
Large-Scale Multi-Resolution Surface Reconstruction from RGB-D Sequences

Frank Steinbrücker, Christian Kerl, Jürgen Sturm, and Daniel Cremers
Technical University of Munich

Boltzmannstrasse 3, 85748 Garching
{steinbr,kerl,sturmju,cremers}@in.tum.de

Abstract

We propose a method to generate highly detailed, tex-
tured 3D models of large environments from RGB-D se-
quences. Our system runs in real-time on a standard desk-
top PC with a state-of-the-art graphics card. To reduce the
memory consumption, we fuse the acquired depth maps and
colors in a multi-scale octree representation of a signed dis-
tance function. To estimate the camera poses, we construct
a pose graph and use dense image alignment to determine
the relative pose between pairs of frames. We add edges be-
tween nodes when we detect loop-closures and optimize the
pose graph to correct for long-term drift. Our implementa-
tion is highly parallelized on graphics hardware to achieve
real-time performance. More specifically, we can recon-
struct, store, and continuously update a colored 3D model
of an entire corridor of nine rooms at high levels of detail
in real-time on a single GPU with 2.5GB.

1. Introduction
Reconstructing the geometry and texture of the world

from a sequence of images is among the fascinating chal-
lenges in computer vision. Going beyond the classical
problem known as Simultaneous Localization and Mapping
(SLAM) or Structure-from-Motion (SFM), we want to es-
timate the camera poses, the scene geometry and the scene
texture.

While impressive progress in this domain has been
achieved over the last decade [2, 1, 9, 5], many of these
approaches are based on visual keypoints that are recon-
structed in 3D, which typically leads to sparse reconstruc-
tions in form of 3D point clouds. More recent methods
based on depth images such as KinectFusion [12] aim at
dense reconstruction using 3D voxel grids, which how-
ever requires a multiple in terms of memory and com-
putational complexity. Various methods have been pro-
posed to overcome this limitation, for example, by using
rolling reconstruction volumes [14, 19] or octree data struc-
tures [7, 21]. However, in contrast to our approach, all of

Input Image Reconstructed model

Reconstructed view Octree Structure

Figure 1: Reconstruction of an office floor consisting of 9
rooms over an area of 45m×12m×3.4m.

the above works are either not real-time [7], lack texture
estimation [21], or do not support revisiting already tesse-
lated volumes [14, 20]. Our approach integrates all of these
features in a single, real-time capable system.

To estimate the camera poses, classical structure-from-
motion approaches match visual features across multiple
images and optimize the camera poses to minimize the re-
projection errors. In contrast, recently upcoming dense
methods aim at aligning the full image by minimizing the
photometric error over all pixels [3, 13, 15, 18], thereby ex-
ploiting the available image information better than feature-
based methods. It is important to note that approaches
that track the camera pose with respect to the recon-
structed model (such as all existing KinectFusion-based
methods [12, 21, 20]) are inherently prone to drift. In
contrast, we integrate dense image alignment in a SLAM
framework to effectively reduce drift while keeping the ad-
vantages of dense image registration.

Our key contributions are:

1. a fast, sparse, multi-resolution tree structure for geom-
etry and texture reconstruction of large-scale scenes,

4321

2. a SLAM system based on a dense image alignment to
estimate a drift-free camera trajectory, with superior
performance to several state-of-the-art methods.

An example of a reconstructed model of a large office
floor is given in Figure 1: As it can be seen, the resulting
model is globally consistent and contains fine details, while
it still fits completely in the limited memory of a state-of-
the-art GPU.

This paper is organized as follows: In Section 2, we de-
scribe how we achieve memory-efficient surface reconstruc-
tion using octrees on the GPU. In Section 3, we present how
we extend dense tracking to compensate for drift by the de-
tection of loop closures. In Section 4, we present an evalu-
ation of our approach on various datasets, and close with a
conclusion in Section 5.

