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Abstract

In this paper, we present optic flow algorithms

which are based on a variety of increasingly sophis-

ticated data terms. Such data terms allow to better

identify correspondences between points in either

image than the traditional intensity difference since

they characterize the local image structure more

uniquely. We present an algorithmic framework

which allows to directly incorporate arbitrary data

terms: In contrast to traditional approaches the min-

imization scheme is not based on local lineariza-

tion. In particular, we quantitatively compare the

classical intensity similarity with nonconvex trun-

cated data terms, with a patch-based intensity dif-

ference and with a patch-based normalized cross

correlation. Experiments demonstrate that at the

expense of additional runtime more advanced data

terms may help to improve flow estimates.

1 Introduction

1.1 Variational Optic Flow Estimation

Estimating a displacement field for consecutive im-

ages from an image sequence is among the cen-

tral computational challenges in Computer Vision.

It arises whenever one aims to identify correspon-

dences between points in pairs of images. Examples

include motion estimation, tracking, and medical

multi-modal registration. The resulting dense cor-

respondence between pairs of points in either image

can subsequently be used for structure-from-motion

algorithms, for object recognition, and other higher-

level tasks.

The development of appropriate cost function-

als and minimization algorithms for estimating dis-

placement or optic flow fields has received much at-

tention in the Computer Vision community, in par-

ticular because existing variational approaches typ-

ically give rise to nonconvex energies.
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Figure 1: Advantages of Patch-based Data

Terms.

Following the seminal work of Horn and

Schunck [9], most state-of-the-art algorithms for es-

timating a motion field v : (Ω ⊂ R2) → R2 given

two consecutive images I1, I2 : Ω → R are based

on minimizing an energy of the form

E(v)=λ Edata(v) + Ereg(v), (1)

where the data term favors a pointwise matching of

locations that are structurally similar and the reg-

ularity term allows to impose some prior on which

velocity fields v are more or less likely. Typical reg-

ularizers impose spatial smoothness of the flow field

Ereg(v) =

Z

Ω

ρ(|∇v|) dx, (2)

using quadratic penalizers ρ(s) = s2 [9] or robust

discontinuity-preserving regularizers [3, 8, 11, 13,

12]. Alternatively, one can impose motion fields

to be piecewise parametric and jointly minimize re-

spective energies with respect to motion models and

motion boundaries [7].

The data term for optic flow estimation typically

imposes pointwise similarity of the intensity func-

tion:

Edata(v) =

Z

Ω

Ψ(|I1(x) − I2(x + v)|) dx, (3)

again using either quadratic penalizers Ψ(s) = s2

or robust penalizers of the form Ψ(s) = |s| [3].
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Unfortunately this data term is not very informa-

tive since for any given pixel in image I1 there gen-

erally exist many pixels in image I2 of the same

intensity. While this ambiguity is alleviated by the

regularity term, in practice having a more informa-

tive data term would allow respective algorithms

to better identify correspondences without relying

heavily on assumptions of spatial smoothness of

the velocity field. The use of more sophisticated

data terms has been limited due to the fact that en-

ergy minimization methods typically rely on local

linearization schemes in order to compute optimal

solutions. A correct representation of data terms

such as patch-based normalized cross correlation is

therefore not feasible. An exception is a recently

developed variational framework which allows to

additionally impose SIFT-based point matching into

variational flow estimation [4]. The latter approach

fundamentally differs from the approach developed

in this paper in two ways: Firstly, SIFT features are

only obtained for a sparse set of locations rather

than for every point. Secondly, SIFT-based corre-

spondences are precomputed and simply imposed

in the energy minimization, i.e. the correction of

respective feature points does not arise during optic

flow estimation. As a consequence, incorrect cor-

respondence estimates (based on matching wrong

points) are likely to seriously deteriorate the subse-

quent motion estimation process.

