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Abstract— In this paper we propose a novel volumetric
multi-resolution mapping system for RGB-D images that runs
on a standard CPU in real-time. Our approach generates a
textured triangle mesh from a signed distance function that it
continuously updates as new RGB-D images arrive.

We propose to use an octree as the primary data structure
which allows us to represent the scene at multiple scales.
Furthermore, it allows us to grow the reconstruction volume
dynamically. As most space is either free or unknown, we
allocate and update only those voxels that are located in a
narrow band around the observed surface. In contrast to a
regular grid, this approach saves enormous amounts of memory
and computation time. The major challenge is to generate and
maintain a consistent triangle mesh, as neighboring cells in
the octree are more difficult to find and may have different
resolutions. To remedy this, we present in this paper a novel
algorithm that keeps track of these dependencies, and efficiently
updates corresponding parts of the triangle mesh. In our
experiments, we demonstrate the real-time capability on a large
set of RGB-D sequences. As our approach does not require a
GPU, it is well suited for applications on mobile or flying robots
with limited computational resources.

I. INTRODUCTION

Reconstructing the geometry and texture of the world in
real-time from a sequence of images remains one of the key-
challenges in computer vision and robotics. For example,
architects would greatly benefit from a wearable 3D scanning
device that generates and visualizes a 3D model in real-
time. Similarly, a robot navigating through an unknown
environment benefits from an up-to-date 3D map to support
obstacle avoidance, path planning, and autonomous explo-
ration. This problem is known as Simultaneous Localization
and Mapping (SLAM), where both the camera poses and
the map have to be estimated at the same time. In this paper,
we set the focus on the mapping task, which means that we
assume that the camera poses are known.

Low-cost depth sensors such as the Microsoft Kinect have
recently led to strong boost in this domain, because they help
to overcome the scale ambiguity of monocular systems and,
in contrast to photometric stereo systems, provide a quality
depth map independent of the scene texture. While the first
mapping approaches relied on classical feature matching [9],
[7], recent results indicate that dense methods lead to more
accurate reconstructions. In particular, the seminal Kinect-
Fusion paper [14] demonstrated that instantaneous dense
3D reconstructions with a hand-held sensor were possible
by estimating a signed distance function (SDF) [5] on a
GPU. However, when the SDF is represented as a regular
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(a) reconstructed 3D model of an office environment
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Fig. 1. Our approach enables 3D reconstruction from RGB-D data in
real-time on a CPU. We fuse the input images into a multi-resolution octree
data structure that stores both the SDF and the triangle mesh. The top view
shows a visualization of an office area. The bottom images show a close
up of the printer area (red square), where the resolution varies adaptively
between 5 mm and 2 cm.

grid, the memory consumption and the computation time
grows cubically with the resolution, so that reconstruction
resolutions seldom exceed 5123 voxels. It has recently been
shown that the memory consumption can be greatly reduced
by using an adaptive representation such as octrees [21], [16].
However, due to the complexity of the data structures, these
methods were not yet able to generate a triangle mesh in
real-time.

The key insight behind our work is that a band-limited
octree does not only reduce the memory consumption, but
also greatly speeds up data fusion as significantly fewer
voxels need to be updated. In particular, we found in our
work that high resolution data fusion and meshing is feasible
in real-time on a CPU, which enables 3D mapping on
resource-limited mobile platforms without GPUs such as
quadrotors. We prefer mesh extraction over a raycasting visu-
alization because it enables us to compute view-independent
visualization updates on a mobile platform, while the user is
able to view the mesh on a base-station from every desired
virtual camera pose. With a raycasting visualization, the
mobile platform would have to render a new image for every
camera pose and transmit this image to the base-station.

The contributions of this paper are:

1) an octree data structure that supports volumetric multi-
resolution 3D mapping and meshing,

2) a speeded-up data fusion algorithm that runs at a
resolution of up to 5 mm in real-time (> 45 Hz on



average) on a single CPU core,
3) a multi-resolution, incremental meshing algorithm that

runs asynchronously on a second CPU core and outputs
an up-to-date mesh at approximately 1 Hz.