2. Multi-Resolution Surface Reconstruction
In this section, we describe our approach to memory-

efficient surface reconstruction. First, we provide a brief
introduction to implicit surface representations based on
signed distance functions. Subsequently, we replace the
regular grid by an adaptive octree and a narrow-band tech-
nique to significantly reduce the memory consumption.

2.1. Signed Distance Volume

Following the works of [4, 12], we store our surface im-
plicitly as a signed distance function in a 3D volume. The
volume is approximated by a finite number of voxels. At
every point in the volume the function indicates how far
away the closest surface is. Points in front of an object have
a negative sign and points inside a positive one. The zero
crossing indicates the location of the surface. The signed
distance representation has the benefit of being able to han-
dle an arbitrary surface topology, in contrast to e.g. a sur-
face mesh.

The signed distance function is incrementally con-
structed from a sequence of RGB-D images and associated
camera poses. Given an RGB-D image at time twith a color
valued image Ict and depth mapZt, the camera pose Tt, and
the intrinsic camera parameters, we integrate it into the vol-
ume using the following procedure.

For every voxel in the volume, we compute its center
point in the camera frame pc

pc = Tt p. (1)

Afterwards, we determine the pixel location x of the voxel
center pc in the depth map Zt using the projection function
of the standard pinhole camera model, i.e., x = π(pc). The
measured point is reconstructed using the inverse projection
function π−1(x, Z):

pobs = π−1(x,Zt(x)). (2)

−2 −1 0 2

−1

0

1

δ Φ

distance from surface

∆D

w

Figure 2: Visualization of the truncated signed distance
function and the linear weighting function.

The value of the signed distance function at the voxel center
is determind by

∆D = max{min{Φ, |pc − pobs|},−Φ}. (3)

The choice of the truncation threshold Φ depends on the ex-
pected uncertainty and noise of the depth sensor. The lower
Φ is, the more fine scale structures and concavities of the
surface can be reconstructed. If Φ is too low however, ob-
jects might appear several times in the reconstruction due
to sensor noise or pose estimation errors. We chose it to
be twice the voxel scale of the grid resolution for the ex-
periments in this paper. Furthermore, we compute a weight
for the measurement ∆D using the weight functionw(∆D),
that expresses our confidence in the distance observation ac-
cording to our sensor model. Figure 2 visualizes the trun-
cated signed distance and the weight function used in our
experiments. The distance D(p, t) and the weight W (p, t)
stored in the voxel are updated using the following equa-
tions:

W (p, t) = w(∆D) +W (p, t− 1), (4)

D(p, t) =
D(p, t− 1)W (p, t− 1) + ∆Dw(∆D)

w(∆D) +W (p, t− 1)
. (5)

Similar to the distance update we compute the new voxel
color C(p, t) as

C(p, t) =
C(p, t− 1)W (p, t− 1) + Ict (x)w(∆D)

w(∆D) +W (p, t− 1)
. (6)

We use a weighting function that assigns a weight of 1
to all pixels in front of the observed surface, and a linearly
decreasing weight behind the surface (cf. Figure 2):

w(∆D) =

1 if ∆D < δ
Φ−∆D

Φ−δ if ∆D ≥ δ and ∆D ≤ Φ.

0 if ∆D > Φ
(7)

For the experiments in this paper we chose the value 0.005
for δ, which is one tenth of the voxel resolution.

4322

2.2. Sparse Representation of the Distance Values

One of the key observations leading to a sparse geometry
representation is the fact that all distance values at positions
p, that have an associated weight W (p, t) = 0, do not need
to be stored explicitly. As we require online-capability for
our system, it is not feasable to perform an update in ev-
ery voxel for the fusion of every new depth map. We rather
want to restrict the computation effort to those parts in space
that are actually being updated. Therefore, we need to infer
which voxels need to be updated from the camera pose and
the depth map recorded at that pose. A naive narrow-band
approach of a voxel array, storing the data for the voxel as
well as its position, would require an iteration over all vox-
els to find the ones that need to be updated and therefore
contradict this demand. Another naive approach of storing
a full pointer-grid would save us the computation time for
unnecessary voxel updates, but already a 4 byte pointer ar-
ray of size 10243 requires 4GB of memory. For a 5mm
resolution, this alone would restrict the scene to (5m)3, not
even accounting for the actual distance, weight, and color
values. To overcome both problems we propose to use an
octree data structure to store the values: In a tree, the re-
trieval of voxels required for update is feasible in logarith-
mic time and the memory required for storage of the tree is
linear in the amount of leaves.

