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Abstract

We propose a novel framework for imposing label or-
dering constraints in multilabel optimization. In particu-
lar, label jumps can be penalized differently depending on
the jump direction. In contrast to the recently proposed
MRF-based approaches, the proposed method arises from
the viewpoint of spatially continuous optimization. It uni-
fies and generalizes previous approaches to label ordering
constraints: Firstly, it provides a common solution to three
different problems which are otherwise solved by three sep-
arate approaches [4, 10, 14]. We provide an exact charac-
terization of the penalization functions expressible with our
approach. Secondly, we show that it naturally extends to
three and higher dimensions of the image domain. Thirdly,
it allows novel applications, such as the convex shape prior.
Despite this generality, our model is easily adjustable to
various label layouts and is also easy to implement. On
a number of experiments we show that it works quite well,
producing solutions comparable and superior to those ob-
tained with previous approaches.

1. Introduction
1.1. Multilabeling and Ordering Constraints

Multilabel optimization is an important challenge in
computer vision. It spans a great variety of problems, such
as segmentation, stereo, optical flow and denoising. Among
the first computational paradigms for efficiently solving
multilabel problems was the graph cut approach of Ishikawa
[6] for convex regularizers. For more general cost functions,
Boykov et al. [2] introduced the concept of α-expansion
to approximate the hard multilabel problems through a se-
quence of binary problems. An approach based on primal
dual linear programming was subsequently introduced by
Komodakis and Tziritas [7]. Spatially continuous multil-
abel approaches were introduced in [1, 3, 8, 15].

A substantial generalization of penalty functions came
about with the introduction of ordering constraints into the
multilabel optimization. Penalizing label jumps differently
depending on the jump direction allows to model specific
label layouts. Liu et al. [10] showed how certain multilabel

Figure 1. We propose a spatially continuous framework for label
order constraints which unifies existing approaches such as the five
regions layout (left) and the tiered layout (middle). It generalizes
to novel applications such as a convex shape prior (right).

problems with ordering constraints could be solved using
graph cuts. The five regions layout to segment indoor and
outdoor images was introduced. Felzenszwalb and Veksler
[4] introduced the tiered layout – a generalization of the five
regions layout – and showed that it was solvable by dynamic
programming. An entirely separate ordering constraint was
introduced by the star shape prior of Veksler [14].

1.2. Contribution

We propose a novel general framework to incorporate or-
dering constraints. In contrast to the discrete graph cut or
dynamic programming approaches of Liu, Veksler, Felzen-
szwalb and coworkers, the proposed approach comes from a
totally different viewpoint of continuous optimization. We
provide an exact characterization of the penalty functions
expressible with our approach. In particular, the proposed
method exhibits several favorable properties:

• We show in Sec. 4 that the three mentioned layout ap-
proaches are special cases of the proposed framework.

• We show that this framework allows applications be-
yond the above approaches, including tiered layout
with four and more tiers, tiered layout with indepen-
dent floating occlusions and shape priors for arbitrary
convex shapes – see Figure 2.

• In contrast to existing approaches to label ordering
constraints the proposed framework naturally extends
to three and higher dimensions of the image domain.
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Figure 2. Schematic summary of our main contributions.

• Despite its generality, the model is easily adjusted to
various label layouts, it is easily implemented and pro-
vides results which are comparable and often superior
to those of existing approaches.

2. General Framework
The general multilabel problem in image domain Ω ⊂

Rm, m ≥ 1, with n ≥ 1 labels consists in finding n label
indicator functions u1, . . . , un : Ω→ {0, 1} minimizing

inf
u

{
n∑
i=1

∫
Ω

%i(x)ui(x) dx + R(u)

}
(2.1)

under the label-uniqueness constraint
∑n
i=1 ui(x) = 1.

Here, %i(x) is the data term, i.e. the local cost of assigning
label i at image point x ∈ Ω, and R(u) a multilabel regu-
larizer ensuring a spatial consistency of labels. To obtain a
convex optimization problem, we relax the binary constraint
ui(x) ∈ {0, 1} to ui(x) ∈ [0, 1] for all labels i.

2.1. The Novel Regularizer

We propose the following regularizer:

R(u) = sup
p∈C

n∑
i=1

∫
Ω

〈pi(x),∇ui(x)〉 dx (2.2)

with the convex set

C = {(pi)i=1..n : Ω→ (Rm)n
∣∣ 〈pj − pi, ν〉 ≤ d(i, j, ν)}.