In a large set of experiments, we evaluated the run-time
behavior and memory consumption of our algorithm on
real data. A video illustrating our approach is available at
http://youtu.be/7s9JePSln-M.

II. RELATED WORK

In this paper, we focus on the problem of mapping
with known poses. This means that we assume that camera
poses have already been determined by a visual odometry,
Structure-from-Motion (SfM) or SLAM algorithm [3], [6],
[12], [1], [11].

Previous approaches to the mapping problem can be
categorized roughly into two classes: When the map is
represented as a sparse set of visual features [3], [1], [9],
[7] the map cannot easily be used for robot navigation, as
it is difficult to distinguish free space from occupied space.
Furthermore, removing outliers is hard and the semantics
of regions with no data is unclear. To reduce memory
consumption, point clouds can be often downsampled into
surface patches or voxels [10], [20].

Alternatively, the map can be represented volumetrically,
for example in the form of an occupancy grid map or
a signed distance function (SDF). The advantage of this
representations is that they inherently distinguish between
known and unknown as well as free and occupied space. The
disadvantage is a high memory demand and computational
effort. As most computations can be parallelized and exe-
cuted by a GPU, Newcombe et al. [14] demonstrated with
KinectFusion that camera tracking and geometry fusion is
possible in real-time.

To overcome the problem of memory limitation, several
authors proposed shifting reconstruction volumes [15], [18],
where older parts of the SDF are converted into a triangle
mesh using Marching Cubes [13]. The difficulty then is that
triangle meshes are hard to update after a loop-closure [19],
which may lead to self-intersections and other inconsisten-
cies. Therefore, it is desirable to represent the geometry as
an SDF while more data is added, as it allows for arbitrary
topology changes.

When the SDF is internally represented as an octree [20],
the memory consumption can be greatly reduced by allo-
cating only those cells that are located sufficently close to
the surface. Fuhrmann et al. [8] proposed to store data not
only at the leaves but at all levels of the tree. As a result, this
representation allows for adaptive spatial resolutions and thus
better reconstructions in regions with more data. This ap-
proach has also been used in computer graphics for efficient
rendering of static data [4]. To the best of our knowledge,
all currently existing implementations capable of real-time
processing rely heavily on a GPU for parallelization [21],
[16], [2], which renders these approaches unsuitable on
resource constrained platforms such as quadrotors or smart
phones. Furthermore, all of these works perform the final

class Tree
float3 position;
float scale;
Branch* branch;

class Branch
Branch* branch[8];
Brick* leaf[8];
MeshCell* interior;
vector<MeshCell*> faces[6];
vector<MeshCell*> edges[12];
vector<MeshCell*> corners[8];

class Brick
Voxel voxel[8][8][8];
vector<MeshCell*> cells;
int position[3];
int scale;
bool is queued;

class Voxel
float distance;
float weight;
uchar3 color;

class MeshCell
enum type;
int position[3];
int size;
Branch* src branches[8];
Brick* src bricks[8];
Mesh mesh;

class Mesh
vector<float3> vertices;
vector<uint3> triangles;
vector<byte3> color;

Fig. 2. Proposed data structures for the octree. We represent the 3D model
internally as an octree. Every branch refers to up to 8 subbranches and 8
bricks. A brick contains 83 voxels. A mesh cell stores the triangle mesh of
a particular region. Cross references (e.g., from a branch to its mesh cells
and vice versa) enable fast traversal during data fusion and meshing.

mesh extraction in a time-consuming offline step on the CPU,
so that they not suited for live visualizations.

