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Convex Relaxation of Vectorial Problems
with Coupled Regularization∗

Evgeny Strekalovskiy†, Antonin Chambolle‡, and Daniel Cremers†

Abstract. We propose convex relaxations for nonconvex energies on vector-valued functions which are tractable
yet as tight as possible. In contrast to existing relaxations, we can handle the combination of
nonconvex data terms with coupled regularizers such as l2-regularizers. The key idea is to consider
a collection of hypersurfaces with a relaxation that takes into account the entire functional rather
than separately treating the data term and the regularizers. We provide a theoretical analysis,
detail the implementations for different functionals, present run time and memory requirements, and
experimentally demonstrate that the coupled l2-regularizers give systematic improvements regarding
denoising, inpainting, and optical flow estimation.
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1. Introduction.

1.1. Vectorial problems. Functional optimization has become an established paradigm
for solving a multitude of image analysis problems ranging from image denoising [33] and
segmentation [13, 28, 10] to stereo reconstruction [44, 34], optical flow estimation [9], and
three-dimensional reconstruction [14].

In the discrete setting with discrete domain and range of the solution functions, energy
functionals can be formulated in the framework of Markov random fields (MRFs). Graph cut–
based algorithms are frequently employed to compute the minimizers [7]. While submodular
energies can be minimized optimally [23, 27], for general problems only approximate solutions
can be found, using approaches such as α-expansions [8, 38], linear programming [42], or
quadratic pseudo-Boolean optimization [26]. Our approach is based on a spatially continuous
representation, which avoids the common drawbacks such as metrication errors and anisotropy
of the grid-based approaches.

Nonconvex functionals pose a particular challenge since straightforward algorithms such
as gradient descent will generally lead to undesired locally optimal solutions only. In recent
years, researchers have made substantial progress regarding algorithms which allow one to
compute optimal and near-optimal solutions for certain problem classes. One such class
consists of general multilabel problems, where each point of the image domain is to be assigned
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a label in a certain optimal way. Convex relaxation approaches strive to find a convex lower
bound as close as possible to the original functional. Relaxations of different tightness and
computational efficiency have been proposed [10, 28, 44, 29, 45, 11]. However, they cannot
be applied to vectorial problems with thousands of labels such as optical flow since they are
very memory intensive.

Certain nonconvex functionals on scalar-valued functions with continuous range form an-
other class of problems where optimal [35, 34] or near-optimal [1, 11] solutions can be com-
puted. The key idea, sometimes referred to as functional lifting, is to consider the domain
of values as an additional dimension and show that the optimal solution is a minimal hy-
persurface, i.e., a codimension-one structure in this higher-dimensional space. This is related
to the construction [24] in the discrete setting. After range discretization this yields specific
multilabel problems which can be solved using convex relaxation techniques.

Unfortunately, the functional lifting approach is limited to the estimation of scalar-valued
functions. As a consequence, the convexification of functionals on vector-valued functions
remains an important open problem. Several efforts have been made to generalize the approach
to the case of vector-valued functions. For the case of convex data terms and specific convex
regularizers (total variation with respect to different norms), Goldluecke, Strekalovskiy, and
Cremers proposed an efficient solution [21]. For the case of possibly nonconvex but separable
regularizers Strekalovskiy, Goldluecke, and Cremers [39] suggested a generalization which
amounts to estimating a collection of hypersurfaces; see also the recent journal version [22].
To this end, they use a channelwise lifting strategy for the separable regularizer and an
appropriate relaxation of the possibly nonconvex data term.

In this paper, we propose a novel convex relaxation for the estimation of vector-valued
functions with nonconvex data terms and convex regularizers. Our work can be interpreted
as a generalization of the work in [34] to the vectorial case. It generalizes the approaches
of [39] and [21] in the sense that we can handle nonconvex data terms with coupled convex
regularizers such as isotropic l2 total variation TVl2 . The key idea is to consider a collection
of hypersurfaces with a relaxation which takes into account the entire functional rather than
separately treating data term and regularizers in each component as is done in [39].

1.2. Energy minimization. Let Ω ⊂ R
d be a bounded open set with, in practice, d = 2, 3.

We want to find an appropriate convex representation for functionals of the form

(1.1) E(u) =

∫
Ω
h(x, u,∇u) dx,

where u ∈ W 1,1(Ω;Rk), k ≥ 2. We will also consider the case of BV -fields u, with a suitable
definition on the jump set.

For the scalar case k = 1 and provided that h has suitable convexity properties, such
functionals can always be represented in a convex way by functional lifting. The idea is
to reformulate the energy in terms of the graph function of u and to consider Cartesian
currents associated to the graph [1, 18, 19, 20]. The important contribution of the works
[25, 35, 34] is to properly introduce the interaction term f(x,∇u) in this program and to
suggest a practical implementation. The main advantage of the lifting approach is that it
allows one to use nonconvex data terms and also (to some extent) nonconvex regularizers



296 E. STREKALOVSKIY, A. CHAMBOLLE, AND D. CREMERS

within a convex optimization framework. On the other hand, it requires one to discretize the
range set of u. In dimension d = 0, k = 1, it is like replacing the problem minu g(u) with
mini{g(ui) | 1 ≤ i ≤ l}. It is therefore quite memory intensive and requires suitable hardware
to be computationally tractable.

In the vectorial setting k ≥ 2 things become more complex: in particular, memorywise
it is unrealistic to sample the whole range space [a, b]k (assuming a bounded range). Recent
contributions [39, 3] have proposed representing the solutions u by k separate graph functions,
one for each channel ui, to address problems such as optical flow. They then introduced an
appropriate convexification of the zero-order data term g(x, u) in this representation. This
approach reduces the number of variables from Nk to kN , where N is the number of samples
in each channel range. However, the regularizer part is handled in [39, 3] by a channelwise
application of the lifting approach. This limits the approach to separable interaction terms,
which regularize each coordinate ui independently. Our contribution here is to try to consider
more general interaction terms in this setting.

1.3. Contributions. We focus particularly on convex representations which
• are computationally tractable;
• are as tight as possible, that is, as close as possible to the convex envelope of the

energy E(u) (in an appropriate representation).
To stay computationally realistic, we therefore choose the representation by separate graph
functions (and thus discretizations) for each channel as in [39, 3]. There are restrictions on
the type of energies in order for the relaxation to still be exact, i.e., that it coincides with the
initial energy for binary graph functions. In particular, we will focus on problems of the form

(1.2) min
u
E(u) :=

∫
Ω
f(x,∇u(x)) dx +

∫
Ω
g(x, u(x)) dx

for u ∈W 1,1(Ω;Rk), where f(x, p) : Ω×R
d×k → R+ is continuous in x and convex in p (with

possibly linear growth, in which case u ∈ BV (Ω;Rk)). For the definition of the Sobolev space
W 1,1(Ω;Rk) and the space BV (Ω;Rk) of bounded variation functions we refer the reader to
[2].

Specifically, we make the following contributions:
• We propose a general convexification strategy for vectorial problems of the form (1.2).

The main novelty of our approach is the applicability to possibly nonseparable convex
regularizers such as the isotropic TVl2 . For separable regularizers it reduces to the
relaxation of [39]. Since the functional is treated as a whole, this provides a natural
derivation of the data term relaxation given in [39]. We prove the nontrivial fact that
the proposed relaxation is exact.

• Our framework also allows nonconvex data terms g(x, ·) in (1.2), which arise in many
useful applications such as stereo reconstruction and optical flow. Furthermore, non-
convex data terms can be used together with nonseparable regularizers, which further
improves the results, e.g., in denoising applications. This is not possible with previous
approaches [21, 39].

• For the important special cases of isotropic total variation TVl2 and its Huber-regularized
variant we give a reformulation of the constraint set which allows one to minimize en-
ergies with these regularizers as efficiently as in the scalar case.
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• We provide extensive implementation details, including memory analysis and notes on
the graphics processing unit (GPU) usage. Several experiments demonstrate the ad-
vantage of coupled regularizers over the separable ones in applications such as optical
flow, denoising, and inpainting. The case of nonconvex data terms with coupling reg-
ularizers, which is possible only with our approach, leads to superior results compared
to previous approaches.

• We give an explicit formula for the projection onto a parabola, which is needed to
implement Huber-TVl2. This is more robust than using Newton’s iterative method as
in [34] since the number of iterations depends on the data and increases with increasing
regularizer weight λ. We also found the explicit projection to be faster by a factor of
2 or more.

2. Convex relaxation.

2.1. Convexification framework. Following the framework of [34, 22, 1], given u ∈ L1
loc(Ω;

R
k), we consider the function 1u := (1u1 , . . . ,1uk) ∈ L1

loc(Ω × R, {0, 1}k), where, for each
i = 1, . . . , k,

(2.1) 1ui(x, t) =

{
1 if ui(x) > t,

0 else.

Then, we define a convex relaxation of (1.2) on the set L1
loc(Ω × R; [0, 1]k). As in [34, 22], it

takes the form, if v ∈ BV (Ω× R; [0, 1]k),

(2.2) E(v) = sup

{
k∑
i=1

∫
Ω×R

φi ·Dvi
∣∣ φ ∈ C1(Ω× R;Rd×k) ∩ K

}

for some convex set K. We need this relaxation
• to be exact on characteristics of subgraphs, that is, we want E(1u) = E(u) for any u;
• to be as “tight” as possible, that is, as close as possible to the convex envelope of the

function v 	→ E(u) if v = 1u for some u, +∞ else.
If, to simplify, u ∈W 1,1(Ω;Rk), then the terms in (2.2) can be written as [1]

(2.3)

k∑
i=1

∫
Ω×R

φi ·D1ui =

k∑
i=1

∫
Ω
φxi (x, ui(x)) · ∇ui(x) − φti(x, ui(x)) dx.

As a consequence, a sufficient condition in order to have E(1u) ≤ E(u) is that, for any x ∈ Ω,
t = (t1, . . . , tk) ∈ R

k, and p ∈ R
d×k, the fields φ in K satisfy

k∑
i=1

φxi (x, ti) · pi − φti(x, ti) ≤ h(x, t, p)

or, equivalently,

(2.4)
k∑
i=1

φti(x, ti) ≥ h∗
(
x, t, (φxi (x, ti))

k
i=1

)
,
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where h∗ is the Legendre–Fenchel conjugate of h with respect to the variable p. For h(x, t, p) =
f(x, p) + g(x, t) as in (1.2), it boils down to

(2.5)

k∑
i=1

φti(x, ti) ≥ f∗
(
x, (φxi (x, ti))

k
i=1

)
− g(x, t)

for all x ∈ Ω and t ∈ R
k.

2.2. Concrete example: The vectorial ROF model. Before we continue, let us make this
more explicit for a concrete example, namely the vectorial case of the classical Rudin–Osher–
Fatemi total variation denoising problem (i.e., the ROF model) [37]. For u ∈ C1(Ω; [0, 1]k), it
is given by

(2.6) EROF (u) =

∫
Ω
(u− f)2 + λ|∇u| dx.