(2.3)
The constraints in C are taken pointwise for each x ∈ Ω.
The label distance function d : {1, . . . , n}2 × Sm−1 →
R ∪ {∞} gives the penalization if the multilabel assign-
ment u changes from label i to label j in direction ν. The
distance d may also depend on the position x ∈ Ω, thus
enabling different regularizer weights at different image lo-
cations. 〈. , .〉 denotes the standard scalar product on Rm
and Sm−1 = {z ∈ Rm | |z| = 1} the (m− 1)-sphere.

There is a simple intuition behind the definition of the
regularizer (2.2) with the constraint set (2.3). Suppose that
at some point x0 the labeling changes from label i to la-
bel j in direction ν, i.e. locally we have ui(x) = 1 for
〈x− x0, ν〉 ≤ 0 an uj(x) = 1 otherwise. Passing through
x0, ui decreases from 1 to 0 and uj increases from 0 to
1. Thus, ∇ui = −ν and ∇uj = ν up to the delta func-
tion factor δ(〈x− x0, ν〉). The integral (2.2) is thus locally
〈pi,∇ui〉+〈pj ,∇uj〉 = 〈pj − pi, ν〉 times the local bound-
ary length |∂Blocal|, since the delta function concentrates the
integral on the line 〈x− x0, ν〉 = 0. We want this local
contribution to be

Rlocal(u) = d(i, j, ν) |∂Blocal|. (2.4)

Therefore we assume the constraints on p in (2.3) and take
the supremum over p.

This intuitive argument reveals that for the desired cor-
rect penalization with d(i, j, ν), when labels jump from i to
j in direction ν, we need the equality

sup
p∈C
〈pj − pi, ν〉 = d(i, j, ν). (2.5)

From the definition (2.3) of the constraint set C, we can
immediately conclude that at least ≤ holds. The question is
now, what conditions must be imposed on d to assure (2.5).

2.2. Assumptions on Direction Dependency of d

The inequality constraints in (2.3) can be written more
concisely as

pj − pi ∈ Cij (2.6)

for all i, j, setting

Cij := {z ∈ Rm
∣∣ 〈z, ν〉 ≤ d(i, j, ν) for all ν ∈ Sm−1}.

(2.7)
This is a convex set, since every constraint is convex.

Assumption (Direction dependency). We assume that d is
such that for every pair i, j, with the set Cij in (2.7):

d(i, j, ν) = sup
z∈Cij

〈z, ν〉. (2.8)

The necessity, i.e. that (2.5) implies (2.8), follows from

d(i, j, ν) = sup
p∈C
〈pj − pi, ν〉

≤ sup
pj−pi∈Cij

〈pj − pi, ν〉 ≤ d(i, j, ν).

For a more intuitive formulation, in the following we extend
d(i, j, ·) positive homogeneously from Sm−1 to whole Rm,
i.e. we set d(i, j, tν) := td(i, j, ν) for all t ≥ 0, ν ∈ Sm−1.

Proposition 1. Equality (2.8) holds if and only if d(i, j, ·) is
convex, or equivalently if d satisfies the triangle inequality

d(i, j, z + w) ≤ d(i, j, z) + d(i, j, w). (2.9)

Proof. If (2.8) holds then d(i, j, ·) is obviously convex. The
converse is a basic property of support functionals [13].



2.3. Assumptions on Label Dependency of d

For the case that all jump directions are handled equally,
i.e. d(i, j, ν) = d(i, j) for all ν ∈ Sm−1, the condition for
(2.5) is that d must satisfy the triangle inequality

d(i, j) ≤ d(i, k) + d(k, j)

together with d(i, i) = 0 and d(i, j) = d(j, i) [9]. For the
general case, the condition is that this must hold for all ν:

Assumption (Label dependency). We assume that d satis-
fies the triangle inequality

d(i, j, ν) ≤ d(i, k, ν) + d(k, j, ν) (2.10)

together with d(i, i, ν) = 0 and d(i, j, ν) = d(j, i,−ν) for
all ν ∈ Sm−1.