This work is inspired by our recent finding [16] that
data fusion in an octree runs extremely fast on a GPU
(>200 Hz), so that real-time processing on CPU comes
back into reach. Furthermore, as the number of updated
voxels per RGB-D image is limited, we found likewise that
meshing can be performed incrementally in real-time. Our
resulting algorithm is capable of real-time mapping while
requiring only two cores of a standard CPU. Our method
fuses incoming RGB-D images in real-time at 45 Hz and
outputs up-to-date triangle meshes at approximately 1 Hz at
5 mm resolution at the finest level.

III. MULTI-RESOLUTION DATA FUSION IN AN OCTREE

We represent the geometry using a signed distance func-
tion (SDF), that provides any point the signed distance to the
closest surface. As most space is either free or unknown, we
represent the SDF in an octree, where only cells close to the
surface are actually allocated. As different parts of the scene
will be observed at different distances, we save geometry
information at different levels in the tree (and thus at different
resolutions). Instead of saving only a single SDF value at
every node of the tree, we store the geometry in small cubic
volumes, called “bricks”, consisting of 83 voxels. A single
voxel stores the truncated signed distance, the weight, and the
color. Figure 2 shows a diagram of all relevant data structures
of our approach.

Figure 3a shows a visualization of a single brick. Choosing
a multiple of 8 for the size of the brick in every dimension,
for the rest of the paper denoted by m, makes it easy
to use Single-Instruction-Multiple-Data (SIMD) instructions
such as SSE and AVX, supported by the vast majority of
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Fig. 3. Upper boundary of a brick. For meshing, the blue face voxels need
at least one other brick, the red edge voxels need at least three other bricks,
and the green corner voxels need seven other bricks.

modern CPUs. While all bricks have the same size, they have
different scales, depending on their depth in the tree. This
accounts for the fact that geometry that is only seen from
cameras far away can be stored in less detail than geometry
seen from a camera up close. We denote the scale of a brick
by sl ∈ N. Additionally, we store an integer offset ol ∈ N3

for every brick for its position in the tree. The tree itself is
axis-aligned and has itself a floating-point position ot ∈ R3

and a scale st ∈ R+.
To fuse the geometry, we follow the approach of Levoy

and Curless [5] that we adopted for our data structure as fol-
lows: First, we iterate over the pixels in the image, compute
the 3D point for every pixel, and look-up its corresponding
brick in the tree. We put all the bricks that contain a point of
the current depth map into a queue. Second, we iterate over
this queue and update the distance values in every brick. In
the next two sections we will explain how we optimize these
two steps for serial and SIMD processing on the CPU.

A. Traversing of the Tree for all Points of the Depth Map

We assume a pinhole camera with rectangular image plane
Ω ⊂ R2, scaled focal lengths fx, fy ∈ R+ and a central
point c = (cx, cy)> ∈ Ω. At time t, the camera records an
RGB image Ict : Ω → R3

+, and a depth image Zt : Ω →
R+. Further, we assume that we know the camera translation
Tt ∈ R3 and orientation Rt ∈ SO(3). Correspondingly, a
pixel (x, y)> on the image plane is related to the 3D point
pw ∈ R3 (in world coordinates) by the formula

pw = Rt ·

 (x− cx)Zt(x,y)
fx

(y − cy)Zt(x,y)
fy

Zt(x, y)

+ Tt (1)

Depending on the value of Zt, we also assign an (integer)
scale sl := exp2 blog2 max {Zt, 1}c to the point. Given the
3D world coordinates of a pixel and the desired scale of the
brick, we look-up the corresponding brick in the tree and
place it in a queue. Note that we update the brick at scale sl
and all (existing) coarser bricks above. The update weight for
each voxel depends on the distance to the surface [5] and on
the scale of the brick. Furthermore, in our implementation,
the size of the truncation band grows with the scale of the
brick, so that the updated band always contains the same
number of voxels independent of the scale.

While this look-up step has a complexity of O(log n)
operation (for a tree containing n bricks), we found that this
step is costly enough that minimizing the amount of look-ups
in the tree leads to a significant performance increase. There-
fore, checking beforehand whether two or more points lie in
the same brick can prevent us from performing unnecessary
tree traversals. A fast heuristic is to check whether a point
lies in the same brick with its left or upper neighbor in the
image, and traverse the tree only if it does not. We evaluate
the performance gain of this method in Section V-A.