We want to rewrite this energy as the supremum of the expression (2.3) with the dual variable
φ constrained to some appropriately chosen convex set K. This set should be as large as
possible in order for the convex relaxation to be as tight as possible. Yet, how should one
choose this set? A necessary condition is that (2.3) should be less than or equal to the
ROF-energy (2.6) for all φ ∈ K and all u. This amounts to the inequality

(2.7)

∫
Ω

k∑
i=1

φxi (x, ui(x))∇ui − λ|∇u| −
k∑
i=1

φti(x,∇ui) dx ≤
∫
Ω
(u− f(x))2 dx ∀φ ∈ K, ∀u.

A sufficient condition is the local version of this constraint,

(2.8)

k∑
i=1

φxi (x, ti) pi − λ|p| −
k∑
i=1

φti(x, pi) ≤ (t− f(x))2 ∀φ ∈ K, ∀t, x, p.

Taking the supremum over p, we observe that the first two terms on the left-hand side are
equal to

(2.9) sup
p

k∑
i=1

φxi (x, ti)pi − λ|p| =
⎧⎨⎩ 0 if

√∑k
i=1(φ

x
i (x, ti))

2 ≤ λ,

∞ else.

Therefore, the localized version of constraint (2.7) is equivalent to the two constraints

(2.10)

∑k
i=1 φ

t
i(x, ti) ≥ −(t− f(x))2 ∀φ ∈ K, ∀t, x,√∑k

i=1(φ
x
i (x, ti))

2 ≤ λ ∀φ ∈ K, ∀t, x.
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2.3. The scalar case. In the scalar case and for “reasonable” Lagrangians h in (1.1) (in
particular, continuous and convex in p with at least linear growth), one can check (see [34])
that condition (2.5) allows one to recover tightly the initial energy, in the sense that if K is the
set of smooth vector fields φ satisfying (2.4), then minimizing the energy E defined by (2.2)
always solves the original problem. In the simplified case (1.2), one can show that the energy
E has the form

E(v) =

∫
Ω×R

ĝ(Dv) − h(x, t)Dtv

with ĝ(px, pt) : Rd × R → (−∞,+∞] the convex, one-homogeneous integrand defined by

ĝ(px, pt) =

⎧⎪⎨⎪⎩
|pt|g(px/|pt|) if pt < 0,

g∞(px) if pt = 0,

+∞ if pt > 0.

In this notation, g∞(p) := limt→+∞ g(tp)/t is the convex, one-homogeneous “recession func-
tion” of g at ∞ (in particular g∞(0) = 0, and it is +∞ for p �= 0 if g has superlinear growth).
After an integration by parts (which is formal here and requires both that h be smooth in t,
and, for instance, the domain be replaced with a bounded domain to be rigorously justified),

E(v) ≈
∫
Ω×R

ĝ(Dv) +

∫
Ω×R

v(x, t)∂th(x, t) dxdt.

This energy is always convex, independently of h. To give an example, if g(p) = |p| and
h(x, t) = (t − u0(x))

2/2 (in which case (1.2) is the classical ROF denoising problem), then
ĝ(px, pt) = |px| whenever pt ≤ 0 (+∞ else), and one has

E(v) ≈
∫
Ω×R

|Dxv| +
∫
Ω×R

v(x, t)(t− u0(x)) dxdt

(whenever v(x, t) is nonincreasing in t, and +∞ else). In the case of total variation regular-
ization, it boils down to the approach first proposed in [35] to solve continuous (nonconvex)
multilabel problems.

2.4. The general vectorial case. In the vectorial case, though, things are not so simple,
and as we already observed, one cannot hope to recover in general an equivalent convex
formulation, which remains tractable computationally. Let us now fix arbitrary (finite) bounds
a and b > a for the values of the functions ui (in practice we could choose different intervals
[ai, bi] for each variable ti, but the analysis would be strictly identical), and let Γ = [a, b]: in
what follows we will work in Ω× Γk. We let

(2.11) K =
{
φ = (φ1, . . . , φk)

∣∣ φi = (φxi , φ
t
i) ∈ C0(Ω× Γ;Rd ×R),

(φi)
k
i=1 satisfies (2.5) ∀x ∈ Ω, t ∈ Γk

}
.

We will show the following result.
Proposition 2.1. For v ∈ BV (Ω × Γ; [0, 1]k) let E(v) be defined by (2.2). Then if u ∈

W 1,1(Ω; Γk), one has E(1u) = E(u).
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This result will be a consequence of the stronger Lemmas 2.2 and 2.3 below, which show
the result separately for the data and interaction terms.

We now introduce the convex sets (see [39, 22])

(2.12) L =

{
γ = (γ1, . . . , γk)

∣∣∣ γi ∈ C0(Ω× Γ),

k∑
i=1

γi(x, ti) ≥ −g(x, t) ∀(x, t) ∈ Ω× Γk

}

and

(2.13) K0 =

{
φ = (φ1, . . . , φk)

∣∣∣ φi = (φxi , φ
t
i) ∈ C0(Ω× Γ;Rd × R),

k∑
i=1

φti(x, ti) ≥ f∗
(
x, (φxi (x, ti))

k
i=1

)
∀(x, t) ∈ Ω× Γk

}
.

Observe in particular that K0 + L ⊆ K. Thus, to prove Proposition 2.1 it is enough to prove
it with K replaced by K0 + L in (2.2).

2.4.1. Exactness for the data term part. The following result is an extension of classical
results (in particular, relative to the Monge–Kantorovich duality in optimal transportation
problems [41]). A proof is found in [39].

Lemma 2.2. Let u ∈ L1(Ω; Γk) and assume that g is bounded, l.s.c. in (x, u).1 Then

(2.14)

∫
Ω
g(x, u(x)) dx = sup

γ∈L

∫
Ω×Γ

k∑
i=1

γi ·Dti1ui .

Here we use the notation Dti1ui , which is consistent with (2.2) and makes sense since 1ui
is nondecreasing in the ti-variable. However, observe that Dti1ui is simply equal to −δui(x).
In particular, the integral on the right-hand side can be equivalently rewritten in the simpler
form

−
∫
Ω

k∑
i=1

γi(x, ui(x)) dx.

Proof. Without loss of generality, we may assume that 0 ≤ g ≤ K on Ω × Γk for some
constant K ∈ R. We first assume that g is uniformly continuous on Ω×Γ. Let u ∈ L1(Ω; Γk).
Let ε > 0, r > 0: by standard covering arguments [17], one can find a disjoint covering (Bα)α∈N
of almost all Ω, that is, disjoint closed balls Bα = B(xα, rα) with |Ω \⋃αB(xα, rα)| = 0, with
the following properties:

1. rα ≤ r for all α ∈ N.

1One could consider integrands g which are merely measurable in x and continuous in u, by relaxing the
continuity assumption of the fields γi.
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2.
∫
Bα

|u(x)− u(xα)| dx ≤ rε|Bα| for all α ∈ N.

3.
∫
Bα

|g(x, u(x)) − g(xα, u(xα))| dx ≤ ε|Bα| for all α ∈ N.
We assume that r > 0 is chosen in such a way that |g(x, t)− g(y, s)| ≤ ε if |y− x| ≤ r and

maxi |ti − si| ≤ r. Let us choose N ∈ N such that
∑

α>N |Bα| < ε. Then, for i = 1, . . . , k we
let γi(x, t) = K if x ∈ Bα, α > N , while if x ∈ Bα with α ≤ N ,

(2.15) γi(x, ti) = −g(xα, u(xα))
k

ϕ

(
x− xα
rα

)
η

(
ti − ui(xα)

ρ

)
+K

(
1− ϕ

(
x− xα
rα

)
η

(
ti − ui(xα)

r

))
+
ε

k
,

where the cut-off functions ϕ ∈ C∞
c (B(0, 1); [0, 1]), η ∈ C∞

c ([−1, 1]; [0, 1]) will be made precise
later on.

If x ∈ Bα, α ≤ N , and t ∈ Γk with |ti−ui(x)| ≥ r for at least one i, then
∑

i γi(x, ti) ≥ 0 ≥
−g(x, t). This is also clear if x ∈ Bα with α > N . Now, if x ∈ Bα, α ≤ N , and |ti−ui(x)| < r
for all i = 1, . . . , k, then ∑

i

γi(x, ti) ≥ −g(xα, u(xα)) + ε ≥ −g(x, t)

so that γ ∈ L. On the other hand, we have

(2.16) −
∫
Ω

k∑
i=1

γi(x, ui(x)) dx ≥ −(kK + ε)

(∑
α>N

|Bα|
)

−
∑
α≤N

k∑
i=1

∫
Bα

γi(x, ui(x)) dx.

Now, for α ≤ N ,

(2.17) −
∫
Bα

γi(x, ui(x)) dx ≥ 1

k
|Bα|(g(xα, u(xα))− ε)

− K

(
1 +

1

k

)∫
Bα

(
1− ϕ

(
x− xα
rα

)
η

(
ui(x)− ui(xα)

r

))
dx,

which we now estimate. Assume that ϕ was chosen such that∫
B1

(1− ϕ(x)) dx ≤ ε

and that η(0) = 1 and η has a Lipschitz constant L ≥ 1. Then,∫
Bα

(
1− ϕ

(
x− xα
rα

)
η

(
ui(x)− ui(xα)

r

))
dx

=

∫
Bα

(
1− ϕ

(
x− xα
rα

))
dx+

∫
Bα

ϕ

(
x− xα
rα

)(
1− η

(
ui(x)− ui(xα)

r

))
dx

≤ ε|Bα|+ L

r

∫
Bα

|ui(x)− ui(xα)| dx ≤ (1 + L)ε|Bα|.
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Together with (2.17), we deduce that for α ≤ N ,

−
k∑
i=1

∫
Bα

γi(x, ui(x)) dx ≥ |Bα|(g(xα, u(xα))− ε)− εK(k + 1)(1 + L)|Bα|

≥
∫
Bα

g(x, u(x)) dx − ε(2 +K(k + 1)(1 + L))|Bα|

so that, using (2.16),

−
∫
Ω

k∑
i=1

γi(x, ui(x)) dx ≥
∫
Ω
g(x, u(x)) dx

− ((k + 1)K + ε)

(∑
α>N

|Bα|
)

− ε(2 +K(k + 1)(1 + L))

⎛⎝∑
α≤N

|Bα|
⎞⎠

≥
∫
Ω
g(x, u(x)) dx − (

((k + 1)K + ε) + (2 +K(k + 1)(1 + L))|Ω|)ε,
which shows that (2.14) holds when g is uniformly continuous.

Now, if g is only l.s.c. (and bounded), there exist gn bounded and uniformly continuous
such that supn gn = g. If Ln is the corresponding set for gn, we have Ln ⊂ L so that

∫
Ω
g(x, u(x)) dx ≥ sup

γ∈L

∫
Ω×Γ

k∑
i=1

γi ·Dti1ui ≥
∫
Ω
gn(x, u(x)) dx

and the result follows by sending n→ ∞.

2.4.2. Exactness for the regularizer part. Next, we need the following result. To simplify,
let f be minimal and vanishing for p = 0, i.e., f(x, 0) = 0 = minp f(x, p) for all x. We assume
that f is continuous in both variables (x, p), and that there exists a constant C > 0 such that

(2.18) f(x, p) ≥ C(|p| − 1)

for all x and p. This guaranties in particular that if
∫
Ω f(x,Du) < +∞, then u ∈ BV (Ω;Rk).