Multiscale Approach For disparity-based depth sensors,
the depth Z in each pixel is a reciprocal function of a mea-
sured disparity value d. In a standard pinhole camera model,
this dependency is given as

Z =
fB

d
, (8)

where f is the focal length and B the baseline. A common
assumption is that the disparity measurements of the sensor
lie in the interval

[d− σ, d+ σ] (9)

around the true disparity d. Substituting (8) in (9) and ap-
plying a first order Taylor expansion in σ we get the depth
interval [

Z +
Z2

fB
,Z − Z2

fB

]
. (10)

For further information on this topic we refer to [8]. As (10)
shows the error of the depth measurement grows quadrati-
cally with the measured depth. Accordingly, we update the
signed distance function at a coarser resolution for points
far away from the camera, saving memory. To store val-
ues at a lower resolution we allocate leaves at intermediary
branches that are located higher in the tree. The estimated
error interval described above is used to determine the scale,
i.e., the octree level.

Figure 3: Example of a small octree. We store the geometry
at multiple levels of resolution.

. . .

.

. 00 77

branch array

leaf array

leaves sub-branches

k k + 1root

distance weight color

queue

Q P S

0 1 2

Figure 4: Octree representation in memory. We store all
branches in one array. One branch comprises 8 pointers to
sub-branches and 8 pointers to its leaves. All leaves are
stored in a second array. For fast access during the integra-
tion of a new RGB-D image a queue maintains pointers to
the leaves that have to be updated.

Structure of the Tree In an octree every branch has 8
children, either leaves or sub-branches, due to the binary
sub-division in every dimension. The spatial structure is
depicted in Figure 3. In our representation every intermedi-
ary branch contains not only its children, but also 8 leaves to
enable storage of our multi-scale signed distance function.

Figure 4 depicts the memory layout of our octree on the
GPU. We store the branches in a 4 byte pointer array. Each
branch has 8 pointers for its sub-branches and 8 pointers
for its leaf nodes. The branch pointers hold offsets into the
same array. In contrast, the leaves are stored in a separate
array. Every leaf is a brick containing 83 voxels. Each voxel
contains its current distance, color and weight. In total, each
voxel requires 14 bytes of memory. Additionally, we store
some meta data for every brick comprising the position in
the volume, the scale, and a pointer into the update queue.
Overall one brick occupies 7,180 bytes. The queue contains
pointers to all leaves, which have to be updated to integrate
a new RGB-D image. In the following we explain the steps

4323

to fuse a new RGB-D image into the octree.

Traversal of a Depth Map in the Tree As explained in
Section 2.1, for a given depth map and camera pose, only
the voxels around the surface of that depth map are assigned
with positive weights and are thus updated. Therefore, only
a small number of voxels, the so-called “narrow band” need
to be allocated on the first access and updated later on.

For a depth map, we iterate over all pixels in parallel
on the GPU. If a pixel contains a valid depth measurement,
we compute its corresponding point in 3D with the given
camera pose and intrinsic parameters. Depending on the
measured depth, we compute the bandwidth and the leaf
scale for this point. Then we intersect a box with a side
length of twice the bandwidth around the point with the tree.
As it would be too computationally expensive to traverse
the tree from top to bottom for every leaf intersecting the
box, we perform a depth-first-search on the tree. The only
values that need to be stored in this search for every level
in the tree are a 4 byte index of the current branch and one
byte for the children remaining to be searched in that level.
These 5 bytes per level comfortably fit into the shared and
register memory of newer GPUs.