1.2 Contribution

In this paper, we present and quantitatively com-

pare a variety of more informative data terms which

allow to better discriminate meaningful point corre-

spondences. To this end, we show that a recently

proposed alternative minimization scheme allows

to exactly represent arbitrary data terms, including

the L1-distance computed over patches or the nor-

malized cross correlation computed over patches.

We will quantitatively analyze the performance of

these alternative data terms, both regarding accu-

racy of estimated flow fields and regarding the in-

crease in computation time associated with more

sophisticated data terms. Specifically we will com-

pare the standard pointwise L1-distance of intensity

to a truncated pointwise distance, an L1-distance

over local patches and a normalized cross correla-

tion over local patches. Our experiments confirm

that at the expense of additional computation time

more informative data terms may give rise to bet-
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Figure 2: Schematic representation of a nor-

mal and truncated L1 penalty function. The

truncated function does not penalize outliers

as strongly as the normal one.

ter optic flow estimates than traditionally consid-

ered data terms.

2 Advanced Data Terms in Optic Flow

In the following, we will study four different op-

tic flow methods of the form (1) with a robust L1-

regularizer of the form ρ(s)= |s| and four different

data terms

Edata(v) =

Z

Ω

Ψ(I1, I2, x, v)dx (4)

of increasing sophistication. Namely we will con-

sider the following choices for the energy den-

sity Ψ in (4) (for simplicity we will abbreviate

Ψ(I1, I2, x, v) with Ψ(x, v)and v(x) with v):

1. The pointwise L1-difference of intensity given

by

ΨL1
(x, v) = |I1(x) − I2(x + v)|. (5)

2. A pointwise truncated linear penalizer of the

intensity difference

Ψtrunc(x, v) = min {|I1(x) − I2(x + v)| , T} .

(6)

More than the L1 penalized intensity differ-

ence this should allow for outliers when com-

puting a matching, because differences above

the threshold value T will merely receive con-

stant cost – see the schematic plots in Figure 2.

3. An L1-distance of the intensity difference

computed over a patch of size σ:



Figure 3: Example for Patch-Based Optic Flow. Optic flow methods based on linearization have prob-

lems determining the motion of the marked patch from frame 1 on the left to frame 2 on the right.

ΨL1p(x, v) =

Z

Ω

Gσ(x−y)

· |I1(y)−I2(y+v)| dy

= Gσ ∗ ΨL1
(x, v) (7)

defining a convolution of the intensity differ-

ence with a box function or truncated Gaussian

of size σ. This data term favors a matching

of points in either image if the local neighbor-

hood structures are similar. In this sense it is

more discriminative than the purely local in-

tensity distance (5).

4. The normalized cross correlation (NCC) com-

puted over a local patch of size σ:

Ψncc(x, v) = 1 −

Z

Ω

P1(x, y)P2(x+v, y)dy

= 1 − 〈P1(x), P2(x+v)〉 , (8)

where the local signature Pi is computed for

image I by removing the local average and

normalizing the resulting vector of intensities:

Pi(x, y) =
Ji(x, y) − Ji(x)

r

R

Ω

(Ji(x, z) − Ji(x))2dz
. (9)

Hereby, Ji(x, y) denotes the image Ii re-

stricted to the neighborhood of x and Ji(x)
denotes its average:

Ji(x, y) = Ii(y) · Gσ(x−y), (10)

Ji(x) =

R

Ω

Ji(x, y)dy

R

Ω

Gσ(x−y)dy
(11)

Ji(x, y) and Pi(x, y) denote the value in im-

age i at location y in the patch around x .

In contrast to other robust data terms, such as

the image gradient or Hessian in [13, 12], the

NCC is invariant to multiplicative illumination

changes.