B. Updating the Distance Function in Every Brick

Algorithm 1 shows a naı̈ve approach to updating the SDF
in the voxels [5]. To optimize this algorithm, we (1) make
use of the serial order of iterations to reuse precomputed
values and (2) get rid of branches in the code (i.e., all “if”-
statements) to enable SIMD computations.

We first discuss the naı̈ve algorithm. The individual steps
are:
• an unordered - possibly parallel - iteration over all

voxels in the brick volume (1),
• the transformation of the voxel position into camera

coordinates (2),
• a check whether the transformed point lies in front of

the camera and projects into the image domain (3),
• a check whether the depth image at the corresponding

pixel position contains a valid depth value (5),
• the computation of the truncated distance value (6,7),

and the computation of the incremental weight w(∆D)
as well as the update of the voxel distance, weight and
color values (8 to 10).

Of course, several of the values can be buffered in a trivial
way. We omitted these steps here for sake of better read-
ability, but used them in the naı̈ve reference implementation
used for runtime evaluation in Section V-A.

The SIMD-optimized algorithm is given in Algorithm 2.
The first change is that we removed the computationally
cumbersome point transformation: Instead of performing at
least 9 floating-point multiplications and another 9 additions
- not taking into account the transformation from brick- to
tree-coordinates, we make use of the serialized processing
order and reduce the transformation to a mere 3 additions in
every iteration in lines 17 to 21.

The second step of optimization gets rid of the branches
in lines 3 and 5 of Algorithm 1, and encodes them in a
casted multiplication or bitwise and in line 12 of Algorithm



Algorithm 1 Naı̈ve SDF update algorithm
1: for pl ∈ {0, ...,m− 1}3 do
2: pc ← R>t (ot + (ol + plsl)st)−R>t T
3: if [pc]z > 0 and π(pc) ∈ Ω then
4: z ← Zt(π(pc))
5: if valid(z) then
6: ∆D ← |pc|

(
1− z

[pc]z

)
7: ∆Φ

D ← max{min{∆D,Φ},−Φ}
8: W (pl, t)← w(∆D) +W (pl, t− 1)

9: D(pl, t)← D(pl,t−1)W (pl,t−1)+∆Φ
Dw(∆D)

w(∆D)+W (pl,t−1)

10: C(pl, t)← C(pl,t−1)W (pl,t−1)+Ictw(∆D)
w(∆D)+W (pl,t−1)

11: end if
12: end if
13: end for

Algorithm 2 Serialized and SIMD-capable SDF update
algorithm

1: pz
c ← stR

>
t ot −R>t T

2: for z = 0 to m− 1 do
3: py

c ← pz
c

4: for y = 0 to m− 1 do
5: px

c ← py
c

6: for x = 0 to m
nSIMD

− 1 do
7: for k ∈ {0, ..., nSIMD − 1} do
8: pc ← px

c +R[:, 1]kslst
9: z ← Zt(πΩ(pc))

10: ∆D ← |pc|
(

1− z
[pc]z

)
11: ∆Φ

D ← max{min{∆D,Φ},−Φ}
12: wM ← w(∆D) · ([pc]z > 0 ∧ π(pc) ∈ Ω)
13: W (pl, t)← wM +W (pl, t− 1)

14: D(pl, t)← D(pl,t−1)W (pl,t−1)+∆Φ
DwM

wM+W (pl,t−1)

15: C(pl, t)← C(pl,t−1)W (pl,t−1)+IctwM

wM+W (pl,t−1)
16: end for
17: px

c ← px
c +R[:, 1]slstnSIMD

18: end for
19: py

c ← py
c +R[:, 2]slst

20: end for
21: pz

c ← pz
c +R[:, 3]slst

22: end for

2. To avoid invalid memory access, we additionally have to
clip the projected points to the image plane, denoted by the
projection πΩ(pc). The iteration over x is now split into
a serial outer iteration and a possibly parallel inner SIMD
iteration.