This is necessary, which follows easily from (2.5) by
writing pj − pi as (pj − pk) + (pk − pi). The following
proposition states that with (2.8) and (2.10) we indeed have
found a necessary and sufficient condition for (2.5).

Proposition 2. Equality (2.5) holds if and only if d satisfies
assumptions (2.8) and (2.10).

Proof. See appendix.

This proposition gives an exact characterization of the
distance functions expressible with our approach. The re-
strictions imposed are quite natural for distance functions.
Note that the penalization is even allowed to be negative for
some directions, meaning an endorsement of certain jumps.

3. Properties of the Regularizer
Based on proposition 2 we can prove the following main

theorem of the paper. It shows that, assuming the necessary
conditions (2.8) and (2.10), the regularizer (2.2) does indeed
what it promises.

Theorem 3. Let d satisfy (2.8) and (2.10). Let ui = χA,
uj = χĀ with A = {x ∈ Ω

∣∣ 〈x− x0, ν〉 ≤ 0} for some
fixed 1 ≤ i, j ≤ n, ν ∈ Sm−1 and x0 ∈ Ω. Then

R(u) = d(i, j, ν) Per(A) (3.1)

where Per(A) = TV (χA) is the perimeter of A in Ω.

Proof. See appendix.

The theorem holds also in the general case as a global
version of (2.4) with nearly the same proof: The local pe-
nalizations d(i, j, ν) are integrated over all jump interfaces
weighted by the local interface length, yielding R(u).

The regularizerR(u) has the favorable property of being
convex, rendering global optimization possible.

Proposition 4. R(u) is convex.

Proof. For 0 ≤ α ≤ 1 and u := αu1 + (1− α)u2 we have

R(u) = sup
p∈C

(
α

∫
Ω

〈p,∇u1〉dx+ (1− α)
∫

Ω

〈p,∇u2〉dx
)

≤ α sup
p∈C

∫
Ω

〈p,∇u1〉dx+ (1− α) sup
p∈C

∫
Ω

〈p,∇u2〉dx

= αR(u1) + (1− α)R(u2).

For the continuous label space, Alberti et al. [1, Lemma
3.7] give a relaxation of a general regularizer, which allows
penalizations depending on the jump direction. Our regu-
larizer 2.2 can be considered as its discretization to a finite
number of labels. However, it is not clear if the direction
dependency of [1] transfers correctly to the discrete setting.
With theorem 3, we establish an exact result for arbitrary
dimensions, showing that the specified penalties are indeed
attained at given jump directions.

4. Constraint Sets

In this section we will give some examples of the con-
straint sets (2.7), arising by allowing labels to jump only
in particular directions. The sets for common directions are
depicted in Fig. 3. In general, Cij is the intersection of half-
spaces, Fig. 3 (c–g), and can be found geometrically as in
(f). In the case that d is a seminorm, i.e. satisfies d(ν) ≥ 0
in addition to (2.9), the set is easily found to be the unit ball

Cij = {w ∈ Rm | d∗(w) ≤ 1} (4.1)

of the dual seminorm d∗(w) := supz: d(z)≤1 〈z, w〉, Fig. 3
(a, b). An example of a general distance function is

dA(ν) =

{
λ if ∠ν ∈ A,
∞ else

(4.2)

for some fixed λ ≥ 0, which allows only jump directions
with angles from a set A and aside from that penalizes
the interface length isotropically. Special cases are d{α},
d{α,α+π} and d[α,β] for some angles α and β, Fig. 3 (a, c–
f). These are already all cases due to (2.9). One can easily
derive formulas for the projections onto these sets.

In discrete graph cut and dynamic programming ap-
proaches one only specifies d(ν) for the axis directions
ν = ±e1 and ν = ±e2. The resulting set Cij is then a
rectangle, Fig. 3 (b). Computing d back by (2.8) e.g. for
the square case, we see that this produces the penalization
d(ν) = ‖ν‖l1 , which is not rotationally invariant as op-
posed to ‖ν‖l2 , Fig. 3 (a). Thus, the discrete approaches
form a subset of our framework, and we can actually see
that they necessarily give rise to a metrication error.
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d visualized by the sets {d(ν)ν | ν ∈ Sm−1}d visualized by the unit ball {z ∈ Rm | d(z) ≤ 1}

Sets Cij are unit balls of the dual seminorm Sets Cij are intersections of halfspaces {z ∈ Rm | 〈z, ν〉 ≤ d(ν)}

Figure 3. Different penalization functions d (top) and the corresponding sets Cij in (2.7) (bottom). (a) and (b) show d’s arising by picking
a specific seminorm, here the isotropic ‖·‖l2 and anisotropic ‖·‖l1 , the l1 norm as used in graph cuts. (c–g) show d’s arising by an explicit
construction, following the arrows until the boundary gives the values d(ν). In (c) only one direction is allowed, in (d) only two, in (e) only
right and up, in (g) only from bottom to top and in (f) just as in (g) but the left directions are penalized more.