2.1 From Patch Comparison to the CLG

Method

Interestingly, the proposed patch comparison is re-

lated to the combined local global (CLG) method

of Bruhn et al. [5]. The CLG method was origi-

nally introduced as a fusion of Lucas and Kanade

[10] with Horn and Schunck [9]. In the following,

we will prove that local lineariziation applied to the

squared L2-distance over local patches leads to the

CLG method:

Replacing the L1-norm in equation (7) with the

squared L2-norm and linearizing the data term

yields the following equation:

ΨL2p = Gσ∗(I1(y)−I2(y+v))2

≈ Gσ∗(I1(x) −∇I(x)⊤v−I2(x))2

= Gσ∗(v⊤∇I∇I
⊤

v+(I2−I1)∇I) (12)

=: v̂
⊤

Jσ(∇3I)v̂,

where v̂ =
`

v

1

´

is the velocity vector in homoge-

neous coordinates and Jσ(∇3I) is the smoothed



spatio-temporal structure tensor (∂x, ∂y, ∂t)
⊤:

Jσ(∇3I) = Gσ ∗ ∇3I∇3I
⊤

. (13)

This yields the well-known CLG-method.

2.2 Drawbacks of Linearization

The CLG method can be extended to nonlinear data

terms by applying an additional function Φ to the

motion tensor:

Jσ(∇3I) =



Φ(Gσ ∗ ∇3I∇3I
⊤), or

Gσ ∗ Φ(∇3I∇3I
⊤)

(14)

However, the motion tensor is still based on the

linearized constancy assumption, yielding several

drawbacks. Figure 3 illustrates some of these draw-

backs. The marked patch in frame 1 on the left

clearly moves upward in frame 2. However, a lin-

earized data term as in equation (12) does not lead

to this decision:

Assuming Gσ to be radial symmetric and the ori-

gin to lie in the center of the patch, for every image

gradient at point
`

p

q

´

, there is an orthogonal image

gradient of equal magnitude at point
`

−q

p

´

. Summed

up in Gσ∗∇I∇I⊤, these gradients create a multiple

of the identity matrix:

 

p

q

! 

p

q

!⊤

+

 

−q

p

! 

−q

p

!⊤

= (p2+q
2)Id (15)

Moreover, for every gradient at point
`

p

q

´

there is

an opposing gradient of equal magnitude at point
`

−p

−q

´

with an equal temporal derivative (I2−I1) in

the patch. In Gσ∗((I2−I1)∇I) these sum up to 0,
leaving

ΨL2p ≈ γv
⊤

v, γ ∈ R+ (16)

Without the regularity term, this suggests the patch

does not move at all, which is exactly the worst

choice in this example.

This problem comes from the fact that linearized

data terms can only be used to compute small dis-

placements, where the higher-order derivatives in

the Taylor-series approximating the displaced point

do not preponderate. Therefore, displacements

larger than the patch to be displaced cannot be com-

puted with linearized data terms. If only small dis-

placements are being considered, the problem of

matching the center patch to one of the patches sur-

rounding it cannot arise.

The standard solution to the problem of comput-

ing large displacements with linearized data terms is

embedding the approach into a coarse-to-fine hier-

archy in a Gaussian scale-space. On coarser scales,

the displacements are sufficiently small for the lin-

earized data term to be a good approximation of

the nonlinear one. However, for this example this

method will fail as well, since on coarser scales

of the Gaussian scale-space the intensity of a patch

converges to the average gray value of the patch it

covers on finer scales. The average gray values of

all the patches in frame 2 of Figure 3 are the same,

rendering each patch an equally good match for the

center patch.

This mutual annihilation of point information in

the patch suggests to avoid linearization for patch-

based data terms in optic flow computation.

2.3 Optimization of Arbitrary Data Terms

Recently Steinbrücker et al.[14] showed that one

can entirely avoid the linearization of the data term

in optic flow estimation. To this end, they reformu-

late the original optimization problem (1) using a

quadratic relaxation scheme [6, 1, 15] and solve the

resulting optimization problem

E(v, u)=

Z

Ω

λΨ(x, v) +
1

2θ
(v−u)2 + ρ(|∇u|) dx.

(17)

This energy functional has the nice property, that

if either one of the fields u or v is kept fixed, the

functional can be globally minimized with respect

to the other field.