IV. REAL-TIME MESHING

The geometry representation as an SDF is already useful
for several robotic tasks such as path planning or obstacle
avoidance. However, for visualization, map transmission, and
multi-robot coordination, a map representation in form of a
triangle mesh is highly beneficial, because it has a much
lower memory footprint. In our implementation we used
the Marching Cubes algorithm for zero-level extraction [13].

Branches Bricks

Branches Bricks

(a) Two bricks at the same position on different levels in the tree

(b) Inner boundary (c) Meshes between branches

Fig. 4. Mesh extraction from a SDF stored on multiple scales. (a) Two
bricks and their memory representation in the tree. (b)+(c) Boundary meshes
created when a branch is subdivided.

While the Marching Cubes algorithm is simple to apply on
a regular grid, it is more difficult to apply on our brick data
structure as finding neighboring voxels at the boundary is
more involved.

A. Marching Cubes

For meshing the voxel at position (x, y, z)> ∈ N3, we have
to know the SDF values of this voxel as well as its 7 higher
neighbor voxels (x+1, y, z)>, (x, y+1, z)>, (x, y, z+1)>,
(x+ 1, y+ 1, z)>, (x+ 1, y, z+ 1)>, (x, y+ 1, z+ 1)>, and
(x+ 1, y + 1, z + 1)>. For all lower voxels v ∈ {0, ...,m−
2}3 of the brick (depicted in white in Figure 3a), computing
the mesh between v and its 7 higher neighbors is simple.
However, for the voxels located on the three higher faces of
the brick cube (depicted in blue), the voxels of at least one
adjacent brick need to be known, for the voxels on the three
high edges (depicted in red), we need the voxels of at least
three other bricks and for the high corner voxel (depicted in
green), we need the voxels of seven other bricks.

A naı̈ve approach for the mesh extraction of all bricks
would be to traverse the tree for all higher neigbors of a
brick and compute the mesh between the voxels afterwards.
However, this would require all bricks to have the same
scale, which is not the case in our model, as one or more
smaller bricks may lie inside a larger brick. In those parts
where detailed geometry information from smaller bricks is
present, a higher-resolution mesh should be computed, while
the larger-scaled brick provides the rest of the mesh on a
coarser resolution. An example of this case is shown in
Figure 4a: While the smaller brick provides SDF values on
a finer grid, the remaining 7

8 of the branch has to be filled
by the coarser-sampled SDF values of the larger brick.

Therefore, we abandon the notion of associating a mesh
with a brick, and rather associate meshes with branches in



Fig. 5. Geometry evolution of the fr3/long office household sequence. Top to bottom: Result after the first 50, 170, and 300 frames. Left to right: Geometry
and texture, geometry only, textured wireframe, and visualization of different mesh parts as in Figure 3. The level of detail in the geometry increases as
the camera records more close-up images.

the tree (see again the data structures defined in Figure 2): A
mesh cell represents either an interior mesh of one branch, a
face mesh between two branches, an edge mesh between four
branches, or a corner mesh between eight branches. It also
contains the mesh generated for this region. We will discuss
the reason for distinguishing between these four types of
mesh cells in Section IV-B. A brick needs to be associated
with the mesh cells belonging to the entire subtree below
the branch on which it is located. Since we want to find all
those mesh cells associated with a brick in O(1) time, a
brick stores references to all related mesh cells. To speed up
traversal between mesh cells, bricks, and branches, a mesh
cell stores references to all branches and bricks it belongs
to.