For every branch, we check which child branches inter-
sect the box and allocate them if necessary. Once we reach
the desired leaf level in our search, we check whether the
desired leaf has already been allocated (i.e. the correspond-
ing index in the branch array has been set) and allocate
it otherwise. After the leaf has been allocated, we check
whether it is already in the queue and if not, insert its leaf
index at the end of the queue and update the queue index in
the leaf structure.

Note that we already allocate all GPU memory during
initialization to avoid memory allocation during reconstruc-
tion. Allocating new branches and leaves in the tree and
adding leaves to the queue are both performed by atomic
additions on three global counter variables.

Update of the Distance, Weight, and Color Values Af-
ter the traversal step all new branches and leaves intersect-
ing the band of the current surface have been allocated
and all the leaves, previously allocated and newly allocated
ones, have been placed in the queue.

Given the index, position, and scale of every leaf we now
efficiently update the position, weight, and color values in
every voxel in the queue according to equations (4), (5) and
(6). This step is performed in parallel for all voxels, with
one thread block per leaf in the queue. The update involves
reading the leaf index and the leaf position and scale under
that index from memory, which is an O(1) operation. Pro-
jecting the voxel positions into the images is done with high
efficiency using the GPU texture hardware.

Growing the Tree In a large-scale setting, its not feasable
to compute the bounding box of the final reconstruction
beforehand. Therefore, we start with the geometry of one
depth map and subsequently grow the tree, if the geometry
of a new depth map exceeds the current bounding volume.

This involves adding a new root node, inserting the cur-
rent root node as one of its children, shifting all branches
and adding an increment to all leaf positions. This is an
O(n) operation in the number of leaves, however it amor-
tizes over the number of images because the tree will only
grow an O(log n) number of times.

To summarize, we introduced in this section our dense
reconstruction algorithm using a sparse, adaptive tree struc-
ture. It allows us to fuse large-scale RGB-D sequences in
terms of structure and texture with high spatial resolution.

3. Dense RGB-D SLAM

The surface reconstruction approach described above re-
quires an accurate camera pose for each RGB-D image in
the sequence. Our goal is to estimate the camera motion
solely from this sequence. The motion estimation algo-
rithm comprises two main parts: We employ a dense im-
age alignment method to find the relative transformation
between two RGB-D frames. Based on this, we construct
a pose graph and add loop-closure edges where we detect
them. After construction, we optimize the pose graph to
compensate for drift and to obtain a metrically correct cam-
era trajectory.

3.1. Dense Alignment of RGB-D Frames

We seek to estimate the camera motion T ∗ between two
consecutive grey valued intensity images I1 and I2 with
corresponding depth maps Z1,Z2. Our dense motion es-
timation algorithm is based on the following ideas: For
every scene point p observed from the first camera pose
with an associated intensity and given the correct motion
T ∗ we can compute its pixel location in the second inten-
sity image. In the ideal case we can formulate the photo-
consistency constraint, that the intensity measurement in
the first image I1(x) should be equal to the intensity mea-
sured at the transformed location x′ in the second image,
i.e., I1(x)

!
= I2(x′). This constraint should hold for every

pixel. Therefore, we can use it to compute the camera mo-
tion T ∗ given two intensity images and one depth map. A
similar constraint can be formulated for the depth measure-
ments. For every scene point observed from the first camera
pose, we can predict the measured depth value and pixel lo-
cation in the second depth map given the correct motion T ∗.
Using this constraint we can compute the motion T ∗ given
two depth maps. In the following we formalize these ideas
into a non-linear minimization problem to estimate the cam-
era motion T ∗ from two RGB-D pairs.