Lemma 2.3. Let u ∈ BV (Ω; Γk). We have

(2.19)

∫
Ω
f(x,Du) = sup

φ∈K0

k∑
i=1

∫
Ω×Γ

φi ·D1ui.

Proof. To simplify, we give an idea of the construction in the case where u ∈W 1,1(Ω; Γk).
A precise proof in the general case is discussed in Appendix A. In this case, (2.3) holds, and
in particular one deduces that “≥” trivially holds in (2.19). Now, let for all x and (ti)

k
i=1

(φxi (x, ti))
k
i=1 = ∇pf(x,∇u(x))
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and

φti(x, ti) =
1

k
f∗(x,∇pf(x,∇u(x))).

This field is only measurable; observe that it does not depend on t. It can be smoothed
by standard mollification: we consider ρ ∈ C∞

c (B(0, 1);R+) with
∫
B(0,1) ρ dx = 1 and let

ρε(x) = ε−dρ(x/ε), and then we let φε = ρε ∗ (φχΩε), where Ωε = {x ∈ Ω |dist(x, ∂Ω) > ε}
and the convolution is only in the x-variable. Here we use the fact that f∗(x, 0) = 0 so that,
in particular, 0 ∈ K0. This smooth (and compactly supported in x) function might not be in
K0, but one can show that it is “close” to K0 in some sense. Moreover, using (2.3), we have
that

(2.20) lim
ε→0

k∑
i=1

∫
Ω×R

φεi ·D1ui dx =

k∑
i=1

∫
Ω
φxi (x) · ∇ui(x) − φti(x) dx =

∫
Ω
f(x,∇u(x)) dx,

as expected.

2.5. Existence of minimizers. In the continuous version (2.2) we seek a solution v ∈
BV (Ω × Γ; [0, 1]k), with Γ = [0, 1].

Theorem 2.4. The problem

(2.21) min
{
E(v) ∣∣ v ∈ BV (Ω× Γ; [0, 1]k), vi(x, 0) ≡ 1, vi(x, 1) ≡ 0

}
,

where E is defined by (2.2) with K given by (2.11), has a solution.
Here the trace conditions on vi are meant in the following sense: the functions are extended

on Ω× R, with vi(x, t) ≡ 0 if t ≥ 1 and 1 if t ≤ 0, and the derivative Dv is then restricted to
Ω× Γ. As a consequence, if the inner trace of v is different from 0 at t = 1 or 1 at t = 0, Dv
carries a measure on the corresponding boundary.

Proof. This is straightforward, since by definition (2.2), E is l.s.c. on BV (with respect
to weak convergence), while (2.18) (and the fact we have assumed that v is bounded) yields
compactness of minimizing sequences for problem (2.21).

3. Special cases. Here we give some examples of regularizers R(u) =
∫
Ω f(x,∇u(x)) dx

in (1.2) which can be handled in our framework. For each case we will give the corresponding
constraints (2.5) for the set (2.11). We assume that the range set of each channel ui is
Γ := [0, 1] for clarity of presentation. The whole theory can, of course, be formulated with
general intervals as range sets.

3.1. Separable regularizers. We first consider separable regularizers

(3.1) R(u) =

k∑
i=1

Ri(ui), Ri(ui) =

∫
Ω
fi(x,∇ui(x)) dx,

i.e., f(x, p) =
∑k

i=1 fi(x, pi) for all (x, p) ∈ Ω×R
d×k, and f(x, p) acts on each ui independently.

Convex relaxation of the functional (1.2) with the restriction to this kind of regularizers has
been considered in [39]. The relaxation was obtained by convexifying each term separately, the
data term

∫
Ω g(x, u(x)) dx and the regularizers R1(u1), . . . , Rk(uk). In contrast, our proposed
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relaxation of (1.2) considers the functional as a whole and uses a single combined constraint
set (2.11). However, for separable regularizers it turns out to be equivalent to relaxing each
term separately as in [39], as we will show next.

Define the sets Ki
0 similarly as K0 in (2.13) but for the one-dimensional case (k = 1):

(3.2)
Ki

0 =
{
φ = (φx, φt) ∈ C0(Ω × Γ;Rd × R)

∣∣
φt(x, t) ≥ f∗i (x, φ

x(x, t)) ∀(x, t) ∈ Ω× Γ
}
.

Proposition 3.1. Let the regularizer be separable as in (3.1). Then the relaxation

(3.3) E(v) = sup
φ∈K

k∑
i=1

∫
Ω×Γ

φi ·Dvi dx = sup
φ∈K

k∑
i=1

∫
Ω×Γ

(
φxi Dxvi + φtiDtvi

)
with the general set K in (2.11) is equal to the relaxation of each term separately:

(3.4) E(v) =

k∑
i=1

(
sup
φi∈Ki

0

∫
Ω×Γ

φiDvi

)
+

(
sup
γ∈L

∫
Ω×Γ

k∑
i=1

γi Dtvi

)
.

Proof. Let (φx, φt) ∈ K. The Legendre–Fenchel conjugate of f(x, p) =
∑

i fi(x, pi) is given
by

f∗(x, q) = sup
p∈Rd×k

k∑
i=1

qipi −
k∑
i=1

fi(x, pi) =
k∑
i=1

f∗i (x, qi)

for all q ∈ R
d×k. The constraints (2.5) thus become

(3.5)

k∑
i=1

φti(x, ti) ≥ −g(x, t) +
k∑
i=1

f∗i
(
x, φxi (x, ti)

)
.

Define γi, φ
t
i ∈ C0(Ω× Γ;R) by

φ
t
i(x, ti) := f∗i (x, φ

x
i (x, ti)),

γi := φti − φ
t
i

for all (x, ti) ∈ Ω × Γ. Obviously we have (φxi , φ
t
i) ∈ Ki

0 for all i, and by (3.5) also γ ∈ L.
On the other hand, if (φxi , φ

t
i) ∈ Ki

0 and γ ∈ L, then for φti := φ
t
i + γi we have (φx, φt) ∈ K.

Therefore, (3.4) follows directly from (3.3).
As a consequence, in order to arrive at novel relaxations, one has to consider coupled

regularizers. For this general case, no tractable relaxations have yet been given. In fact,
existing relaxations all rely on discretizing the whole k-dimensional label space Γk and are
thus by no means tractable.

In the following we will give a brief overview of some interesting special cases for separable
regularizers (3.1) which were studied in [34]. We will discuss these regularizers in more detail
in sections 3.3–3.7, where we introduce the corresponding coupled versions.
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3.1.1. Total variation with l1-coupling. Setting fi(x, pi) := λ|pi| with a λ > 0, we obtain
the total variation

(3.6) TVl1(u) = λ
k∑
i=1

∫
Ω
|∇ui| dx.

Although this regularizer is a simple way to extend the total variation to vector-valued signals,
there is no coupling of the channels. This generally leads to inferior reconstructions, as is
demonstrated in Figure 5. The corresponding constraints in (3.2) are

(3.7) φti(x, t) ≥ 0, |φxi (x, t)| ≤ λ ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k.

3.1.2. Huber-TV with l1-coupling. We now set fi(x, pi) := λhε(|pi|) with the Huber
function hε(pi), which basically equals |pi| but smooths out the kink at the origin. We will
define it later when we discuss the l2-coupled case in section 3.4. This yields the Huber-TVl1
penalization

(3.8) λ
k∑
i=1

∫
Ω
hε
(|∇ui|) dx.

This alleviates the staircasing effect caused by TV (i.e., the solutions tend to become piecewise
constant in regions where u is almost constant but smooth); however, there is no coupling of
the channels at all. The constraints in (3.2) are

(3.9) φti(x, t) ≥
ε

2λ
|φxi (x, t)|2, |φxi (x, t)| ≤ λ ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k.

3.1.3. Lipschitz constraint with l1-coupling. Finally, setting fi(x, pi) := δ|pi|≤λ , which
is zero for |pi| ≤ λ and ∞ otherwise, with a λ > 0 we obtain the Lipschitz constraint on the
gradients of the channels:

k∑
i=1

∫
Ω
δ|∇ui|≤λ dx = δ(|∇ui(x)|≤λ for a.e. x∈Ω, 1≤i≤k).

The growth rate of each channel is constrained by λ individually without any coupling. The
constraints in (3.2) are

(3.10) φti(x, t) ≥ λ|φxi (x, t)| ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k.

3.2. Separable data terms. The proposed convex relaxation handles the functional (1.2)
as a whole; i.e., both the data term and the regularization term are relaxed simultaneously
using a unified constraint set. Consider separable data terms g,

(3.11) D(u) =
k∑
i=1

Di(ui), Di(ui) =

∫
Ω
gi(x, ui(x)) dx,
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i.e., g(x, t) =
∑k

i=1 gi(x, ti) for all (x, t) ∈ Ω × R
k. In this case we can show that the overall

relaxation is equivalent to relaxing the data term and the regularizer term separately (as was
also the case for separable regularizers in the previous section). Furthermore, the data term
part decouples into separate relaxations of each channel.

Proposition 3.2. Let the data term be separable as in (3.11). Then

(3.12) E(v) =

(
sup
φ∈K0

k∑
i=1

∫
Ω×Γ

φi ·Dvi
)

+
k∑
i=1

(
sup
γi∈Li

∫
Ω×Γ

γi Dtvi

)
.

The sets Li are defined similarly to L in (2.12) but for the one-dimensional case:

Li =
{
γ ∈ C0(Ω× Γ;R)

∣∣ γ(x, t) ≥ −gi(x, t) ∀(x, t) ∈ Ω× Γ
}
.

Proof. The proof basically uses the same construction as the corresponding proof of (3.4)
for the case of separable regularizers. The constraints (2.5) read as

(3.13)
k∑
i=1

φti(x, ti) ≥ −
k∑
i=1

gi(x, ti) + f∗
(
x, (φxi (x, ti))

k
i=1

)
.

For (φx, φt) ∈ K with the set K in (2.11), define γi, φ
t
i ∈ C0(Ω× Γ;R) by

γi(x, ti) := −gi(x, ti),
φ
t
i := φti − γi

for all (x, t) ∈ Ω×Γk and 1 ≤ i ≤ k. Then (φx, φ
t
) ∈ K0 by (3.13), and evidently also γi ∈ Li

for all i. On the other hand, if (φx, φ
t
) ∈ K0 and γi ∈ Li for all i, then for φti := φ

t
i + γi we

have (φx, φt) ∈ K. Thus, (3.12) follows from (3.3).
Remark. Another case where the overall relaxation is equivalent to relaxing the data term

and the regularizer term separately is when the Legendre–Fenchel dual of f has the form

(3.14) f∗(x, p) =
k∑
i=1

hi(x, pi) + δC(x)(p)

with some convex functions hi and sets C(x) ⊂ R
d×k (the indicator function δM (p) of a set

M is defined by 0 for p ∈ M and by ∞ otherwise). This can be proved analogously as for
(3.4) in section 3.1. Specifically, in the case discussed in section 3.1 we have hi = f∗i and
C(x) = R

d×k. An example of a regularizer which satisfies (3.14) with a nontrivial set C(x) is
given by TVl2 , which we will discuss next.

