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Department of Computer Science

University of Bonn, Germany

Thomas Pock

Institute for Computer Graphics and Vision

Graz University of Technology, Austria

Daniel Cremers

Department of Computer Science

University of Bonn, Germany

Abstract

We propose an algorithm for large displacement opti-

cal flow estimation which does not require the commonly

used coarse-to-fine warping strategy. It is based on a

quadratic relaxation of the optical flow functional which

decouples data term and regularizer in such a way that the

non-linearized variational problem can be solved by an al-

ternation of two globally optimal steps, one imposing op-

timal data consistency, the other imposing discontinuity-

preserving regularity of the flow field. Experimental results

confirm that the proposed algorithmic implementation out-

performs the traditional warping strategy, in particular for

the case of large displacements of small scale structures.

1. Introduction

1.1. Variational Optical Flow Computation

Computing optimal correspondences between pairs of

points remains one of the major challenges in Computer Vi-

sion. Applications include the computation of motion fields

from videos, the registration of medical organs across dif-

ferent scans, the matching of facial images for the purpose

of recognition and the tracking of deformable objects. The

computational challenge is to determine for each point in

one image an optimal corresponding point in the other im-

age. To suppress meaningless correspondences and make

the problem more well-posed one typically imposes spa-

tial regularity of the correspondence function in an energy

minimization framework. While the computation of one-

dimensional correspondence functions – often referred to

as string matching – can be solved in polynomial time us-

ing Dynamic Programming [4] approaches, for matching

problems in two or more dimensions no efficient optimal

solutions are known.

In 1981, Horn and Schunck introduced one of the first

variational methods in Computer Vision in order to compute
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Figure 1. Close-up of reconstructed second frame based on

the first frame and the estimated motion. In contrast to

existing coarse-to-fine warping schemes, the proposed algo-

rithm allows to estimate large-displacement optical flow even

for small scale structures.

a dense motion field v : Ω → R2 on the image plane Ω ⊂
R2 for matching a pair of consecutive images from a gray

value sequence I : Ω × [0, T ] → R. They proposed to

minimize the functional

E(v)=

∫

Ω

(
∇I⊤v + It

)2

︸ ︷︷ ︸

data term

+λ
(
|∇v1|

2 + |∇v2|
2
)

︸ ︷︷ ︸

regularity term

d2x. (1)

The data term aims at matching points of similar intensity

by imposing the linearized brightness constancy constraint,

while the regularity term (weighted by λ > 0) imposes spa-

tial smoothness of the velocity field v = (v1, v2).

In the wake of subsequent publications researchers suc-

cessfully addressed numerous shortcomings of the above

formulation. To avoid over-smoothing and preserve discon-

tinuities in the computed flow field, researchers replaced the

quadratic regularizer by image-adaptive anisotropic [9] or

by robust non-quadratic ones [5]. Similarly, robust estima-

tors were employed to account for outliers in the data term

[5].
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Figure 2. Large displacement of small-scale structures. For two images of a lady bug taken at very different times, in contrast to the

coarse-to-fine warping schemes, the proposed approach allows to accurately estimate the correspondence.

1.2. The Problem of Large Displacements

One of the major practical limitations of the Horn and

Schunck model is that it only applies to the case of small

motion, the linearization in (1) only being valid for veloc-

ities of small magnitude. In the case of larger motion vec-

tors that arise in most real-world applications, the computa-

tional challenge becomes substantially more cumbersome:

The number of pixels that a given pixel can be matched to

grows quadratically with the maximum permissible velocity

magnitude.

To circumvent this combinatorial explosion of permis-

sible solutions, researchers have reverted to coarse-to-fine

strategies of estimation [1, 8, 10, 11]. The key idea is to iter-

atively compute the motion field from coarse to fine scales,

always warping one of the two images according to the cur-

rent motion estimate. As a consequence, the residual mo-

tion field on each level of refinement is expected to fulfill

the small motion assumption and the motion estimates are

successively refined.