5. Implementation
We solve the overall optimization problem (2.1), (2.2)

using the fast primal-dual algorithm of [12]. It consists es-
sentially in a gradient descent in u and a gradient ascent in
p, with reprojections onto the constraint sets.

The constraint
∑n
i=1 ui = 1 on u is implemented by La-

grange multipliers adding the terms supσ σ(
∑n
i=1 ui − 1)

to the energy. For the projection of p onto the set C in (2.3)
we introduce auxiliary variables qij = pj − pi and enforce
these equalities by adding the corresponding Lagrange mul-
tiplier terms infλij

∑
ij 〈λij , pj − pi − qij〉 to the energy. It

remains then to project each qij independently onto Cij . In
common cases, there is a simple formula for this. Other-
wise, one can always use Lagrange multipliers for the con-
straints in Cij . using some discrete range of directions ν.

A prominent advantage of our method is that different or-
dering constraints are encoded only in the projections onto
the constraint setsCij . The optimization algorithm itself re-
mains the same. This is in contrast to [10] and [4], where the
algorithms must be devised anew when the layout changes.

With a parallel CUDA implementation on NVIDIA GTX
480, usual runtimes for 640 × 480 images and 5 labels are
around 90 seconds, and for 320 × 240 images 7 seconds.
This compares favorably to the reported 9 seconds in [4].

6. Results
6.1. Geometric Class Labeling

In geometric class labeling, one seeks a rough labeling
into geometric classes such as ‘left wall’ or ‘sky’. This can
be useful in providing geometric context to more elaborate
tasks such as 3d reconstruction or robot navigation [5].

Five regions layout. Especially for indoor images, Liu et
al. [10] used a simple layout consisting of five geometric

parts: ‘center’ C, ‘ceiling’ T , ‘floor’ B, ‘left wall’ L and
‘right wall’ R. Natural ordering constraints on these labels
result in a layout as in Fig. 2. With the notation (4.2) we set

d(B,L) = d[π2 ,π], d(B,C) = d{π2 }, d(B,R) = d[0,π2 ]

(6.1)
and likewise, accordingly rotated, for L, R and T instead
of B. The distances for the remaining label pairs are then
defined implicitly by the triangle inequality (2.10), and are
found to be d(L,R) = 2d{0} and d(B, T ) = 2d{π2 }.

We applied our regularizer on the dataset of 300 indoor
images from [10] using their dataterms. We set λ = 20 in
(4.2) and weight all distances d by w(x) = e−|∇I(x)|2/2σ2

with σ2 = mean of |∇I|2 for each input image I . Results
for six different images are shown in Fig. 4. We achieved an
overall accuracy of 85.3%, which is comparable to the 85%
of [10]. The better result despite the fact that our method is
a generalization of [10] may be due to several reasons: Our
spatially continuous framework does not suffer from metri-
cation errors. Moreover, convex optimization possibly finds
better minima than iterative schemes like alpha-expansion
and order-preserving moves.

Tiered layout. Tiered layout [4] is a generalization of the
five region layout [10]. There are the ‘top’ T , ‘bottom’ B
and in between a number of labels, here L, C, R, in any
sequence and multiplicity having only vertical borders be-
tween each other, Fig. 2. While the five regions layout as-
sumes the center C to be a rectangle, tiered layout is well
adapted for outdoor images as well, where the boundary be-
tween T and L, C, R is less predictable, Fig. 7. We set

d(L,C) = d(C,R) = d{0,π}, d(B,C) = d[0,π],

d(B,R, ν) =

{
d[0,π2 ](ν) if ∠ν ∈ (−π, π2 ],
λ(2|ν1|+ |ν2|) else,

(6.2)



Figure 4. Five regions layout. Ordering constraints arise natu-
rally for indoor images and improve the segmentation. From left
to right: Indoor images, dataterm only labeling, result with Potts
partitioning, result with five regions layout (Fig. 2).