If v is fixed, the functional is convex in u. There-

fore, a global minimizer u can be computed effi-

ciently, for example by gradient descent. If u is

fixed, the functional has only a pointwise depen-

dency on v. Therefore, it can be minimized globally

with respect to v by a complete search.

Moreover, this search can use any data term pro-

posed in Section 2, as well as any other data term

that can be sampled. In the following section, we

will demonstrate that the use of patch-based data

terms can yield a great deal of improvement with

respect to the quality of the computed flow field.

The minimizer of the functional in equation (17) is

computed by alternating the two globally optimal

minimization steps described above for u and v,



AEE [pixel] ΨL1
Ψtrunc ΨL1p Ψncc

λ 50 50 30 10

Rubberwhale 0.1735 0.1724 0.1658 0.0836

Hydrangea 0.2104 0.2107 0.1864 0.1353

Dimetrodon 0.1709 0.1704 0.1645 0.2219

Grove2 0.1852 0.1852 0.1785 0.1924

Urban2 2.6375 2.6015 1.7914 3.9976

Venus 0.3971 0.3964 0.3171 0.4356

Table 1: Comparison of the data terms re-

garding the average end point error on dif-

ferent Middlebury sequences.

keeping the respective other one fixed. While this

approach does not guarantee to find the global opti-

mum of the whole functional, it delivers very good

results compared to other methods, as described

in [14]. To achieve subpixel-accuracy in the data

terms, they are sampled on a regular grid of sub-

pixel positions, using bilinear interpolation of the

images.

The parameter θ, which can be interpreted as

an annealing parameter in equation (17), is decre-

mented in each iteration, letting u and v converge

in the end.

3 Experimental Evaluation

The focus of this paper is a comparison of dif-

ferent data terms for variational optic flow and

not of different algorithms. Therefore we con-

strain our quantitative analysis to sequences of

the Middlebury benchmark for optic flow [2] with

known ground truth, namely “Rubberwhale”, “Hy-

drangea”, “Dimetrodon”, “Grove2”, “Urban2”, and

“Venus”, where for all data terms we can determine

optimal parameter values. For each sequence the

optic flow was computed from frame 10 to frame

11 and evaluated against the provided ground truth

flow by means of the average endpoint error (AEE),

defined as

AEE(v) =

P

x∈Ωd

|v(x) − vtruth(x)|

|Ωd|
(18)

on the discrete pixel grid Ωd.

Since both minimization steps for computing

the minimizing u and v for equation (17) can be

easily parallelized, we implemented our methods

Time [s] ΨL1
Ψtrunc ΨL1p Ψncc

Rubberwhale 381 404 4366 5587

Hydrangea 381 404 4366 5587

Dimetrodon 381 404 4366 5587

Grove2 481 512 4919 7266

Urban2 481 512 4919 7266

Venus 263 280 2581 3936

Table 2: Comparison of the data terms re-

garding the their runtime on different Mid-

dlebury sequences.

on NVIDIA’s “Tesla C1060” graphics card to sig-

nificantly speed up the computation. The intensity

values of the images were rescaled to the interval

[0, 1] and for Ψtrunc the truncation threshold T

was set to 1

3
. For the patch-based L1 difference and

normalized cross correlation we used patches con-

sisting of 9 samples on a rectangular 3×3 pixel grid.

Table 1 lists the AEE values for the proposed data

terms and the standard L1 image intensity differ-

ence. For each data term, the regularity value λ was

optimized with respect to the AEE summed over all

images.

It can be seen that while some of the proposed

data terms perform worse than the standard L1 im-

age intensity difference on some images, on other

images they were able to reduce the error to less

than one half compared to the L1 image intensity

difference.

Figures 4 and 5 show visualizations of the corre-

sponding flow fields. While there is hardly any vi-

sual difference between the flow fields of ΨL1
and

Ψtrunc, the two patch-based data terms show a sig-

nificantly discriminative potential. For example, the

normalized cross correlation is able to correctly de-

tect the hole in one of the objects in the “Rubber-

whale” sequence (also depicted in Figure 1), while

the other data terms fail in that regard. Something

similar can be observed in the “Venus” sequence:

The patch-based data terms describe the gap in the

middle of the image much better than the other ones

do. However, the “Venus” sequence also shows

very well that the patch-based data terms tend to

produce more outliers than the other data terms.