4324

Photometric and Geometric Error We define the pho-
tometric error as:

eI(T ,x) = I2

(
π(T p)

)
− I1(x) (11)

where T is the rigid body motion represented as 4×4 homo-
geneous transformation matrix, π(p) is the projection func-
tion of the pinhole camera model, and p is the 3D point re-
constructed from pixel x and its depth measurement Z1(x)
using the inverse projection function π−1(x, Z). Similarly,
the geometric error is given as:

eZ(T ,x) = Z2

(
π(T p)

)
−
[
T p

]
Z

(12)

where [p]Z extracts the Z coordinate of a point p. The
parametrization of the rigid body motion as a transforma-
tion matrix is problematic for optimization as it has 16 pa-
rameters, but only six degrees of freedom. Therefore, we
use the minimal twist parametrization ξ provided by the
Lie algebra se(3) associated with the group of rigid body
motions SE(3). The transformation matrix is related to the
twist parameters by the matrix exponential: T = exp(ξ̂).

Non-linear Minimization We adapt the probabilistic
framework proposed in [10] to combine the photometric
and geometric error. This stands in contrast to [18, 19]
where the terms are additively combined using a heuris-
tically chosen weight. To this end, we assume the com-
bined error r = (rI , rZ)T to be a bivariate random variable
following a t-distribution, i.e., r ∼ pt(µr,Σr, ν). The t-
distribution has mean µr, scale matrix Σr, and ν degrees
of freedom. We fix the mean to zero and the degrees of free-
dom to five. By minimizing the negative log-likelihood of
p(ξ | r) we obtain the following non-linear, weighted least
squares problem:

ξ∗ = arg min
ξ

n∑
i

wi r(ξ,xi)
T Σ−1

r r(ξ,xi) (13)

where n is the number of pixels. The per pixel weight wi is
defined as:

wi =
ν + 1

ν + ri Σ
−1
r ri

. (14)

The resulting normal equations are:

A∆ξ = b
n∑
i

wiJ
T
i Σ−1

r Ji∆ξ = −
n∑
i

wiJ
T
i Σ−1

r ri
(15)

where Ji is the 2×6 Jacobian matrix containing the deriva-
tives of the photometric and geometric error with respect to
the motion parameters ξ. We iteratively update and solve
the normal equations for parameter increments ∆ξ. The
scale matrix Σr of the error distribution and the weights
are re-estimated at every iteration. Furthermore, we em-
ploy a coarse-to-fine scheme to account for a larger range
of camera motions.

Parameter Uncertainty We assume the estimated pa-
rameters ξ to be normally distributed with mean ξ∗ and co-
variance Σξ. The inverse of the A matrix in the normal
equations gives an estimate of the parameter covariance,
i.e., Σξ = A−1.

3.2. Keyframe-based Pose SLAM

The presented visual odometry method has inherent
drift, because of a small error in every frame-to-frame
match, that accumulates over time. The elimination of the
drift is an important prerequisite to obtain a metrically cor-
rect reconstruction. Therefore, we embed our dense visual
odometry method into a SLAM system.

To eliminate local drift, we match the latest frame against
a keyframe instead of the previous frame. As long as the
camera stays close enough to the keyframe, no drift is accu-
mulated. From all keyframes we incrementally build a map
of the scene. Whenever a new keyframe is added to the map,
we search for loop closures to previously added keyframes.
The loop closures provide additional constraints, which al-
low to correct the accumulated drift. In the following we
describe a consistent measure to select new keyframes and
detect loop closures. Afterwards, we describe our map rep-
resentation and global optimization.

Keyframe Selection Different strategies for keyframe se-
lection exist. Common approaches use a threshold on a dis-
tance measure, e.g., the number of frames or translational
distance between the frames. In contrast, we want a mea-
sure taking into account how well the motion between the
current keyframe and latest frame could be estimated. The
naive approach of comparing the final error values (cf. (13))
is not applicable, because the scale matrix Σr varies be-
tween different frame pairs.