Figure 5. Failure case for the five regions layout. Since the
dataterm (center) is very misleading, the ordering constraints do
not allow to recover the desired solution. From left to right: input
image, dataterm, result with ordering constraints.

and likewise for d(B,L) and for T instead of B. Other dis-
tances follow implicitly by (2.10), e.g. d(L,R) = 2d{0,π}.
In the optimization, only the projections for explicitly spec-
ified d’s must be taken into account. The expression for
d(B,R) results by combining the value d1 := d[0,π2 ] as in
(6.1) and the estimate d(B,R) ≤ d(B,C) + d(C,R) =
2d{0,π} =: d2 by (2.10). The corresponding setCBR, Fig. 3
(g), is due to (2.7) the intersection of the sets Cd1 and Cd2 ,
Fig. 3 (d, e). The value in (6.2) is then given by (2.8).

Six results on the dataset from [5], consisting of 300 out-
door images, are shown in Fig. 7. We used the confidence
estimates provided in [5] for the dataterm and same param-
eters as for the five regions layout. Our overall accuracy
86.3% compares favorably to the 81.4% reported in [4].

Our method generalizes [4], in that we can handle all
cases where the triangle inequalities are satisfied. While [4]

Figure 6. For the five regions model we ordered the 300 images
by “dataterm only” accuracy in 10 equal groups. The proposed
method provides a slight improvement over existing methods.

provides optimal solutions, it only applies to a very specific
layout. Our method is capable of far more general layouts.
This class is NP-complete containing the Potts model, so no
globally optimal solutions can be expected. Nevertheless,
our method provides tight a posteriori optimality bounds.
The binary solution ubin

i (x) = 1, i := argmaxj uj(x) is
usually within 5% of the global optimum energy-wise.

Three and more tiers. To demonstrate the flexibility of
our framework, we can easily model more than three tiers,
Fig. 2 and 9. For four tiers, the middle tier is split up in
two, containing regions L1, C1, R1 and L2, C2, R2, respec-
tively. Label B is allowed to change to L1, C1, R1 just as
before to L,C,R in (6.2), and labels Li, Ci, Ri for i = 1, 2
can change to T as L,C,R before. Within one level, labels
Li, Ci, Ri change as L,C,R in (6.2). Finally, L1, C1, R1

can change “one level up” to L2, C2, R2 in any direction
heading from bottom to top: d(L1, R2) = d[0,π] etc. Other
distances follow implicitly by the triangle inequalities.

In contrast, the dynamic programming approach [4] does
not allow an easy extension to four tiers, yielding a signifi-
cantly more complex algorithm.

Floating objects. We can also allow arbitrary “floating”
objects on top of the layout, Fig. 2 and 8. The dataset [5]
contains also the classes ‘porous’ and ‘solid’. However,
they do not fit into the tiered layout, since their relation to
other objects is less predictable. These classes are there-
fore neglected in [4]. In contrast, our framework allows to
include these extra objects.

To include the ‘solid’ class S, we regard it as being “on
top” of the tiered layout. We then split up the L region into
LS and L0, meaning the parts that do or do not contain S,



Figure 7. Tiered layout results. Ordering constraints improve the
segmentation of outdoor images. From left to right: input images,
Potts partitioning, partitioning with ordering constraints.

Figure 8. Our framework extends the tiered labeling to allow float-
ing objects, arbitrarily located upon the layout. From left to right:
input image, tiered layout result, result with extra objects ‘solid’
and ‘porous’, dataterm.

and similarly for other labels of the tiered layout. Jumps
within non-S labels, e.g. from L0 to C0 are then defined in
the same way as previously from L to C by (6.2). Jumps
within S-labels, e.g. from LS to CS only inherit the direc-
tion restrictions of L and C, and the penalization is set to
zero, since these are actually two parts of the same label S:
Here we use (6.2) with parameter λ = 0 in (4.2). Finally,
jumps from S-labels to non-S labels just mean a jump from
S to some other label, so we can introduce an arbitrary new
penalization here, e.g. the Potts model which penalizes all
directions equally: d(LS , R0) = d[0,2π] etc.