3.3. Total variation with l2-coupling. As a first nonseparable regularizer for vectorial
signals u : Ω → R

k we consider the total variation with the l2-coupling of the channels. For
smooth functions u it is given by

(3.15) TVl2(u) = λ

∫
Ω
‖∇u‖2 dx = λ

∫
Ω

√√√√ k∑
i=1

|∇ui|2 dx
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with a λ > 0. Basically, it penalizes the Euclidean norm of the gradient. For general u ∈
L1(Ω;Rk) it can be defined by its dual representation

TVl2(u) = sup
‖ξ‖2≤λ

∫
Ω

k∑
i=1

ui div ξi dx,

where the supremum is taken over all ξ ∈ C1
c (Ω;R

d×k) such that pointwise ‖ξ(x)‖2 ≤ λ for all
x ∈ Ω. This coupled total variation generally leads to higher quality reconstructions in inverse
problems than its separable counterpart in (3.6), as will be shown in the experiments. Our
approach yields the first convex relaxation of this regularizer for vectorial multilabel problems.
Furthermore, we will show how to efficiently reformulate the relaxation to obtain roughly the
same run time and memory efficiency as in the decoupled case (3.6).

The corresponding function f : Ω × R
d×k → R in (1.2) is f(x, p) := λ‖p‖2 with the

Legendre–Fenchel convex dual

f∗(x, q) = sup
p∈Rd×k

p q − ‖p‖2 =

{
0 if ‖q‖2 ≤ λ,

∞ else.

Thus, the constraints (2.5) are given by

k∑
i=1

φti(x, ti) ≥ −g(x, t),(3.16) √√√√ k∑
i=1

|φxi (x, ti)|2 ≤ λ(3.17)

for all (x, t) ∈ Ω× Γk.
Constraint decoupling for smoothness part (3.17). For a practical implementation, the range

set Γ of each channel ui must be discretized into a number ni ≥ 1 of levels. For each fixed
x ∈ Ω, the second constraint (3.17) then poses n1 · · ·nk individual constraints because of
t ∈ Γk. Implementing them requires a large amount of memory for k ≥ 3 and to some extent
for k ≥ 2. Surprisingly, the special form of the l2-coupled TVl2 allows one to decouple (3.17)
into only n1 + · · ·+ nk constraints.

The inequalities (3.17) for all t ∈ Γk are equivalent to

sup
t∈Γk

√√√√ k∑
i=1

|φxi (x, ti)|2 =
√√√√ k∑

i=1

(
sup
ti∈Γ

|φxi (x, ti)|
)2

≤ 1.

Defining a new dual variable a : Ω → R
k by ai(x) := supti∈Γ |φxi (x, ti)| for all i, this shows

that the constraints (3.17) can be equivalently written as

‖a(x)‖2 ≤ λ ∀x ∈ Ω,(3.18)

|φxi (x, ti)| ≤ ai(x) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k.(3.19)
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For each x ∈ Ω, (3.18) and (3.19) are now only linearly many constraints.

Remark. There is an interesting interpretation of this decoupling: considering the con-
straints (3.19) without (3.18) for each i, the supremum over φxi gives the total variation of ui,
where the contribution at each point x ∈ Ω is weighted by ai(x):

(3.20) TVai(ui) =

∫
Ω
ai(x)|∇ui| dx.

Taking the supremum also over (3.18) means that TV (u) is represented as a weighted sum of
TVai(ui):

(3.21) TVl2(u) = sup
a:Ω→R

k,∑k
i=1 |ai(x)|2≤λ

k∑
i=1

∫
Ω
ai(x)|∇ui| dx.

Constraint decoupling for data part (3.16). Similarly to (3.17), after discretization the first
constraint (3.16) in its original form gives n1 · · ·nk individual constraints for each x ∈ Ω.
However, if the data term is separable as discussed in section 3.2, we can also decouple (3.16)
into linearly many constraints.

Proposition 3.3. Assume that g(x, t) =
∑k

i=1 gi(x, ti) for all (x, t) ∈ Ω × R
k with some

functions gi : Ω× Γ → R. Then (3.16) can be replaced by

(3.22) φti(x, ti) ≥ −gi(x, ti) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k,

without altering the supremum in the convex relaxation (2.2).

Proof. First, since the constraints on φt and on φx are independent, the relaxation (2.2)
reads as

E(v) =
(
sup
φx

∫
Ω×Γ

k∑
i=1

φxi Dxvi

)
+

(
sup
φt

∫
Ω×Γ

k∑
i=1

φtiDtvi

)

with φx satisfying (3.17) and φt satisfying (3.16). For the second term on the right-hand side,
regarding the data-term-only constraints (3.16) as the general constraints (2.5) with f ≡ 0
and φx ≡ 0, we can use (3.12) (as the data term is separable) to get

(3.23) sup
φt

∫
Ω×Γ

k∑
i=1

φtiDtvi =

k∑
i=1

sup
γi∈Li

∫
Ω×Γ

γiDtvi + sup
φ̂t

∫
Ω×Γ

k∑
i=1

φ̂tiDtvi

with φ̂t such that
∑k

i=1 φ̂
t
i(x, ti) ≥ 0. The first term on the right-hand side of (3.23) yields the

desired constraints (3.22), after renaming γi back to φti. It remains to show that the supremum
in the second term on the right-hand side of (3.23) is actually zero. But this follows directly
from Lemma 2.2.

3.4. Huber-TV with l2-coupling. Total variation regularization is known to produce
solutions exhibiting so-called staircasing effects. In the regions where the solution u is almost
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constant or varies very slowly, it may become piecewise constant instead of having a smooth
variation. A common solution is to apply the Huber-TV regularization

(3.24) R(u) = λ

∫
Ω
hε(‖∇u‖2) dx

for some small ε > 0, where the Huber function hε : R → R is defined as

(3.25) hε(z) :=

{
1
2εz

2 if |z| < ε,

|z| − ε
2 else.

It smooths out the kink at the origin of z 	→ |z|. The quadratic penalization for near zero
∇u ensures smooth variations in the regions where u is nearly constant, thus avoiding the
staircasing effect in these regions. The limiting case ε = 0 yields the usual TV . The advantage
in comparison to applying the channelwise Huber regularization (3.8) is that here the quadratic
penalization kicks in only if every gradient component is small. The coupled Huber-TVl2 is
thus nearer to the actual TVl2 which it is approximating.

The function f in (1.2) is f(x, p) := λhε(‖p‖2), with the dual

(3.26) f∗(x, q) = sup
p∈Rd×k

k∑
i=1

qi pi − λhε(‖p‖2) =
{

ε
2λ‖q‖22 if ‖q‖2 ≤ λ,

∞ else,

and the constraints in (2.11) become

k∑
i=1

φti(x, ti) ≥ −g(x, t) + ε

2λ

k∑
i=1

|φxt (x, ti)|2,(3.27) √√√√ k∑
i=1

|φxi (x, ti)|2 ≤ λ(3.28)

for all (x, t) ∈ Ω× Γk.
Constraint decoupling for the smoothness part (3.28). Note that the second constraint (3.28)

is exactly the same as (3.17) in the case of TV in section 3.3. The same reduction technique
can therefore be applied to decouple this constraint into (3.18) and (3.19).

Constraint decoupling for the data and smoothness part (3.27). As for the first constraint
(3.27), for general data terms g we can always separate it into a data-term-only part and a

part responsible for regularization. Namely, define γi, φ
t
i ∈ C0(Ω× Γ;R) by

φ
t
i(x, ti) :=

ε
2λ |φxi (x, ti)|2,

γi := φti − φ
t
i

for all (x, ti) ∈ Ω× Γ and 1 ≤ i ≤ k. Then (3.27) is equivalent to

φti = γi + φi,(3.29)

k∑
i=1

γi(x, ti) ≥ −g(x, t),(3.30)

φ
t
i(x, ti) ≥ ε

2λ |φxi (x, ti)|2(3.31)
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for all (x, t) ∈ Ω × Γk. Thus, Huber-TVl2 penalization requires only linearly many new
constraints (3.31) in addition to those of TVl2 . This regularizer is therefore also very efficient,
with respect to memory and run time.

If the data term is separable, i.e., g(x, t) =
∑

i gi(x, ti), then we can further decouple the
data term constraint (3.30) into linearly many constraints (3.22), as has been done for the
identical constraint (3.16) in section 3.3. For brevity and to reduce the overall number of
variables, we can use (3.29) to combine these data term constraints with (3.31) into just

(3.32) φti(x, ti) ≥ −gi(x, ti) + ε
2λ |φxi (x, ti)|2

for all (x, ti) ∈ Ω× Γ and 1 ≤ i ≤ k.

3.5. Total variation for general norms. We can also define more general versions of the
total variation by choosing other norms ‖·‖ instead of the Euclidean norm in (3.15) in section
3.3 in which to penalize image gradients ∇u:

(3.33) TV‖·‖(u) = λ

∫
Ω
‖∇u‖ dx.

The interaction term here is f(x, p) = λ‖p‖. The convex dual is given by the indicator function
of the corresponding dual norm ‖·‖∗:

(3.34)

f∗(x, q) = sup
p∈Rd×k

p q − λ‖p‖ = sup
p∈Rd×k, t≥0

‖p‖=1

t(p q − λ)

= sup
p∈Rd×k

‖p‖=1

δp q≤λ = δ(sup
p∈Rd×k, ‖p‖=1

p q≤λ)

= δ‖q‖∗≤λ

with

(3.35) ‖q‖∗ := sup
p∈Rd×k,
‖p‖≤1

p q = sup
p∈Rd×k,
‖p‖=1

p q.

Constraints (2.5) thus become

k∑
i=1

φti(x, ti) ≥ −g(x, t),(3.36) ∥∥(φxi (x, ti))1≤i≤k∥∥∗ ≤ λ(3.37)

for all (x, t) ∈ Ω×Γk. While the first constraint (3.36) is the same as (3.16), the second (3.37)
is a generalization of (3.17). Note that (3.37) reduces to (3.17) for ‖·‖ = ‖·‖2 since the dual
norm is again ‖·‖2.
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Constraint decoupling. Since the number of constraints in (3.37) is quite large, a practical
question is, Which norms allow us to decouple the constraints? Immediate candidates for the
generalization of the Euclidean case technique of section 3.4 are the κ-norms:

(3.38) ‖x‖κ := κ

√√√√ k∑
i=1

|xi|κ for 1 ≤ κ <∞, ‖x‖∞ := max
1≤i≤k

|xi|,

defined for x ∈ R
d×k. The dual norm (3.35) is ‖·‖∗ = ‖·‖ζ , where 1 ≤ ζ ≤ ∞ is defined by

1
κ + 1

ζ = 1, i.e., ζ = κ
κ−1 . Just as in section 3.4, we can show that (3.37) is equivalent to

‖a(x)‖ κ
κ−1

≤ 1 ∀x ∈ Ω,(3.39)

|φxi (x, ti)| ≤ ai(x) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k,(3.40)

introducing additional dual variables a : Ω → R
k.

Natural total variation TVJ for color images. An interesting special case of (3.47) is the
vectorial total variation TVJ of Goldluecke, Strekalovskiy, and Cremers [21]. They showed that
it yields best results in inverse problems such as denoising, inpainting, and superresolution
in comparison to other possible total variations such as (3.6) and (3.15) (with norms ‖·‖1,
respectively, ‖·‖2). While the initial approach [21] can be used only for convex data terms g,
our vectorial multilabel convexification framework extends its applicability to arbitrary data
terms.