Figure 4b illustrates the problem where a branch with a
brick has at least one subbranch with a smaller brick. This
spawns a large number of new mesh cells corresponding to
faces (blue), edges (red) and corners (green) between the
sub-branches: In particular, we have to compute the mesh of
the interior of all existing subbranches as well as the interior
of the non-existing subbranches with the SDF information
of the larger brick. Additionally, we compute meshes for
the 12 faces between the subbranches, 4 in each x-, y-, and
z-direction, visualized in blue color in Figure 4b. We also
compute meshes for 6 edges, 2 in each direction, between
4 subbranches respectively, visualized in red, and finally we
compute a mesh for the middle corner of all 8 subbranches,
visualized in green.

The last problem remaining is the fact that the mesh cells
corresponding to these faces, edges, and the corner in Figure
4b need to be computed recursively as well, if one of their
associated branches is subdivided. An example of this is

demonstrated in Figure 4c: The subdivision of the branch
on the right subdivides the face between the left and right
branch. The face itself is divided into 4 new faces, and 4
edges as well as a middle corner are created between them.
the edges encasing the face are divided into two edges and
one corner each.

This leaves us with 4 nested recursive algorithms:

• If a branch contains a subbranch, the algorithm comput-
ing the mesh of the branch interior recurses into the sub-
branches and spawns the meshing of the faces, edges,
and middle corner as described in the last paragraph
and visualized in Figure 4b.

• If any of the 2 branches associated with a face contains
a subbranch, the algorithm computing the mesh of
the face recurses into the 4 subfaces and spawns the
computation of the 4 edges and a middle corner between
them. This is visualized in cyan, orange and yellow in
Figure 4c.

• If any of the 4 branches associated with an edge contains
a subbranch, the algorithm computing the mesh of
the edge recurses into the 2 subedges and spawns the
computation of the middle corner between them. This
is visualized in pink and dark green in Figure 4c.

• If any of the 8 branches associated with a corner
contains a subbranch, the algorithm recurses to the
smaller size and the existing subbranches are passed
to the recursive call.

As noted earlier, our octree data structure may contain
overlapping bricks at different resolutions. For meshing, we
only use the brick at the highest resolution. If the brick has
missing values, for example, because only part of the brick
was visible at the highest resolution, we fall back to a lower



resolution brick for interpolation. In the future, it would be
interesting to apply regularization over multiple scales prior
to meshing to optimally exploit the available information.

When this algorithm is applied to the root of the tree,
it produces a mesh of the entire geometry. While this can
be desirable in some cases, in an online setting it has the
disadvantage that the entire tree has to be traversed for
the meshing of the geometry, which constitutes an O(n)
operation for every meshing step. For real-time capability,
however, we need a complexity of O(1).

The basic insight here is that a single depth image will
only change the SDF in a small region of the tree in a
reasonably large scene. Note that this number is typically
even constant, as the sensor has a limited range and thus
only a limited number of bricks can possibly get updated.

B. Reducing the Runtime Complexity for Incremental Mesh-
ing

To efficiently iterate only those mesh cells that need re-
meshing, we keep track of the neighborhood of every branch
in the tree when we allocate new branches and bricks.

Every time we subdivide a branch B, we delete its interior
mesh cell and add 8 new interior mesh cells for the children
of B. Analogously to Figure 4b, we add mesh cells for faces,
edges and the middle corner in the interior of B as well.

For every outer face, edge and corner associated with B
we look-up the other branches in the mesh cell structure.
Concerning faces and edges, if B was larger than at least
one other neighboring branch, it will be associated with an
array of multiple face and edge cells, stemming from an
earlier subdivision of a neighbor.

An example of this case is shown in Figure 4c. Let B be
the large left branch. When we divide B, we would pass each
of the 4 face cells to one of the subbranches, pass each of
the 4 orange edge cells to 2 subbranches of B, and pass the
yellow corner cell to 4 subbranches.

Whenever we add a new brick to the tree, we associate
it with all the mesh cells of the branch and subbranches it
lies on. For every brick queue containing references to the
bricks that have been newly created or changed by the fusion
of a depth map, we can now easily create a mesh cell queue
that contains references to all the mesh cells that need to be
updated.