In contrast, we found a relationship between the entropy
of the parameter distribution H(ξ) and the trajectory error.
The differential entropy of a random variable x having a
multivariate normal distribution withm dimensions and co-
variance Σ is defined as:

H(x) = 0.5m
(
1 + ln(2π)

)
+ 0.5 ln(|Σ|)

H(x) ∝ ln(|Σ|).
(16)

Dropping the constant terms it is proportional to the natural
logarithm of the determinant of the covariance matrix. The
entropy of the estimated motion parameters is then H(ξ) ∝
ln(|Σξ|). As the parameter entropy varies between different
scenes, a direct thresholding is not applicable. Therefore,
we use the ratio α between the parameter entropy of the first
estimate towards the kth keyframe ξk:k+1 and the current
one ξk:k+l, i.e.,

α =
H(ξk:k+l)

H(ξk:k+1)
. (17)

4325

estimation errortrue distance

d
is
ta
n
c
e
[m

]

frame

0 100 200 300 400 500

0

0.1

0.2

0.3

(a) error of the estimate w.r.t. frame 50

thresholdentropy ratio α

4362508450

loop closure detected
tracking lost

en
tr

o
p
y

ra
ti

o

frame

0 100 200 300 400 500

0.5

0.7

0.9

1.1

1.3

1.5

(b) uncertainty of the estimate w.r.t. frame 50

(c) Frame 50 (d) Frame 84 (e) Frame 250 (f) Frame 436

Figure 5: Frame 50 of the fr1/desk dataset matched against
all frames of the dataset. Plot (a) shows the groundtruth dis-
tance of each frame to frame 50 and the error in the estimate.
Note that the upper part of the plot above 0.3m has been cut
off. Plot (b) displays the entropy ratio α. High entropy ratio
values coincide with low error in the estimate. The second
peak in the entropy ratio indicates a detected loop closure.

The reasoning is that the first frame matched against a
keyframe is closest and the parameter estimate is therefore
the most accurate. Figure 5b shows a plot of the entropy
ratio for frame 50 of the fr1/desk sequence matched against
all other frames and Figure 5a displays the translational er-
ror in the estimate compared to the groundtruth. Its clearly
visible, that high values of entropy ratio coincide with small
errors in the estimate.

Loop Closure Detection The entropy ratio criterion can
also be applied to detect loop closures. As Figure 5b shows
the entropy ratio rises again around frame 436 and the er-
ror in the estimate drops as the camera returns to the pre-
viously visited region. To compute the entropy ratio with
a loop closure candidate we do not use the parameter en-
tropy of the first match, but the average entropy of all suc-
cessful matches against the keyframe, i.e., in (17) instead of

H(ξk:k+1) we use:

Havg =
1

l

l∑
j

H(ξk:k+j). (18)

The argument here is similar, that the frames matched
against the keyframe were closest and the estimates have
high accuracy. Furthermore, our keyframe selection cri-
terion ensures that there are no outliers in the averaging.
As this criterion requires actual parameter estimation lin-
ear search over all existing keyframes becomes quickly in-
tractable. Therefore, we limit the number of loop closure
candidates by only considering keyframes in a certain dis-
tance to the new keyframe. Afterwards, we first estimate
the motion parameters on a coarse scale and check the en-
tropy ratio criterion. If this first test succeeds, we estimate
the final parameters and test again. In case this test is also
successful we add the loop closure constraint to the map.

Map Representation and Optimization We represent
the map as a graph. The vertices represent camera poses and
the edges correspond to relative transformations between
two RGB-D images estimated by our dense visual odom-
etry algorithm. Every edge is weighted with the estimated
motion covariance Σξ. The camera poses are optimized by
minimizing the squared error in the graph. The corrections
are distributed according to the weights of the edges. After
estimating the pose of the last RGB-D image when process-
ing a dataset, we search for additional loop closures over all
keyframes and optimize the final graph with a larger number
of iterations than during online tracking. For the implemen-
tation of the graph structure and optimization we use the
g2o framework [11].

In this section, we described a SLAM system based on a
dense visual odometry method, which outputs a metrically
correct trajectory. The optimized camera poses are the input
to the proposed surface reconstruction algorithm.