The corresponding norm in (3.33) is defined for TVJ as the largest singular value of ∇u:
(3.41) ‖p‖ = ‖(σi)1≤i≤m‖∞ = max

1≤i≤m
σm,

where σ1, . . . , σm ≥ 0 with m ≤ min(d, k) are the singular values of p ∈ R
d×k. The dual norm

is the nuclear norm of p, which is the sum of the singular values:

(3.42) ‖p‖∗ = ‖(σi)1≤i≤m‖1 =
m∑
i=1

σm.

There is no immediate way to decouple the arising constraints (3.37). Thus this regularizer is
more costly in terms of memory and run time for nonconvex data terms than TVl2 and TVl1 .

3.6. Huber-TV for general norms. Just as for TVl2 in section 3.4, one can consider
Huber-TV regularization with general norms. The staircasing effects are then eliminated,
while the desired properties of the respective TV are still preserved. The case (3.24) generalizes
to

(3.43) R(u) = λ

∫
Ω
hε(‖∇u‖) dx

with a general norm ‖·‖ and the Huber function hε in (3.25). The convexification is a straight-
forward generalization of section 3.4: the function f in (1.2) is f(x, p) := λhε(‖p‖), and (3.26)
becomes

(3.44) f∗(x, q) =

{
ε
2λ‖q‖2∗ if ‖q‖∗ ≤ λ,

∞ else
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with the dual norm (3.35). The constraints in (2.11) are now

k∑
i=1

φti(x, ti) ≥ −g(x, t) + ε

2λ

∥∥(φxi (x, ti))1≤i≤k∥∥2∗,(3.45) ∥∥(φxi (x, ti))1≤i≤k∥∥∗ ≤ λ(3.46)

for all (x, t) ∈ Ω×Γk. As an example, one can consider the Huber regularization of the natural
TV for color images in section 3.5.

3.7. Lipschitz constraint with l2-coupling. In some applications the rate of growth of u
is bounded a priori by a constant. To enforce this, we can consider the following regularizer:

(3.47) R(u) =

∫
Ω
δ‖∇u‖2≤λ dx.

The interaction term here is f(x, p) = δ‖p‖2≤λ with the dual

(3.48) f∗(x, q) = sup
p∈Rd×k

p q − δ‖p‖2≤λ = sup
‖p‖2≤λ

p q = λ‖q‖2.

The constraints (2.5) become

(3.49)
k∑
i=1

φti(x, ti) ≥ −g(x, t) + C

√√√√ k∑
i=1

|φxi (x, ti)|2

for all (x, t) ∈ Ω×Γk. The constraints (3.49) cannot be easily decoupled, making the l2-coupled
Lipschitz constraint a costly regularizer.

4. Implementation.

4.1. Discretization. We discretize the image domain into a rectangular pixel grid, which
we again denote by Ω. For each 1 ≤ i ≤ k we also discretize the range set Γ of ui : Ω → Γ
into a number ni ≥ 1 of levels 0

ni−1 , . . . ,
ni−1
ni−1 and write Γi := {0, . . . , ni − 1}. The range

discretization is necessary since the relaxed energy (2.2) is defined on the space Ω×Γ. We set
Λ := Γ1×· · ·×Γk for the set of all labels. The discretized variables v, φ, and g are represented
by their node values

(4.1)

vi

(
x, j

ni−1

)
= vji (x) ∈ R,

φxi

(
x, j

ni−1

)
= φx,ji (x) ∈ R

d,

φti

(
x, j

ni−1

)
= φt,ji (x) ∈ R,

g
(
x,
(

j1
n1−1 , . . . ,

jk
nk−1

))
= g(j1,...,jk)(x) ∈ R

for all pixels x ∈ Ω, 0 ≤ j < ni, 0 ≤ i ≤ k, and (j1, . . . , jk) ∈ Λ. The discretized energy
becomes

(4.2) min
v∈D

E(v), E(v) = max
φ∈K

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

(
1

ni−1φ
x,j
i (x)∇xv

j
i (x) + φt,ji (x)∂+t,iv

j
i (x)

)
.
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The factors 1
ni−1 before φx arise from the discretization of the integrals

∫
Γ dti. They are not

present before φt since they are canceled through the discretization of ∂tivi.

We use forward differences with Neumann boundary conditions for the spatial gradient
∇x. For example, ∂x1fx1,x2 = fx1+1,x2 − fx1,x2 if (x1 + 1, x2) ∈ Ω and 0 else, and we define
the divergence by div := −∇T , the negative adjoint operator, in order for a discrete form of
partial integration to hold. For the t-derivative ∂+t,i of the ith range space Γi, we use forward

differences with zero boundary condition: ∂+t,iv
j
i = vj+1

i − vji if j + 1 < ni and −vji else. This

way, in (4.2) we implicitly use vni
i (x) = 0. The negative adjoint t-derivative ∂−t,i = −(∂+t,i)

T is

then given by backward differences: ∂−t,ift = ft − ft−1 if t > 0 and ft if t = 0.

We are looking for minimizers v which lie in the convex set

(4.3) D =
{
v = (vi)1≤i≤k

∣∣ vi : Ω → [0, 1]ni , v0i (x) = 1 ∀x ∈ Ω, 1 ≤ i ≤ k
}
.

Of the two boundary conditions vi(x, 0) = 1 and vi(x, 1) = 0, only the first one is imposed
explicitly in (4.3). The second is encoded implicitly through the discretization of ∂+t,i as

described above. The monotonicity constraint on vi, i.e., that v
j
i (x) is nonincreasing in j,

is not included in D since it is already implicitly implied by the constraint set (2.11): the
dual variable φt may be arbitrarily large, and therefore the supremum in (4.2) is finite only if
∂+t,iv

j
i ≤ 0, i.e., if vi is nonincreasing.

The discretized set K in (2.11) is

(4.4)

K =

{
φ = (φi)1≤i≤k

∣∣ φi = (φxi , φ
t
i) : Ω× Γi → R

d × R,

k∑
i=1

φt,jii (x) ≥ −gj(x) + f∗
(
x, (φx,jii (x, ti))

k
i=1

) ∀x ∈ Ω, j ∈ Λ

}
.

The set K depends on the employed regularizer function f , as well as on the corresponding
strategies to decouple the constraints. Implementation of these constraints is detailed later in
section 4.2.

Optimality of solutions. Because of the convex relaxation of the range of graph functions
vi from {0, 1} to [0, 1], the computed solution v of (4.2) may be nonbinary. Therefore, at the
end we need to project the result back to the space of binary functions. One possible solution
is to threshold at 1

2 ; i.e.,

(4.5)
(
vbin

)j
i
(x) =

{
1 if j ≤ j0

0 if j > j0

}
with j0 := argmax

0≤j<ni,

vji (x)≥ 1
2

j

for every channel 1 ≤ i ≤ k. From this we then construct a solution ubin by (2.1). Though
this solution is not necessarily optimal for the initial problem (1.2), we can give an energy
bound to estimate how far vbin is from a true solution u∗:

(4.6) E(ubin)−E(u∗) ≤ E(vbin)− E(v).
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In our experiments this bound was around 3% for the separable regularizers such as TVl1 , and
around 6% for the coupled ones such as TVl2 . This shows that our approach is able to provide
optimal or near-optimal solutions.

For candidate solutions u of the initial problem (1.2) it is not required that the values lie
in a fixed discretized set, as is the case for ubin above. Therefore, when computing the actual
end result for (1.2) we use interpolated thresholding:

(4.7) ures, i(x) :=
j0 + s− 1

2

ni − 1
with s :=

vj0i (x)− 1
2

vj0i (x)− vj0+1
i (x)

and j0 given by (4.5). We observed that this generally yields a higher quality solution, with
E(ures) < E(ubin).

4.2. Numerical algorithm. To solve the saddle-point problem (4.2) we use the recent fast
primal-dual algorithm [12]. Basically, it computes gradient descent steps in the primals v and
gradient ascent steps in the duals φ, and projects back onto the constraint sets after each
iteration. The algorithm can be massively parallelized on GPUs. Since there will be many
more dual variables than primal ones, to save memory we suggest using the version of the
algorithm where the “bar” copies are introduced for the primals rather than for the duals.

To set the time steps automatically, we use the convenient preconditioning scheme of [32]
for the primal-dual algorithm of [12]. In fact, we use an extension of this scheme where all
primal time steps given by [32] are multiplied by τ and all dual time steps by 1

τ , where τ > 0 is
a fixed constant. The convergence proof of [32] can be easily extended to this case. Depending
on the problem at hand, choosing τ appropriately may significantly speed up convergence. On
typical problems, compared to τ = 1 we observed a speed up by around a factor of 2–5, and
sometimes even more. We used τ = 10 in all our experiments, except for inpainting, where
τ = 1000.

The projection of the main primal variable v is straightforward and can be done by simple
clipping of the values vji (x) to [0, 1]. For φ the projection is more involved since K contains
many nonlocal constraints. Our strategy is therefore to implement these constraints using the
method of Lagrange multipliers or of convex dualization, depending on the regularizer.

4.2.1. Total variation with l2-coupling. The continuous version has the constraints (3.18)
and (3.19) for the smoothness part, as well as (3.16), respectively, (3.22) for the data term
part. We dualize the constraints (3.19) using convex dualization (for x ∈ R

d, y ∈ R):

(4.8) δ|x|≤y = sup
α∈Rd,β∈R,

|α|≤β

αx− βy.

Applying this, (3.19) is equivalent to adding the terms −δ|φx|≤a, or

(4.9) inf
α,β

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

−αji (x)φx,ji (x) + βji (x) ai(x),

to the energy, with the constraints |αji (x)| ≤ βji (x) for all x, i, and j. The optimization is then

also performed over these additional dual variables α and β, with αji (x) ∈ R
d and βji (x) ∈ R
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for all x, i, and j. This way, for a only the constraints (3.18) remain. The corresponding
projection is easily done by clipping the absolute value of a. The projection of α, β can also
be easily computed; see section B.1.

For the data term part, we have the constraints (3.22) if g is separable, and (3.16) for the
general case. The projection onto (3.22) is straightforward. For general data terms, there are
two strategies for handling (3.16), depending on available memory.

As a first approach, we dualize every constraint of (3.16) by adding specific additional
energy terms. We use the convex dualization (for x, q ∈ R)

(4.10) δx≥q = sup
μ≤0

μ(x− q)

and add the terms −δ∑
i φ

t
i≥−g to the energy, i.e.,

(4.11) inf
μ

∑
x∈Ω

∑
j∈Λ

−μj(x)
(

k∑
i=1

φt,jii (x) + gj(x)

)

with the constraints μj(x) ≤ 0 for all x ∈ Ω and j ∈ Λ. The prox-operator for μ is local for
every x ∈ Ω and j ∈ Λ:

(4.12) argmin
μ≤0

(μ− μ0)2

2τ
− μ gj(x)

for some τ > 0 and μ0 ∈ R. The solution can be easily computed giving μ = min(0, μ0 +
τgj(x)). Dualization (4.11) introduces additional dual variables μ into the global energy.
Since these are |Ω|∏n

i=1 ni individual variables, this approach is quite costly memorywise. In
comparison, the number of all other variables scales only as |Ω|∑n

i=1 ni.