In general, Marching Cubes takes more time than the data
fusion, because it has to take into account neighborhood
relations of the voxels. Therefore, we decided to run the
meshing in a second thread parallel to the data fusion.
Whenever the data fusion thread updates a brick, it pushes
the affected mesh cells into a queue. We use a binary flag
to indicate that a mesh cell has already been added to the
queue to prevent adding the same cell twice. When a mesh
cell has been processed, its “is queued” flag is reset and it
is removed from the queue.

In this way, the runtime complexity for the meshing is
reduced from linear time O(n) in the number of bricks to
linear time in the number of bricks in the queue. Since the
latter is bounded by a constant for typical camera trajectories,

Dataset Bricks
Traversal Time [ms] SDF Update Time [ms]

Naı̈ve Brick Naı̈ve S.T S.T. +
Check SSE

fr1/360 905 22.2 14.0 22.9 18.9 7.3
fr1/desk 988 19.3 11.8 24.7 20.3 8.2
fr1/desk2 1058 20.6 12.8 26.4 21.7 8.8
fr1/plant 1121 19.6 12.8 28.0 23.0 9.1
fr1/room 1069 23.1 14.2 26.8 22.1 8.7
fr1/rpy 1046 21.7 13.6 26.1 21.9 8.5
fr1/teddy 1167 19.1 12.6 29.0 24.0 9.3
fr1/xyz 1054 18.7 11.5 26.8 22.0 8.2
fr2/desk 1327 20.7 13.1 33.7 27.7 10.8
fr3/office 1276 22.0 13.4 32.2 26.5 10.2

Average 1101 20.7 12.9 27.6 22.8 8.9

TABLE I
QUANTITATIVE EVALUATION OF THE PERFORMANCE GAINS OF VARIOUS

OPTIMIZATIONS. THE VALUES ARE AVERAGED OVER ALL FRAMES OF

THE SEQUENCE. THE OPTIMIZATION OF THE TREE TRAVERSAL YIELDS

AN AVERAGE SPEEDUP OF 37%, THE OPTIMIZATION OF THE SDF
UPDATE YIELDS AN AVERAGE SPEEDUP OF 67%.

we end up with O(1) complexity for the meshing operations,
rendering our method real-time capable. For example, a
quadrotor can incrementally stream the triangle mesh to
a basestation, requiring a constant bandwidth. However, it
should be noted that the total mesh grows with O(n), and
thus if the triangle mesh is visualized, for example, in
OpenGL, it has to be copied, which has again a complexity
of O(n) (although with a small factor). The discrepancy
between those two cases is visualized in Figure 6c.

V. EXPERIMENTAL EVALUATION

The goal of our experiments was to (1) evaluate the
run-times of data fusion and meshing, (2) evaluate the
asymptotic behavior of brick creation and brick updates, and
(3) demonstrate the refinement of the geometry and texture
in our multi-resolution representation as more images arrive.

A. Quantitative Evaluation of Performance Gains

To evaluate the run-time and assess the performance
gains of our optimizations, we ran our method on several
sequences of the TUM RGB-D benchmark [17]. The bench-
mark contains sequences with different camera trajectories
in different scenes and provides time-synchronized camera
poses obtained from a motion capture system.

We set the maximum resolution to 5 mm, and set the
truncation/band size Φ to twice the voxel scale in every brick.
We do not need to specify the reconstruction volume, as our
implementation supports infinite grow of the tree by inserting
additional branches at the top. For most sequences, the final
tree had a depth of 10, yielding a volume of 81923 voxels
on the fines resolution.

We measured the timings on a Laptop-CPU of type Intel
Core i7-2720QM with 2.2 GHz and 8 GB RAM. For all
sequences, we measured the time of the first thread (running
on a single CPU core) to traverse the tree to allocate and
queue branches, bricks, and mesh cells in the tree, as well



as the time to update the SDF in the voxels of the queued
bricks. Table I shows the results. On average, 1101 bricks
get updated per RGB-D frame. For traversing and queuing
bricks, the naı̈ve algorithm required an average of 20.7 ms,
while our optimized version required 12.9 ms, corresponding
to a speedup of 37%. Updating the SDF took another
27.6 ms for the naı̈ve implementation, but only 8.9 ms after
optimization using the serialized transform and the SSE-
SIMD instructions. This corresponds to a speedup of 67%.
In total, the optimized fusion algorithm requires on average
21.8 ms per RGB-D frame, corresponding to an average
processing speed of 45 Hz.