Convergence properties of this technique were studied in

greater detail in [7], a theoretical justification relating it to

a fixed point iteration on the functional with non-linearized

data term was developed in [10]. Coarse-to-fine warping is

known to give excellent flow field estimates even for larger

motions. To date it is the only competitive algorithmic ap-

proach to compute high quality dense flow fields from the

established non-convex energy functionals. Nevertheless

warping schemes have two important drawbacks:

• The numerical implementation of coarse-to-fine

schemes is somewhat involved. The choice of coars-

ening pyramid and interpolation technique is known to

substantially affect the quality of results [10].

• Coarse-to-fine warping strategies only provide reliable

motion estimates for larger motion if the respective im-

age structures are of a similar spatial scale. Fine scale

image structure that are no longer visible in the coars-

ened version of the image clearly cannot be matched

by the motion estimate on the coarse scale. As a result,

motion estimates for image sequences containing large

displacements of fine scale low contrast structures are

likely to be inaccurate. Figure 1 provides an example

of this limitation taken from an image of the Middle-

bury benchmark.[3]

1.3. Contribution

In this paper we propose a novel framework for motion

estimation which allows to handle large motion without the

need for warping. In contrast to warping strategies, the al-

gorithmic implementation is much simpler. It does not re-

quire coarse-to-fine pyramid representations of the images

and respective warping strategies. Moreover, experimental

results demonstrate that it can handle large displacements

even for small scale structures.

The key idea is to solve a quadratic relaxation scheme

for minimization of the non-linearized optical flow func-

tional by a sequence of globally optimal steps, each being

computed on the full scale image. More specifically, by

introducing an auxiliary vector field we decouple data term

and regularizer in such a way that minimization can be done

by alternating two globally optimizable problems: The first

one aims at attracting the flow field to optimally match re-

spective intensities (thus minimizing the data term), while

the second one is a convex problem which aims at imposing

discontinuity-preserving spatial regularity.

2. Alternating two Global Optimizations

In the following, we will propose a novel algorithm

based on alternating global optimizations which allows to

compute large displacement optical flow without warping.

Let Ω ⊂ R2 denote the image plane1 and I1, I2 : Ω →
R denote two intensity images. Following [10], the problem

of estimating a regularized motion field v : Ω → R2 which

optimally matches intensities from one image to the other

can be formulated as one of minimizing the functional

E(v) =

∫

Ω

λρ(v, x) + ψ(v,∇v, . . . ) d2x. (2)

1In this paper, we are merely concerned with two-dimensional images.

However, the model can be extended to higher dimensions.
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Figure 3. Comparison of reconstructed images from flow fields computed with and without warping. The experiments show the flow

fields and reconstructions of frame 10 computed from frame 11 and the estimated flow field for consecutive images from the Beanbags

sequence. While the warping scheme (above) clearly looses small scale structures such as the fast moving ball, these are appropriately

preserved with the proposed algorithm (below). As a consequence, we obtain a substantially smaller reconstruction error.

In the following, we will consider a data term which favors

the matching of similar intensities according to

ρ(v, x) = |I1(x) − I2(x+ v(x))|. (3)

To preserve discontinuities in the regularized flow field,

we replace the quadratic penalty function of the Horn and

Schunck model (1) with a TV-L1 penalizer, yielding the

smoothness term

ψ(∇v) = |∇v1| + |∇v2|. (4)

The contribution of the present paper is not a new func-

tional for optical flow estimation, but rather a different al-

gorithmic framework for computing minimizers. The major

algorithmic challenge lies in the fact that the above func-

tional is not convex in v. As a consequence, the quality

of minimizers invariably depends on the strategy of mini-

mization (initialization, coarse-to-fine warping) and on im-

plementational aspects such as the choice of downsampling

factor, of interpolation scheme etc.

In the following, we present a decoupling scheme which

gives rise to a minimization algorithm that consists of two

fractional steps each of which can be solved in globally op-

timal manner. Let us start by raising the question why and

in what sense functional (2) is not convex. Firstly we ob-

serve that the regularity term (4) is indeed convex. Sec-

ondly, we observe that the data term data term (3) is non-

convex. Thirdly – and this is the key observation – the data

term is a point-wise term in the sense that optimal choices

for v at different locations do not depend on one another

(other than via the regularity term). Therefore, if we de-

couple data term and regularity term, we can decompose

the optimization problem (2) into two subproblems each of

which can be optimized globally. In particular, it turns out

that this strategy removes the need for warping.