The second approach is to solve the projection

(4.13) argmin
φt s.t. (3.16)

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

(
φt,ji (x)− (φt,ji (x))0

)2
directly as a subproblem. This does not require any additional variables, but the projection
must then be performed after each iteration of the primal-dual algorithm. Thus, this trades
off a reduction of memory requirements for an increased run time (many times over). The
projection (4.13) can be solved by introducing variables μ and terms (4.11) to the local energy
(4.13), with sup instead of inf and with μ instead of −μ. This can be done sequentially
pixel for pixel, requiring only

∏k
i=1 ni additional variables. To accelerate this process, one can

process chunks of Nc ≥ 1 pixels in parallel, where Nc ≤ |Ω| is chosen as large as possible to
fit into the available memory.

We employ the same primal-dual algorithm [12] for the projection subproblem (4.13).
Specifically, because of the quadratic terms in φt we can use Algorithm 2 of [12], which has an
accelerated O(1/N2

iter) convergence rate. Since φt does not change much between two outer
interations, a small number of inner iterations can be chosen, e.g., Niter = 10.
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4.2.2. Huber-TV with l2-coupling. Here we have the constraints (3.28), as well as (3.32)
for separable data terms g and (3.29)–(3.31) for general g. Implementation of (3.32) is done
exactly as for the TV case above. For separable data terms, one has to project onto the
remaining constraint (3.32). This is a projection onto a parabola. Its computation leads to a
cubic equation which can be solved in closed form. This is detailed in section B.2.

For general data terms, by (3.29) φt is replaced by two independent dual variables γi and
φi. The constraints (3.30) are implemented in exactly the same way as for the case of TV
above. Finally, the projection onto (3.31) is again the projection onto a parabola and can be
done quickly and in closed form.

4.2.3. Total variation for general norms. For special cases of κ-norms ‖·‖ (3.38), we
have the simplified constraints (3.39) and (3.40) together with (3.36). Implementation for this
case is the same as previously for TV with the Euclidean norm, again using the dualization
(4.9). The only difference is that (3.18) is now replaced by (3.39); i.e., a is constrained in
the κ

κ−1 -norm instead of the 2-norm. The most interesting cases for κ are 1, 2, and ∞. The
projection onto the corresponding dual ball (3.39) can be done in a straightforward way for
each of these cases. Moreover, because of (3.40) the ai are always nonnegative, so (3.39) can
be replaced by the more simple inequality

∑k
i=1 ai ≤ 1 for κ = ∞.

For general norms we have the constraints (3.37). In general they cannot be decoupled
to linearly many constraints. To implement (3.37) we can dualize every constraint using the
convex dualization (for x ∈ R

d×k)

(4.14) δ‖x‖∗≤λ = sup
η∈Rd×k

ηx − λ‖η‖.

We add the terms −δ‖φx‖∗≤λ to the energy, i.e.,

(4.15) inf
η

∑
x∈Ω

∑
j∈Λ

{
−

k∑
i=1

ηji (x)φ
x,ji
i (x) + λ

∥∥ηj(x)∥∥}.
This introduces additional primal variables ηj(x) ∈ R

d×k for every x ∈ Ω and j ∈ Λ into the
overall optimization. The prox-operator is local for each x ∈ Ω and j ∈ Λ:

(4.16) argmin
η∈Rd×k

(η − η0)2

2τ
+ λ‖η‖.

Using Moreau’s identity [36], the solution is given by

(4.17) η = η0 − π‖·‖∗≤τλ
(
η0
)
,

where π‖·‖∗≤τλ is the projection onto the scaled dual unit ball {x ∈ R
d×k | ‖x‖∗ ≤ τλ}. In the

case of TVJ , the dual norm ‖·‖∗ is the nuclear norm (3.42). We refer the reader to [21] for a
detailed description of how to perform the corresponding projection.

The dualization (4.15) requires a considerable number of additional variables, namely
kd|Ω|∏k

i=1 ni for η. The same discussion about memory reduction applies here as previously
with (4.11) for the case of nonseparable data terms. If there is enough available memory, we
can dualize every constraint of (3.37). Otherwise we can handle them locally by a subproblem,
computing a projection after every outer iteration of the primal-dual algorithm. Again, chunks
of pixels can be processed in parallel to accelerate the process.
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4.2.4. General regularizers. In the general case we have the constraints (2.5). These
are n1 · · ·nk constraints, after the discretization of the range spaces, for each pixel x ∈ Ω.
Beside the TV and Huber-TV cases, in general they cannot be decoupled into linearly many
constraints. To implement the general case, we can dualize every constraint using the convex
dualization (for x ∈ R

d×k, y ∈ R)

(4.18) δy≥f∗(x) = sup
η∈Rd×k,μ∈R

(μy + ηx) − δ∗y≥f∗(x)(η, μ).

We add the terms −δ∑
i φ

t
i+g≥f∗(φx) to the energy, i.e.,

(4.19)

inf
η,μ

∑
x∈Ω

∑
j∈Λ

{
− μj(x)

(
k∑
i=1

φt,jii (x) + gj(x)

)
−

k∑
i=1

ηji (x)φ
x,ji
i (x)

+ δ∗y≥f∗(x)
(
ηj(x), μj(x)

)}
.

This introduces additional primal variables ηj(x) ∈ R
d×k and μj(x) ∈ R for every x ∈ Ω and

j ∈ Λ. Note that both (4.11) and (4.15) are special cases of the above general dualization
(4.19).

The prox-operator is local for each x ∈ Ω and j ∈ Λ:

(4.20)
argmin

η∈Rd×k, μ∈R

(η − η0)2

2τ
+

(μ − μ0)2

2τ

− μ gj(x) + δ∗y≥f∗(x)
(
η, μ

)
.

Define μ̂0 := μ0 + τgj(x). Using Moreau’s identity [36] again, the solution is then

(4.21) (η, μ) = (η0, μ̂0)− τ πy≥f∗(x)
( η0
τ
,
μ̂0

τ

)
,

where πy≥f∗(x)(x0, y0) is the projection onto {(x, y) ∈ R
d×k × R | y ≥ f∗(x)}.

Note that the advantage of the implementation framework (4.19) is that it is the same
independent of the interaction terms f , i.e., of the regularizer. The only place where f enters
the computation is the projection (4.21). Once the framework is implemented, it can be easily
adapted for different regularizers by merely replacing the projection.

As previously with total variation for general norms, the dualization (4.19) also requires
many additional variables. The same memory reduction strategy can be applied, at the
expense of a higher run time.

4.2.5. Huber-TV for the spectral norm. The regularizer (3.47) is implemented using
the general scheme presented above. By formula (3.48), in (4.21) we need to project onto

(4.22)
{
(x, y) ∈ R

d×k × R | y ≥ ε
2λ‖x‖2∗, ‖x‖∗ ≤ λ

}
with the nuclear norm ‖·‖∗ in (3.42). Writing out the norm of x in terms of the singular
values, this projection can be done in closed form. The common case of two-dimensional color
images, i.e., d = 2 and k = 3, is detailed in section B.3.
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4.2.6. Lipschitz regularizer with l2-coupling. The Lipschitz regularizer (3.47) is also
implemented by the general scheme. By (3.48), one has to project onto

{(x, y) | y ≥ λ‖x‖2}.

This projection can be done in closed form as detailed in section B.1.

4.3. Memory requirements. Here we give a summary of the overall memory required to
implement the proposed convexification approach with coupling regularizers such as TV and
Huber-TV . Depending on the regularizer and on the separability of the data term there are
basically two kinds of variables and constants. The first kind, such as the basic variables v and
φ, requires a linearly scaling amount of memory in terms of image size and the discretization
levels, O(|Ω|∑k

i=1 ni), and is thus relatively cheap to store. For the second kind, e.g., for

variables η and μ, the memory scales exponentially as O(|Ω|∏k
i=1 ni).

Table 1
Required number of floating point numbers for energy (4.2). Memory is proportional to these amounts with

4 bytes per float.

Variable or constant Floating point numbers

vji |Ω| ∑ni

φj
i (d+ 1) |Ω| ∑ni

gji (if g separable) |Ω| ∑ni

gj (if g nonseparable) |Ω| ∏ni

Table 2
Additional float numbers depending on the employed regularizer. Overall memory for isotropic TVl2 and

Huber-TVl2 scales linearly with the range discretization for separable data terms. It is also in the same range
as for the case of nonisotropic TVl1 and Huber-TVl1 .

Regularizer Additional variables Floating point numbers

TVl1/Huber-TVl1 μj (if g nonseparable) |Ω|∏ni

αj
i kd |Ω|∑ni

TVl2/Huber-TVl2/ βj
i |Ω|∑ni

TVlκ/Huber-TVlκ γj
i (if g nonseparable, for Huber) |Ω|∑ni

μj (if g nonseparable) |Ω|∏ni

TVJ/TV‖·‖ ηj
i kd |Ω|∏ni

μj (if g nonseparable) |Ω|∏ni

Huber-TVJ/ ηj
i kd |Ω|∏ni

Lipschitzl2/general μj |Ω|∏ni

The number of floating point numbers, and thus the amounts of memory, required by
the variables and constants appearing in the energy (4.2) are shown in Table 1. Additional
memory is needed to decouple and dualize the nonlocal constraints in the set K in (2.11)
depending on the type of employed regularizer, as shown in Table 2. First, observe that in
case of separable data terms, the overall memory for TV and Huber-TV with l2-coupling scales
linearly. Also, it is always in the same range as in the uncoupled l1-case, no matter whether
the data term is separable or not. Thus, for TV and Huber-TV regularized optimization
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problems with nonconvex data terms, the proposed framework offers the advantage of channel
coupling at nearly the same costs as without any coupling.

For general data terms, as well as for general regularizers, additional memory of size
proportional to |Ω|∏ni is needed if we use the global dualization in each case. This strategy
should be used whenever possible as this gives the best run times. If there is not enough
memory, as described in section 4.2 we can revert to local projection subproblems instead.
The memory is then O(NC

∏
ni), and NC is chosen appropriately as big as possible for the

overall problem to fit on the GPU. This approach, however, comes at a high penalty in terms
of run time (larger by factor of 10).

Another costly constant is the data term gj (if it is nonseparable). During local projections
it is advisable to store the whole array on the GPU. If this is not possible, g can be stored on
the CPU side, and one can copy the required parts for the currently processed chunk of pixels
to the GPU. Since CPU-to-GPU memory copies are rather slow, this increases the run time
by a factor of 5–10. Thus, if the data term has a simple structure, one should compute it on
the fly as needed.

Finally, the whole approach can also be parallelized on multiple GPUs. To do this, one
subdivides the image domain Ω into equal parts (e.g., horizontal stripes) and lets each GPU
perform the described computations for one such part. After each iteration, the overlap regions
need to be copied between the GPUs, which comes at virtually no cost since the overlap regions
are rather small. Beside decreasing the run time, another compelling advantage of a multi-
GPU setting is the much higher overall amount of memory available, allowing one to solve
larger problems. This is especially interesting, e.g., for optical flow computation, as will be
detailed in section 5.1.

5. Experiments. In the following we demonstrate the usage of the proposed convex relax-
ations on several vectorial imaging problems. All algorithms were parallelized using the CUDA
framework on three NVIDIA GTX 680 GPUs. The number of iterations for the primal-dual
algorithm was chosen appropriately so that the solution remained visually stable and did not
change anymore, which is usually the case after 1000–5000 iterations.

