of Lecture Notes in Computer Science, Springer, Berlin, 2002,
pp. 198–205.

[63] R. L. Stevenson, B. E. Schmitz, and E. J. Delp, Discontinuity
preserving regularization of inverse visual problems, IEEE Transactions
on Systems, Man and Cybernetics, 24 (1994), pp. 455–469.

[64] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley–
Cambridge Press, Wellesley, 1996.

[65] D. M. Strong, Adaptive Total Variation Minimizing Image Restora-
tion, PhD thesis, Department of Mathematics, University of California,
Los Angeles, CA, 1997.

[66] L. Vese, A study in the BV space of a denoising–deblurring variational
problem, Applied Mathematics and Optimization, 44 (2001), pp. 131–
161.

[67] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner,
Stuttgart, 1998.

[68] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever,
Efficient and reliable schemes for nonlinear diffusion filtering, IEEE
Transactions on Image Processing, 7 (1998), pp. 398–410.

[69] G. Winkler, Image Analysis, Random Fields and Dynamic Monte
Carlo Methods, vol. 27 of Applications of Mathematics, Springer, Berlin,
1995.

44



Figure 1: (a) Top left: Original MR image. (b) Top right: MR image de-
graded with Gaussian noise with standard deviation 50. (c) Bottom left:

Wavelet denoising of (b) using translation invariant soft shrinkage with Haar
wavelets. (d) Bottom right: Total variation diffusion of (b).
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Figure 2: Two-channel filter bank with H0(z) = 1+z√
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Figure 3: Nonsubsampled two-channel filter bank with H0(z) = 1+z√
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and
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Figure 4: Two scales of Haar wavelet shrinkage withH0(z) = 1+z√
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andH1(z) =
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Figure 5: Two scales of translation-invariant Haar wavelet shrinkage with
H0(z) = 1+z√
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and H1(z) = 1−z√
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Figure 6: Test signal with N = 8 pixels.
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Figure 7: K = 1, 20, 1000 iterations (top to bottom) of translation-invariant
soft Haar wavelet shrinkage with thresholds τ/K applied to the signal in
Fig. 6. Left column: single-scale wavelet shrinkage with τ = 1. Center column:
multi-scale wavelet shrinkage (m = 4) with uniform threshold τ = 0.48 on all
scales. Right column: multi-scale wavelet shrinkage (m = 4) with τ = 0.585
and scale-adapted thresholds according to (46).
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Figure 8: Piecewise polynomial signal. Left: original. Right: with additive
Gaussian white noise (SNR = 8 dB) as input for the filtering procedures.
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Figure 9: Optimal filtering results of several variants of procedures based on
TV or wavelet filtering when run on the noisy data of Fig. 8.
A. Iterated classical scheme for the regularized TV flow (24).
B. Iterated single-level shrinkage (equivalent to the scheme (22) for TV flow).
C. Multiple levels with a single threshold, single step (i.e. noniterated).
D. Iterated multiple level with a single threshold at each of the levels.
E. Multiple levels with thresholds scaled according to (46), single step.
F. Iterated multiple level with scaled thresholds.
See text and Table 1 for explanation and numerical evaluation of the results.
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