Table 2 lists the computation time for each image

and data term. The times are proportional to the im-

age size and patch size, with a small additional com-



putation and caching overhead for the patch-based

data terms.

4 Conclusion

In this paper, we introduced novel more informa-

tive data terms for variational optic flow estima-

tion which allow to better discriminate meaningful

point correspondences. To this end we build up on

a recently suggested alternative minimization strat-

egy which does not require local linearization of the

data term. We show that the alternative minimiza-

tion method allows to represent dissimilarity mea-

sures like patch-based intensity distance or patch-

based normalized cross correlation accurately with-

out approximations that arise through the traditional

linearization. A quantitative comparison of vari-

ous data terms of increasing sophistication demon-

strates that at the expense of increased runtime these

more informative data terms lead to improvements

in optic flow estimation.

References

[1] J.-F. Aujol, G. Gilboa, T. Chan, and S. Os-

her. Structure-texture image decomposition

- modeling, algorithms, and parameter selec-

tion. Int. J. of Computer Vision, 67(1):111–

136, 2006. 4

[2] S. Baker, D. Scharstein, J.P. Lewis, S. Roth,

M. Black, and R. Szeliski. A database and

evaluation methodology for optical flow. In

IEEE Int. Conf. on Computer Vision, 2007. 5

[3] M. J. Black and P. Anandan. A framework

for the robust estimation of optical flow. In

IEEE Int. Conf. on Computer Vision, pages

231–236, 1993. 1

[4] T. Brox, C. Bregler, and J. Malik. Large dis-

placement optical flow. In Proc. IEEE

Conf. on Comp. Vision Patt. Recog.

(CVPR’09), 2009. 2

[5] A. Bruhn, J. Weickert, and C. Schnoerr. Lu-

cas/Kanade meets Horn/Schunck: Combining

local and global optic flow methods - updated

version with errata. Int. J. of Computer Vision,

61(3):211–231, 2005. 3

[6] A. Chambolle. An algorithm for total varia-

tion minimization and applications. J. Math.

Im. Vis., 20(1-2):89–97, 2004. 4

[7] D. Cremers and S. Soatto. Motion

Competition: A variational framework for

piecewise parametric motion segmentation.

Int. J. of Computer Vision, 62(3):249–265,

May 2005. 1

[8] R. Deriche, P. Kornprobst, and G. Aubert. Op-

tical flow estimation while preserving its dis-

continuities: A variational approach. In Asian

Conf. on Computer Vision, volume 2, pages

290–295, Singapore, 1995. 1

[9] B.K.P. Horn and B.G. Schunck. Determining

optical flow. A.I., 17:185–203, 1981. 1, 3

[10] B. D. Lucas and T. Kanade. An iterative image

registration technique with an application to

stereo vision. In Proc.7th International Joint

Conference on Artificial Intelligence, pages

674–679, Vancouver, 1981. 3

[11] H.H. Nagel and W. Enkelmann. An investi-

gation of smoothness constraints for the esti-

mation of displacement vector fields from im-

age sequences. IEEE Trans. on Patt. Anal. and

Mach. Intell., 8(5):565–593, 1986. 1

[12] N. Papenberg, A. Bruhn, T. Brox, S. Didas,

and J. Weickert. Highly accurate optic flow

computation with theoretically justified warp-

ing. International Journal of Computer Vi-

sion, 67(2):141–158, April 2006. 1, 3
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Figure 4: From Left to Right: Flow Images of the “Rubberwhale”, “Hydrangea”, and “Dimetrodon”

sequences.
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Figure 5: From Left to Right: Flow Images of the “Grove2”, “Urban2”, and “Venus” sequences.