Following a series of papers on quadratic relaxation [6,

2, 11], we use an auxiliary vector field u : Ω → R2 in order

to decouple data term and regularizer:

E(v, u) =

∫

Ω

λρ(v, x) +
1

2θ
(v−u)2 + ψ(∇u) d2x. (5)

It can be shown [6] that for θ → 0 minimization of func-

tional (2) is equivalent to minimization of (5). At a first

glance, this decoupling seems to complicate things, because

rather than one optimization problem in v we are now faced

with two coupled optimization problems in v and u. Yet,

both of these problems can be optimized globally:

• Functional (5) can be minimized globally with respect

to u because it is convex in u. Therefore optimal so-

lutions for u can be computed by gradient descent or

alternative more efficient algorithms.
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Figure 4. Performance of the proposed algorithm on color sequences. The experiments show the flow fields and reconstructions of

frame 546 computed from frame 550 and the estimated flow field for two images from the HumanEva-II sequence. In contrast to the

warping scheme, the proposed method finds correspondences for fast moving structures as well as for occluded areas.

• Functional (5) can be minimized globally with respect

to v, because it merely exhibits a dependency on v.

Optimal values for v(x) for every x can be simply

computed by a complete search. There is no spatial

regularity term for v in functional (5). Without this

coupling of solutions for v at different locations, the

combinatorial explosion of possible solutions has van-

ished. While a complete search over possible values of

v(x) associated with each pixel x appears to be a com-

putationally cumbersome problem, it can be efficiently

parallelized on standard graphics hardware.

While with current graphics hardware a complete search is

still slower than warping schemes such as the one employed

in [11], the proposed algorithmic solution has two important

advantages:

• Since the proposed algorithm does not rely on image

coarsening, there is no issue with small-scale struc-

tures being lost on the coarser scales which warping

schemes require for estimating larger motions. As a

consequence, we can expect the resulting algorithm to

provide better motion fields for small scale structures

undergoing large displacements.

• Warping schemes ultimately require a linearization of

the data term in (5). This is not the case for the pro-

posed complete search. It can integrate arbitrary data

terms including distance of local color values, patch

comparisons or normalized cross-correlation. In ad-

dition, since there is no differentiation, the proposed

approach naturally extends to truncated or other non-

differentiable penalty functions.

In practice, we initialize with u = v = 0 and a large

value for θ. Subsequently we alternatingly compute v(x) as
the minimizer of (5) with fixed u(x) by a complete search

for all pixels x, and minimize (5) with respect to u for

fixed v. Between the iterations we continuously decrement

θ forcing u and v to converge at the end. To save computa-

tion time the complete search for an optimal v is performed

in a restricted search window chosen with respect to a user-

specified upper bound on the velocity. Qualitatively, this

user parameter corresponds to the number of pyramid lev-



els specified in warping schemes.

While alternating two globally optimal algorithms for

parts of the functional does not guarantee global optimality

for the entire functional, our method significantly outper-

forms methods depending on local linearization as we will

show in the next section.

3. Experimental Results

3.1. Large Displacements of Small Objects

Warping schemes require a coarsening of the input data

in order to account for larger displacements. As a con-

sequence, they cannot handle objects of a scale which is

substantially smaller than their motion. If the object is no

longer present on the coarse scale, the resulting motion es-

timates will be unreliable.

Since the proposed algorithm does not involve any image

coarsening to account for larger motion, we expect that this

algorithm should better estimate large motion, in particular

for objects which are much smaller than the scale of motion.

In the following, we will confirm this in several real-world

experiments. Since these experiments typically do not have

a ground truth, we evaluate the results in a two-fold manner:

• We verify qualitatively whether the computed and

color-coded flow field is meaningful.