4. Results
We evaluated the performance of our dense visual SLAM

system on the TUM RGB-D benchmark [17]. Furthermore,
we compare our results to results obtained with several
state-of-the-art systems. These include the RGB-D SLAM
system [6], Multi-Resolution Surfel Maps (MRSMap)
[16], and the open-source implementation of KinectFu-
sion (KinFu) [12] included in the pointcloud library (PCL).
This set of experiments was conducted on a PC with In-
tel Core i7-2600 CPU with 3.40GHz and 16GB RAM. Ta-
ble 1 shows the results. As an evaluation metric we use
the root mean square error (RMSE) of the absolute trajec-
tory error (ATE). In 9 out of 10 datasets our method out-
performs the existing state-of-the-art methods. Especially

4326

Input image

Reconstructed view

Novel view

Figure 6: Sample reconstructions of two different se-
quences (left and right columns). Top row: Example input
image. Middle row: Visualization of the 3D model from the
same viewpoint. Bottom row: Visualization from a differ-
ent viewpoint.

on complex trajectories like fr1/room and fr1/teddy, our ap-
proach demonstrates a significant improvement compared
to existing feature-based systems.

The whole visual SLAM system runs on the CPU. The
frontend and backend run in separate threads. The dense vi-
sual odometry runs at 25Hz on a single CPU core. The run-
time of the backend depends on the number of keyframes
and loop closure constraints, but typical average timings for
the insertion of a keyframe are between 100ms to 200ms.

Next to the evaluation on the benchmark datasets,
we recorded an office scene of approximately
45m×12m×3.4m consisting of 24076 images. We
estimated the camera poses and reconstructed the scene
with a voxel resolution of 5mm. As we use a multi-scale
approach, not all the geometry is stored at all resolutions.
For example, at a resolution of 5mm, we only consider
depth measurements up to 1m distance of the camera.
Figure 1 shows a view of the entire reconstructed geometry
and the tree structure it is embedded in. The ceiling of
the offices has been removed in a postprocessing step for

Entire reconstruction Top view

Side view Closeup

Figure 7: Geometry reconstructions of the fr3/office dataset.

a better view of the office interior from this position. We
used the marching cubes algorithm to create a mesh at the
0-isolevel of the signed distance function for visualization.
Figure 6 shows some comparisons of RGB images at
different camera positions on the trajectory. It shows that
we are able to reconstruct fine details in the scene where
they are available, even though the entire scene fits into
approximately 2.5GB GPU memory. The fusion was
performed on an NVIDIA GTX680 GPU at an average of
220 frames per second (without post-processing such as
marching cubes and visualization).

5. Conclusion

In this paper, we presented a method for the recon-
struction of large scenes at high detail from an RGB-D
sequence in real-time on a standard desktop PC. We con-
struct a pose graph using dense image alignment that we
optimize to eliminate for drift and to establish a metrically
correct camera trajectory. Subsequently, we fuse both the
depth and the color values of all frames into a multi-scale
oct-tree structure that allows us to obtain high accuracies
while keeping the memory usage low. In extensive experi-
ments, we demonstrated that our approach outperforms ex-
isting feature-based methods on publicly available bench-
mark sequences. Furthermore, we presented reconstruc-
tions of large scenes showing both the preservation of fine
details and the global consistency. In the future, we plan to
integrate photoconsistency constraints in the geometric re-
construction to complement the depth measurements. With
this work, we hope to contribute to the development of a
mobile 3D scanner that can be used to acquire accurate 3D
models of entire buildings.