Inclusion of two extra classes is done analogously, split-
ting each tiered layout label in three parts.

Figure 9. We can easily model the four and more tiered layout,
thus allowing more than one label L, C or R to come one after
another in one column. From left to right: input image, result with
3, 4 and 5 tiers, and dataterm.

6.2. Shape Priors

Using our approach we can model certain shape priors.
The object of interest is divided into a number of subla-
bels, and some background labels are introduced surround-
ing this object. The idea is that changes from object labels
to surrounding labels are constrained to certain jump direc-
tions only. We can model different shape priors expressible
by the tiered labeling approach, such as a rectangle, trape-
zoid, ‘house’ or ‘cross’ [4]. The latter two are depicted in
Fig. 10. However, our approach is more general, as it al-
lows interfaces in arbitrary directions and not only vertical
and horizontal. A simple example is the rotated cross prior
in Fig. 10 which is not expressible using tiered layout. The
distance functions d can be easily derived from the layouts
shown in Fig. 10.

Star shape prior. We note that the star shape prior [14]
is expressible with our approach. This is an example where
the distance function d(x, i, j, ν) also depends on the po-
sition x ∈ Ω. Object and background are represented by
the labels fg and bg, respectively. We fix an arbitrary point
x0 ∈ Ω and set

d(x, fg, bg, ν) :=

{
λ if 〈x− x0, ν〉 ≥ 0,
∞ otherwise.

(6.3)

for all ν ∈ Sm−1 with some λ ≥ 0. This yields a d as in
Fig. 3 (f), with the “up” direction x − x0. This way, the
labeling is allowed to change to from object to background
only in a direction “away” from the point x0. Therefore, the
object will be star shaped with center x0.

Novel prior: Convex shape. A more advanced novel ap-
plication of our framework is to model convex priors, i.e.
to favor objects which are convex. To accomplish this,
we explicitly model the boundary of the object. We intro-
duce n ≥ 3 auxiliary surrounding regions 0, . . . , n− 1, see
Fig. 11. Let νi := (cosαi, sinαi) with αi := i · 2π

n . The
main object label fg is then allowed to change to a label
0 ≤ i ≤ n− 1 only in direction νi and label i to label i+ 1



Figure 10. Segmentation with different shape priors. In contrast to
[4], the proposed approach also allows rotated crosses. From left
to right: initial image with user scribbles, segmentation using the
prior, prior encoding as a label layout. We use a simple probability
estimation from user scribbles to obtain the dataterm.

only in directions from ν⊥i to ν⊥i+1:

d(fg, i) = d{αi}, d(i, i+ 1) = d[αi+
π
2 ,αi+1+π

2 ], (6.4)

Fig. 3 (c, e). This way, the n auxiliary regions are explicitly
oriented around the object, building its boundary. Thus, we
obtain a n-gon shape which is guaranteed to be convex.

7. Conclusion
We introduced a novel framework for a general multil-

abel regularizer allowing the penalization to depend on the
jump direction. Although conceptually entirely different the
proposed approach unifies and generalizes existing MRF-
based formulations. Despite its generality, the regularizer
is easily adapted to various label layouts by merely chang-
ing the projections of dual variables. In contrast, existing
approaches require entirely different algorithms depending
on the choice of layout. We proved a necessary and suffi-
cient condition on the label distance function to be express-
ible with our framework. Quantitative experiments show
that the proposed method compares favorably to existing
approaches.
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A. Appendix
Proof of theorem 3. (2.2) gives integrating by parts:

R(u) = sup
p∈C

∫
Ω

n∑
k=1

uk(−div pk)

= sup
p∈C

∫
A

(−div pi) +
∫
Ā

(−div pj)

= sup
p∈C

∫
∂A∩Ω

〈−pi, ν∂A〉+
∫
∂A∩Ω

〈−pj , ν∂Ā〉

by divergence theorem. We have ν∂A = ν and ν∂Ā = −ν:

= sup
p∈C

∫
∂A∩Ω

〈pj − pi, ν〉

=
∫
∂A∩Ω

d(i, j, ν) = d(i, j, ν) Per(A).