To study the sequential behavior of our algorithm in more
detail, we also evaluated the computational load over time.
Figure 6 shows the result for the fr1/teddy sequence.

At the top, we plotted the total time needed per RGB-D
frame for the traversal and the SDF update. As can be seen,
the processing time stays below 33 ms for almost all frames.

Beneath we show how the number of newly created
branches, bricks, and mesh cells varies over time, depending
on the camera motion and the amount of newly discovered
geometry. A peak in these values is due to the fact, that the
camera visits “unknown territory” at this time. In contrast,
the number of updated bricks per RGB-D frame remains
more or less constant around 1,100, which is closely related
to the computation time for that frame.

At the bottom of Figure 6 we show the processing time
of the meshing queue, and thus the latency at which the
updated mesh becomes available. The latency varies between
0.5 s to 1.5 s, while final mesh merging (for visualization in
OpenGL) grows monotonically to 0.1 s after 1,400 frames.
The final mesh consists of 3314765 triangles on 2786330
vertices.

B. Qualitative Reconstruction Results

Figure 1 and Figure 5 present 3D reconstructions obtained
with our method. Figure 1 demonstrates that, due to the
sparse multi-level representation of the geometry, we are
able to reconstruct large scenes while preserving fine details.
The reconstructed environment spans approximately 25m x
10m, consists of 154273 bricks and consumes approximately
1.4 GB in memory. Figure 5 shows a sequence of the
reconstructed geometry on the fr3/office sequence [17] after
integrating 50, 170, and 300 frames. As can be seen, the level
of detail increases significantly from column to column while
the camera passes the geometry at close range.

The right column of Figure 5 and Figure 1c show a
visualization of the different mesh cells, colored the same
way as in Figure 3: White corresponds to interior mesh cells,
blue to face cells, red to edge cells, and green to corner
cells. At the same time, this coloring provides an intuitive
visualization of the underlying bricks stored at multiple
resolutions.

Furthermore, we provide a video demonstrating
our approach on the fr3/office sequence at
http://youtu.be/7s9JePSln-M. The video was recorded
in real-time using a screen capture tool and thus illustrates
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Fig. 6. Evaluation of the runtime on the fr1/teddy sequence. (a) computation
time for the geometry fusion of every frame, compared to the camera frame-
rate. (b) amount of updated bricks for every frame as well as the number
of newly created branches, bricks, and mesh cells. (c) Evaluation of the
runtime for meshing (corresponding to display latency).

the real-time capability of our approach. While the geometry
fusion runs at approximately 45 Hz, the mesh is updated at
approximately 1 Hz. Similar to the figures, the video shows
the incremental meshing in different visualizations, as color
mesh cells, as a wire frame, and as a shaded 3D model.

VI. CONCLUSION AND OUTLOOK ON FUTURE WORK

In this paper, we presented a novel approach that enables
multi-resolution online geometry fusion on a standard CPU
in real-time. We proposed an efficient octree data structure
that allows for fast SDF updates and incremental meshing.
In our experiments, we demonstrated that our system is
capable of performing the geometry fusion easily in real-
time, rendering it practical to use it for volumetric mapping
on a resource-constrained platform such as a quadrotor. In the
future, we plan to implement camera tracking based on the
computed map, with the goal to assist or replace an external

http://youtu.be/7s9JePSln-M


SLAM system. Furthermore, it would be interesting to use
the voxel neighborhood information provided by the mesh
cells to perform efficient regularization of the SDF. We plan
to make our code publicly available soon.
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