4327

Dataset Images Processing Time Memory Absolute Trajectory Error (RMSE)

Acq. SLAM Rec. Rec. Ours RGB-D MRSMap KinFu
Total Avg. SLAM

fr1/xyz 792 26s 44s 2.46s 3.1ms 65MB 0.013m 0.014m 0.013m 0.026m
fr1/rpy 694 23s 41s 2.94s 4.2ms 113MB 0.021m 0.026m 0.027m 0.133m
fr1/desk 573 19s 30s 1.89s 3.3ms 135MB 0.021m 0.023m 0.043m 0.057m
fr1/desk2 620 20s 38s 2.54s 4.0ms 186MB 0.027m 0.043m 0.049m 0.420m
fr1/room 1352 45s 72s 4.96s 3.6ms 453MB 0.054m 0.084m 0.069m 0.313m
fr1/360 744 24s 72s 2.79s 3.7ms 333MB 0.073m 0.079m 0.069m 0.913m
fr1/teddy 1401 46s 111s 4.78s 3.4ms 248MB 0.036m 0.076m 0.039m 0.154m
fr1/plant 1126 37s 62s 4.15s 3.6ms 221MB 0.021m 0.091m 0.026m 0.598m
fr2/desk 2893 96s 101s 12.0s 4.1ms 178MB 0.019m - 0.052m -
fr3/office 2488 82s 106s 10.8s 4.3ms 297MB 0.030m - - 0.064m

average 1286 59s 56s 4.93s 3.7ms 223MB 0.026m 0.054m 0.043m 0.297m

Table 1: Quantitative evaluation of our system. From left to right: Number of images in the dataset, acquisition time of the
dataset, processing time for SLAM, total reconstruction time of the dataset, average time for fusing one depth map, memory
requirements for reconstruction, absolute trajectory error comparison of our method against the state-of-the-art.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R.Szeliski.

Building rome in a day. In ICCV, 2009.
[2] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. 3-D motion and

structure from 2-D motion causally integrated over time: Im-
plementation. In ECCV, 2000.

[3] A. Comport, E. Malis, and P. Rives. Accurate Quadri-focal
Tracking for Robust 3D Visual Odometry. In ICRA, 2007.

[4] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In SIGGRAPH, 1996.

[5] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and
W. Burgard. An evaluation of the RGB-D SLAM system.
2012.

[6] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard.
Real-time 3D visual SLAM with a hand-held camera. In
RGB-D Workshop on 3D Perception in ERF, 2011.

[7] S. Fuhrmann and M. Goesele. Fusion of depth maps with
multiple scales. ACM Trans. Graph., 30(6):148, 2011.

[8] D. Gallup, J. Frahm, P. Mordohai, and M. Pollefeys. Variable
baseline/resolution stereo. 2008.

[9] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-
D mapping: Using depth cameras for dense 3D modeling of
indoor environments. 2010.

[10] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estima-
tion for RGB-D cameras. In ICRA, 2013.

[11] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph optimiza-
tion. In ICRA, 2011.

[12] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. Fitzgibbon. KinectFusion: Real-time dense surface map-
ping and tracking. In ISMAR, 2011.

[13] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:
Dense tracking and mapping in real-time. In ICCV, 2011.

[14] H. Roth and M. Vona. Moving volume KinectFusion. In
BMVC, 2012.

[15] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense RGB-D images. In Workshop on Live
Dense Reconstruction with Moving Cameras at ICCV, 2011.

[16] J. Stückler and S. Behnke. Integrating depth and color cues
for dense multi-resolution scene mapping using rgb-d cam-
eras. In MFI, 2012.

[17] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM
systems. In IROS, 2012.

[18] T. Tykkälä, C. Audras, and A. Comport. Direct iterative clos-
est point for real-time visual odometry. In Workshop on Com-
puter Vision in Vehicle Technology at ICCV, 2011.

[19] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. Mc-
Donald. Robust real-time visual odometry for dense RGB-D
mapping. In ICRA, Karlsruhe, Germany, 2013.

[20] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard,
and J. McDonald. Kintinuous: Spatially extended Kinect-
Fusion. In RSS Workshop on RGB-D: Advanced Reasoning
with Depth Cameras, 2012.

[21] M. Zeng, F. Zhao, J. Zheng, and X. Liu. A Memory-Efficient
KinectFusion using Octree. In Computational Visual Media,
volume 7633 of Lecture Notes in Computer Science, pages
234–241. Springer Berlin Heidelberg, 2012.

4328