• We check the consistency of the flow-field by recon-

structing the first of the two frames using the second

frame and the estimated motion field v according to:

Ir

1
(x) = I2(x+ v(x))

If the motion field is correct, then the reconstructed

first frame Ir

1
should be identical to the observed one

I1. We can quantify this error by plotting the differ-

ence image |I1 − Ir

1
|.

Figures 2, 3 and 4 demonstrate that indeed the motion

fields and the reconstructed frames obtained with the pro-

posed approach are more convincing than those obtained

with the warping scheme. In both cases, the motion is sub-

stantially larger than the size of the moving objects. A

closer observation shows that the warping scheme gives rise

to flow fields which tend to shrink the respective structures

(to account for their disappearance) – see Figure 2. In more

complex scenes, it incorrectly matches them to the most

similar structures in the vicinity – see Figures 3 and 4. In

contrast, the proposed method provides reliable motion esti-

mates which give rise to faithful reconstructions of the first

frame.

3.2. Handling More Sophisticated Data Terms

Since the proposed algorithm does not require differen-

tiability of the data term or local linearization, we can make

use of arbitrary data terms. In the following, we will demon-

strate this for the case of color comparison and patch com-

parison.

Figure 4 shows an example of applying the proposed al-

gorithm to match two color images despite large displace-

ment. The images are taken from the HumanEva-II bench-

mark on human tracking. While the warping strategy fails to

correctly match corresponding regions, the proposed warp-

ing strategy determines a reliable flow field. While the re-

constructed image of the warping strategy has flaws around

the fast moving right leg and the small scale structures of

the tripod in the background, the reconstructions obtained

with the proposed scheme have no visible errors.

Besides the natural support for vector-valued images, the

proposed algorithm also supports advanced penalty func-

tions. It can be easily extended to compare a small patch

around each sampled position instead of comparing the in-

tensities at single positions alone. Other vector-valued data

terms such as normalized cross correlations, SIFT features

etc. are possible as well. Yet a more detailed study of these

aspects is beyond the scope of this paper and will therefore

be left for future work.

3.3. Subpixel Accuracy via Oversampling

The strategy of complete search for globally minimiz-

ing in v is only good up to pixel precision. In order to in-

crease the precision, one can simply revert to an oversam-

pling strategy that considers a certain number of intermedi-

ate positions at the expense of additional computation time.

Figure 5 shows that while increasing the computation

time, this oversampling strategy does improve the accuracy

of estimated flow fields.

We tried an alternative subpixel strategy using an ana-

lytic solution based on linear interpolation. However,this

strategy did not provide better experimental results.

4. Conclusion

We proposed a novel algorithm for estimating large-

displacement optical flow which circumvents the need for

warping schemes. By means of a quadratic relaxation

scheme we decompose the original non-convex functional

into a functional which can be minimized by alternating

two globally optimal steps. The algorithm simply alter-

nates a complete search with respect to the non-convex (but

point-wise) data term and a convex optimization that takes

into account the smoothness constraint. The flow estima-

tion process is therefore decomposed in an alternation of

searching for appropriate correspondents and discontinuity-

preserving smoothing. In contrast to warping approaches,

the proposed method can naturally make use of arbitrary

data terms, including non-convex, non-differentiable terms

and norms on color values or local patches. In numerous ex-



1 Sample/Pixel, AEE = 0.298965 2×2 Samples/Pixel, AEE = 0.171704

4×4 Samples/Pixel, AEE = 0.140528 10×10 Samples/Pixel, AEE = 0.130869

Figure 5. Effects of subpixel sampling rate on the quality of the computed flow field. An increasing number of samples per pixel

improves the quality of the computed flow represented by the average end-point error (AEE) to the ground truth flow. However, it also

increases the computation time from 7 seconds for the top left image over 18 and 63 seconds for the top right and bottom left images to

370 seconds for the bottom right image.

periments, we show that in contrast to state-of-the-art warp-

ing schemes, the proposed quadratic decoupling scheme al-

lows to compute flow fields which accurately match small

scale structures over large displacements.
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