Proof of proposition 2. We introduce new variables xkl =
pl−pk and enforce these equalities by Lagrange multipliers:

sup
p∈C
〈pj − pi, ν〉 = sup

xkl∈Ckl, p
xkl=pl−pk

〈pj − pi, ν〉

= sup
xkl∈Ckl, p

〈xij , ν〉 − sup
λ

∑
kl

〈λkl, pl − pk − xkl〉

= sup
xkl∈Ckl

〈xij , ν〉+ inf
λ

∑
kl

〈λkl, xkl〉

+ sup
p

(
−
∑
kl

〈λkl, pl − pk〉
)

= sup
xkl∈Ckl

〈xij , ν〉+ inf
λ

∑
kl

〈λkl, xkl〉 (A.1)

with λ such that ∑
k

λks =
∑
l

λsl (A.2)

for all 1 ≤ s ≤ n. This constraint arises by evaluating the
supremum over p.

For the sake of readability, in the following we proceed
with the case m = 2. The general case is handled in the
same way. For an arbitrary z ∈ Rm such that ν, z are lin-
early independent, we can write λkl = aklν+bklz for some

akl, bkl ∈ R. Then (A.2) is equivalent to the two indepen-
dent constraints∑

k

aks =
∑
l

asl and
∑
k

bks =
∑
l

bsl (A.3)

and the λ-infimum in (A.1) can be written as

inf
λ

∑
kl

〈λkl, xkl〉 = inf
a

∑
kl

akl〈xkl, ν〉+inf
b

∑
kl

bkl〈xkl, z〉.

The infimum over a with the constraint (A.3) is equal to
zero, if the full graph on vertices {1, . . . , n} with edge
weights 〈xkl, ν〉 has no negative cycles (n.n.c.), and −∞
otherwise [11, Proposition 5.1 and the proof], and similarly
for the infimum over b. Thus, overall (A.1) leads to

sup
p∈C
〈pj − pi, ν〉 = sup

xkl∈Ckl
〈xkl,ν〉 n.n.c.
〈xkl,z〉 n.n.c.

〈xij , ν〉 (A.4)

By assumption (2.2), for every k, l we can choose a
xνkl ∈ Ckl such that 〈xνkl, ν〉 = d(k, l, ν) (respectively
〈xνkl, ν〉 = M with M arbitrarily big in case d(k, l, ν) =
∞). Since d(·, ·, ν) satisfies the triangle inequality by as-
sumption (2.10), all cycles with weights 〈xνkl, ν〉 are non-
negative (in case d(k, l, ν) =∞ for some k, l, choosing M
big enough makes the cycle nonnegative). In the following
we will prove that we can choose a z 6= ν such that also
〈xνkl, z〉 n.n.c. We then obtain, proving the proposition,

sup
p∈C
〈pj − pi, ν〉 ≥ 〈xνij , ν〉 = d(i, j, ν)

(in case d(i, j, ν) = ∞ we get l.h.s. ≥ M for any M big
enough, so again l.h.s. = d(i, j, ν)).

Since the weights 〈xνkl, z〉 depend continuously on z ∈
Sm−1, cycles which are positive for z = ν remain positive
for any z 6= ν sufficiently near ν. One can easily see that
this ν-neighborhood can be chosen only depending on the
sets Ckl and ν, and not on the particular choice of xνkl.

Now, consider a zero cycle 0 = d(i1, i2, ν) + . . . +
d(ir, i1, ν). Fix an edge (k, l) in the cycle. By triangle
inequality this value is

0 ≥ d(k, l, ν) + d(l, k, ν) = d(k, l, ν) + d(k, l,−ν)
= sup
x∈Ckl

〈x, ν〉 − inf
x∈Ckl

〈x, ν〉 ≥ 0.

So we actually have supx∈Ckl 〈x, ν〉 = infx∈Ckl 〈x, ν〉, i.e.
〈x, ν〉 = const = d(k, l, ν) for all x ∈ Ckl. Therefore, for
the xνkl in the construction above we are free to choose any
element of Ckl. In particular, we can choose xνkl = xzkl,
so that 〈xνkl, z〉 = 〈xzkl, z〉 = d(k, l, z) (or, analogously as
above, = M with M arbitrarily big in case d(k, l, z) =
∞). But then the above ν-zero cycle is z-nonnegative, since
d(·, ·, z) satisfies the triangle inequality. So, all z-cycles are
nonnegative too.