5.1. Optical flow. The task of optical flow estimation, or image matching, is to find point
correspondences between two images. Given two color images I1 : Ω1 → R

3, I2 : Ω2 → R
3

which show the same scene, but taken from different viewpoints or at different times, one
seeks a function u : Ω1 → R

2 such that I1(x) = I2(x + u(x)). In practice, this relation will
not be satisfiable exactly, and therefore one seeks u as a minimizer of the energy functional

(5.1) E(u) =

∫
Ω1

g(x, u(x))dx + TV (u),

where the data term is given, e.g., by color differences

(5.2) g(x, t) = ‖I1(x)− I2(x+ t)‖2.

One can also sum up the image differences in a small window around x, e.g., with a 1-pixel
radius. A regularization term, such as TV (u) here, is needed to ensure a spatial coherence
of the flow, as the local estimates by minimizing g(x, ·) pointwise in each point x may differ
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considerably. The separable TVl1 regularizer is often employed in optical flow computations.
With our framework, it becomes possible to also use the coupled TVl2 , which is rotationally
invariant and thus a more favorable choice. Note that some literature uses the term “optical
flow” to refer to a linearized version of the model (5.1), which is then already convex. However,
the linearization is only a technical means of coping with nonconvexity and does not describe
the image matching problem correctly, e.g., for large scale flow.

Comparison of coupled TVl2 with uncoupled TVl1 . Figure 1 shows an optical flow compu-
tation on a real world image taken from the Middlebury optical flow dataset [4].2 There is
no need for much smoothing in this case; therefore the results for TVl1 and TVl2 are visually
almost the same. The 640 × 480 image with a 50 × 50 label space requires 68.16 seconds for
TVl1 and 71.04 seconds for TVl2 . The most time is spent for the convexification scheme (4.11)
of the nonseparable data term (5.2), while the updates due to TVl1/TVl2 are negligible. GPU
memory required for TVl1 and TVl2 is 6918 MB, respectively 7275 MB.

A comparison with the ground truth optical flow is shown in Figure 2. In terms of common
error measures, the TVl2 regularization yields a more accurate flow than TVl1 for the same
data term. In this example, for the 584 × 388 images we used a 22× 22 label space.

The difference between TVl1 and TVl2 becomes more apparent for larger weights λ. Since
TVl1 is not rotationally invariant, the same optical flow may be penalized differently if the
underlying images—and with them the flow—are rotated by a certain angle. This is stated
in the following proposition.

Proposition 5.1 (TVl1 is not rotationally invariant). Set Ω = {x ∈ R
2
∣∣ |x| < 1}. For fixed

angles θ ∈ R define the vector field vθ : Ω → R
2 by

(5.3) vθ(x) =

{
eθ if |x| ≤ r,

0 else

for all x ∈ Ω with eθ := (cos θ, sin θ). Then

(5.4) TVl1(vθ) = 2πr
(| cos θ|+ | sin θ|).

Proof. This follows directly from the representation

TVl1(vθ) = TV
(
(vθ)1

)
+ TV

(
(vθ)2

)
= TV

(
χBr(0)

) |(eθ)1|+ TV
(
χBr(0)

) |(eθ)2|
= 2πr

(| cos θ|+ | sin θ|),
together with the property of TV that TV (χA) = Hd−1(A) for rectifiable sets A ⊂ Ω.

In contrast, the l2-coupled TVl2-regularizer is rotationally invariant. For the above vector
field we would get TVl2(vθ) = 2πr, which is the same for all θ. This difference is demonstrated
in Figure 3. The two circles are moving in essentially the same way, but in different directions.
The background motion outside the circles will be nearly zero, as the texture ensures that
the zero vector field will have the smallest data term. Since TVl1 penalizes diagonal motions
more (by factor

√
2 due to (5.4)) than the ones parallel to the axes, choosing the weight λ in a

certain range may result in unequal treatment of the two basically identical motions. This is

2See http://vision.middlebury.edu/flow.

http://vision.middlebury.edu/flow
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Image 1 Image 2

TVl1 flow, λ = 0.5 TVl2 flow, λ = 0.5

Figure 1. Optic flow. “Basketball” image pair from the Middlebury dataset [4]. If there is no need for much
smoothing, as here, the results with TVl1 and TVl2 are visually similar. The difference is more pronounced for
larger weights; see Figure 3. Images 640× 480 using 50× 50 labels.

not the case for TVl2 . For every value of λ the two motions are recognized at the same time.
The run time for the 160 × 120 image with an 80 × 80 label space is 22.05 seconds for TVl1
and 22.45 seconds for TVl2 , and memory requirements are 1047 MB, respectively, 1080 MB.

Comparison with locally convergent approaches. In the case of a nonseparable data term,
such as in the optical flow example, the proposed approach is computationally expensive in
terms of memory and run time. In view of this, a natural question is whether this complexity
is really necessary and whether one can use locally convergent methods instead. An advantage
of these methods is that they work in the original image domain and thus require much less
memory than the convexification approach.

Their main disadvantage is, of course, their local optimality, which means that only cer-
tain flows can be reliably detected. Recent local approaches for optical flow estimation, such
as those in [40] and [43], employ some kind of convex approximation to cope with the noncon-
vexity of the original problem. For instance, the data term is usually linearized around the
current solution. Since this is valid only for small motions, a heuristic coarse-to-fine scheme
needs to be employed in order to also recognize large scale motions: starting with downscaled
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Image 1 Ground truth flow

TVl1 flow, λ = 0.42 TVl2 flow, λ = 0.46

AE = 3.63, EP = 0.285 AE = 3.51, EP = 0.276

Figure 2. Optic flow for the “Hydrangea” image pair from the Middlebury dataset [4]. Comparing to
ground truth, the flow using TVl2 has smaller error measures (average angular error (AE), average endpoint
error (EP)) than with TVl1. Image size 584 × 388 using 22 × 22 labels. The run time for TVl1 and TVl2 is
13.95, respectively 15.19, seconds, requiring 1182, respectively 1299, MB of memory.

images the optical flow is transferred to and iteratively refined on the next higher resolution.
As a result, these methods generally cannot detect large scale motion of small scale objects.

This is demonstrated in Figure 4: the ball on the left side of the images is not recognized
for any choice of the parameters. In contrast, our convex approach handles the original,
nonlinearized data term and avoids this limitation. We used the publicly available source
code for [40],3 respectively binaries for [43],4 for the experiments. The CPU run times for
[40, 43] (no GPU versions are available) are comparable with the GPU run times for the
convexification.

On the other hand, for small scale motion, state-of-the-art local methods tend to outper-
form the convexification method in terms of flow quality; see the comparison in [22] for the
case of TVl1 . However, this comes at the cost of increased complexity: they usually employ
highly engineered data terms and features such as handling of occlusions and illumination
changes, combined in a multistage optimization framework. In contrast, we use a very simple

3See http://ps.is.tuebingen.mpg.de/person/black.
4See http://www.cse.cuhk.edu.hk/∼leojia/projects/flow.

http://ps.is.tuebingen.mpg.de/person/black
http://www.cse.cuhk.edu.hk/~leojia/projects/flow
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Image 1 Image 2 Encoding

TVl1 , λ = 6.5 λ = 7 λ = 7.5 λ = 8 λ = 10

TVl2 , λ = 6 λ = 7 λ = 9 λ = 10 λ = 15

Figure 3. Rotational invariance. The synthetic image pair consists of two identical circles, traveling along
the x-axis and diagonally. Although the two motions are equal except for direction, TVl1 prefers grid aligned
motions. The diagonal one disappears first when the regularizer weight λ increases. In contrast, the rotationally
invariant TVl2 handles the two motions equally. The right and top artifacts arise because of occlusions, which
are not modeled by the simple data term (5.2). 160 × 120 images using 80× 80 labels.

data term since the focus of this paper lies in the regularizer part. With more elaborate
data terms the convexification method is likely to achieve competitive results, which is left for
future work.

5.2. Color denoising. A natural application of our framework is to apply the coupled
regularizers to denoise color images f : Ω → R

3. We seek an image u : Ω → R
3 minimizing

(5.5) E(u) =

∫
Ω
g(x, u(x)) dx + TV (u),

where TV is either TVl2 or TVl1 . Note that our framework allows possibly nonconvex data
terms g. Specifically, we choose the truncated quadratic differences, or the truncated linear
ones:

(5.6) g2(x, t) =

3∑
i=1

min
{
T, (ti − fi(x))

2
}
, g1(x, t) =

3∑
i=1

min
{
T, |ti − fi(x)|

}
with a fixed threshold 0 < T ≤ 1. Since g is separable in each case, the model allows for a fast
implementation with only linearly many constraints, as described in section 3.3. Note that the
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Image 1 Image 2

Local [40], 32 s Local [43], 243 s Convex (proposed), 110 s

Figure 4. Comparison with local approaches, optical flow between frames 10 and 12 of the “Backyard”
sequence from the Middlebury dataset [4]. Due to linearization and coarse-to-fine schemes, local approaches
usually fail to correctly recognize large motion of small scale objects, such as the orange ball (moving downwards,
green color in the flow encoding in Figure 3). In contrast, convex approaches, such as the proposed approach,
can use the original nonconvex data term and are able to recognize such motion. Image size 544 × 408 using
75× 75 labels. Run time for local methods is on the CPU (no GPU versions are available), for convexification
on the GPU.

data term is convex for T = 1, and nonconvex for T < 1. More precisely, e.g., for g2, it becomes
nonconvex once T has an effect on g2, i.e., for T < maxx∈Ω,1≤i≤kmax(fi(x), 1 − fi(x))

2.
To compare the denoising capabilities of TVl2 and TVl1 , we perform an experiment where

we add a certain amount of noise to several given clean images, and then we try to recover these
images by means of TV denoising. We compute the maximal achievable peak signal-to-noise
ratios (PSNRs), defined by

(5.7) PSNR(u, f) = 10 log10
3∑

x∈Ω‖u(x)− f(x)‖22
,

where we take the Euclidean distance of the RGB values u(x), f(x) ∈ R
3. Higher PSNR values

indicate a better quality of the reconstruction u.
As seen in Figure 5 in the case of Gaussian noise and a truncated quadratic data term

g2 in (5.6), TVl2 systematically leads to a better denoising quality, which is indicated by the
higher PSNR values. We have chosen the weights λ to maximize these values in each case.
The best denoising results are achieved using the coupling TVl2-regularizer in combination
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Noisy

image

14.76 14.83 14.65

Separable TVl1 ,

convex
data term
T = 1

24.47 23.49 25.88

Separable TVl1 ,

nonconvex
data term
T = 0.3

24.49 23.53 25.90

Coupled TVl2 ,

convex
data term
T = 1

25.01 24.10 26.35

Coupled TVl2 ,

nonconvex
data term
T = 0.3

25.03 24.12 26.39

Original

image

Figure 5. Denoising. Input images were degraded by additive channelwise Gaussian noise with standard
deviation σ = 0.2. For each image and regularizer, the optimal weight λ was chosen manually to maximize
the PSNR value. The coupled TVl2-regularizer leads to systematically higher PSNR values and thus denoising
quality. Using a nonconvex data term, g2 in (5.6), reconstructions of a higher quality can be achieved. Label
space 32× 32× 32.

with the nonconvex truncated data term with T = 0.3. Note that minimizing energies with
nonconvex data terms and coupled regularizers becomes possible only with our proposed
convex relaxation framework. Approach [39] allows nonconvex data terms, but the regularizer
must be separable, and [21] allows coupling regularizers, but the data term must be convex.
The run times are independent of the data term and are listed in Table 3.

Figure 6 further compares the denoising capabilities of the different regularizers for a fixed
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Table 3
Run times (s) for Figure 5. Label space 32× 32× 32.

Image TVl1 TVl2

368 × 270 2.04 2.85

481 × 321 3.51 5.16

326 × 244 2.01 2.79

Input TVl1 , 28.78 TVl2 , 29.72 TVJ , 29.85

Noisy, 15.68 Huber-TVl1 , 29.17 Huber-TVl2 , 29.97 Huber-TVJ , 30.27

Figure 6. Regularizer comparison. Input image has been degraded by impulse noise (20% of pixels set to
random values). For each regularizer, the denoising model with a nonconvex data term (g1 in (5.6), T = 0.2) was
solved with manually chosen optimal parameters λ and ε. The coupled regularizers TVl2 and TVJ outperform
the separable TVl1 in denoising quality in terms of the PSNR values. The Huber versions consistently improve
the result. Label space 16× 16× 16.

data term. In the input image 20% of all pixels were set to random RGB values. For this
case we use the robust truncated linear data term g1 in (5.6) with T = 0.2. The coupling
regularizers TVl2 and TVJ become possible only with our approach and lead to better denoising
results than with the separable regularizer TVl1 . While TVJ yields the best results, it is also
the most costly regularizer memorywise. Switching to the Huber-regularized versions of the
total variations has a positive effect on the denoising quality in each case. This is because
it allows a smoother variation of the solution, which is then able to more closely resemble
the natural image. The best result is achieved with Huber-TVJ , which, however, requires the
general costly implementation scheme (4.19). The run times for this experiment, as well as
the GPU memory requirements, are given in Table 4.

Table 4
Run times (s) and required GPU memory (MB) for Figure 6. Image resolution 341 × 256, label space

16× 16× 16.

TVl1 Huber-TVl1 TVl2 Huber-TVl2 TVJ Huber-TVJ

Run time 1.04 1.07 1.42 1.58 126 329
Memory 131 131 181 181 8314 9710
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5.3. Color inpainting. Another useful application is inpainting. When a color image
f : Ω → R

3 has some missing parts in an area A ⊂ Ω, the task is to inpaint the missing
colors in A using the available information from Ω \ A. This can be formulated as an energy
minimization problem

(5.8) E(u) =

∫
Ω
g(x, u(x)) dx + R(u).

The data term ensures that u = f in Ω\A and lets u vary freely in A. The resulting inpainted
values in A will then be interpolated from the surrounding values in a way such that the
regularizer value R(u) is minimal. We set

(5.9) g(x, t) =

k∑
i=1

{
min

{
T, (ti − fi(x))

2
}

if x ∈ Ω \ A,
0 if x ∈ A.

We use R = TVl1 and R = TVl2 with a very small weight λ = 0.001 so that the given values
in Ω \A remain unchanged.

Figure 7 shows the removal of text on top of the image (T = 0.3). Comparing the obtained
inpainted values with the known true values, we can compute the corresponding PSNR values.
The coupled TVl2 achieves a slightly higher value than the separable TVl1 . For the 512× 384
image using 32× 32× 32 labels, the run time for TVl1 is 16.75 seconds, while that for TVl2 is
24.33 seconds.

6. Conclusion. We introduced convex relaxations for nonconvex variational models on
vector-valued functions which are computationally tractable and in a certain sense as tight as
possible. In contrast to existing relaxations of vectorial multilabel problems, we can handle
the combination of nonconvex data terms with coupled regularizers such as TVl2 and Huber-
TVl2 . The key idea is to consider a collection of hyperplanes with a relaxation that takes
into account the entire functional rather than treating data term and regularizers separately.
We provided a theoretical analysis, detailed the implementations for different functionals, and
presented run time and memory requirements. In particular, for the isotropic TVl2 and Huber-
TVl2 regularizers we proposed efficient equivalent constraint reformulations. This allows one to
account for channel coupling with negligible overhead in memory and run time compared to the
uncoupled versions of these regularizers. In numerous experiments on denoising, optical flow,
and inpainting, we experimentally demonstrated that coupled l2-regularizers give systematic
improvements regarding rotational invariance and quantitative performance.

Appendix A. Proof of Lemma 2.3. Here we give a proof of Lemma 2.3 in case u is a
function with bounded variation.

Proof. When u ∈ BV (Ω; Γk), its derivative Du has an absolutely continuous part with
respect to the Lebesgue measure (traditionally denoted by ∇u(x) dx) and a singular part Dsu
(consisting of a “Cantor” part and a “Jump” part; see [2]). Then, the integral in (2.19) is
classically defined [16] as∫

Ω
f(x,Du) =

∫
Ω
f(x,∇u(x)) dx +

∫
Ω
f∞(x, νu(x))|Dsu|(x),
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Image Image with text

TVl1-inpainting TVl2 -inpainting

PSNR 24.04 PSNR 24.09

Figure 7. Inpainting. Text has been placed on top of the input image (top row). This text is to be removed
through inpainting, i.e., by filling in suitable colors which are consistent with the surrounding pixels. The
inpainted image values are computed by minimizing their TVl1 or TVl2 energy (bottom row). The coupled TVl2

achieves a slightly higher PSNR value than TVl1 , compared with the known solution. Label space 32× 32× 32.

where νu(x) = Dsu
|Dsu| is the (unit) Radon–Besicovitch derivative of the measure Dsu with

respect to its total variation, and f∞(x, p) = limt→∞ f(x, tp)/t is the convex, one-homogeneous
recession function of f at ∞. See [16, 5] for details. Observe that since we have assumed
f(x, 0) = minp f(x, p) = 0, we have f(x, sp)/s ≤ f(x, tp)/t if s ≤ t, so that

f∞(x, p) = sup
t>0

1

t
f(x, tp)

(and f∞ is l.s.c. as a supremum of l.s.c. functions).

We will admit the following fact: the function u 	→ ∫
Ω f(x,Du) is l.s.c. in L

1(Ω;Rk), that
is, if un → u in L1, then ∫

Ω
f(x,Du) ≤ lim inf

n→∞

∫
Ω
f(x,Dun);
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see, for instance, [15, 6, 5]. Here the (semi)continuity of f is important, whereas in the W 1,1

case, f could be merely measurable in the first variable.
We first remark that we may assume that there exists L > 0 with

(A.1) f(x, p) ≤ L|p| .

Indeed, it is always possible to replace f(x, p) with the inf-convolution fL(x, p):= minq f(x, q)+
L|p− q|, which satisfies (A.1) (since f(x, 0) = 0) and is such that the union for L > 0 of the
corresponding sets K0 is the set K0 of f . The conclusion easily follows.

Next, we also assume that f is uniformly continuous in x (for p bounded), but it is a bit
more complicated to explain why. The idea is to define, for λ > 0,

fλ(x, p) = min
y∈Ω

λ|y − x||p|+ f(y, p),

which satisfies

|fλ(x, p)− fλ(y, p)| ≤ λ|x− y||p|
and supλ>0 fλ(x, p) = f(x, p). However, this new f is not convex in p, and one must show
that its convex envelope f∗∗λ (x, p) (with respect to the second variable) also enjoys these
properties. Given any x, y ∈ Ω, p ∈ R

d×k, and ε > 0, since dimR
d×k = dk, there exists

(θi, pi)
dk
i=1 ⊂ (R × R

d×k)dk with
∑

i θipi = p,
∑

i θi = 1, θi ≥ 0, and such that f∗∗λ (y, p) ≥∑
i θifλ(y, pi)− ε. Hence, using (2.18) and (A.1) (which are trivially still satisfied by fλ),

f∗∗λ (x, p)− f∗∗λ (y, p) + ε ≤ λ|x− y|
∑
i

θi|pi|

≤ λ|x− y|
∑
i

θi

(
1 +

fλ(y, pi)

C

)
≤ λ|x− y|

(
1 +

f∗∗λ (y, p) + ε

C

)
≤ λ|x− y|

(
1 +

L

C
|p|+ ε

C

)
so that, letting ε→ 0, we see that f∗∗λ satisfies

(A.2) |f∗∗λ (x, p)− f∗∗λ (y, p)| ≤ C ′|x− y|(1 + |p|)

for some constant C ′.
Then, we must check that the convex, l.s.c. functions supλ f

∗∗
λ (x, p) and f(x, p) are the

same. If not (thanks to the separation theorem), there exist a ∈ R
d×k, b′ < b ∈ R, and a point

(x, p) such that f∗∗λ (x, p) ≤ a : p+ b′ for all λ, while

(A.3) a : q + b ≤ f(x, q)

for all q ∈ R
d×k, where “:” denotes the scalar product of matrices. This means that one can

find (θλi , p
λ
i )
dk
i=0 ⊂ (R× R

d×k)dk with limλ→∞
∑

i θ
λ
i p

λ
i = p and

(A.4)
∑
i

θλi fλ(x, p
λ
i ) ≤ a : p+ b′′,
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where b′′ = (b + b′)/2. Up to a subsequence, one has θλi → θ̄i, and either pλi → p̄i (if
i ∈ I ⊂ {0, . . . , dk}) or tλi = |pλi | → ∞ and ξλi = pλi /t

λ
i → ξ̄i, a unit vector (when i �∈ I). In

the latter case, one introduces yλi such that

fλ(x, p
λ
i ) = λ|x− yλi ||pλi |+ f(yλi , p

λ
i ),

and one observes that, given any t > 0, if λ is large enough so that tλi > t,

fλ(x, p
λ
i ) ≥ f

(
yλi , t

tλi
t
ξλi

)
≥ tλi

t
f(yλi , tξ

λ
i ).

Hence, denoting ρλi = θλi t
λ
i for i �∈ I, by (A.4) one has

∑
i∈I

θλi fλ(x, p
λ
i ) +

∑
i �∈I

ρλi
1

t
f(yλi , tξ

λ
i ) ≤ a : p+ b′′,

and since ρλi must therefore be bounded from above, we may also assume that it converges to
some ρ̄i for each i �∈ I (in particular, we must have θ̄i = 0 in these cases). Since f is l.s.c., in
the limit we obtain ∑

i∈I
θ̄if(x, p̄i) +

∑
i �∈I

ρ̄i
1

t
f(x, tξ̄i) ≤ a : p+ b′′

for any t > 0, and it follows from (A.3) that

a :

⎛⎝∑
i∈I

θ̄ip̄i +
∑
i �∈I

ρ̄iξ̄i

⎞⎠+ b

⎛⎝∑
i∈I

θ̄i +
∑
i �∈I

ρ̄i
t

⎞⎠ ≤ a : p+ b′′.

Sending t→ ∞ and observing that
∑

i∈I θ̄ip̄i +
∑

i �∈I ρ̄iξ̄i = p, we obtain

a : p+ b
∑
i∈I

θ̄i = a : p+ b ≤ a : p+ b′′,

where we have used θi = 0 if i �∈ I. This is a contradiction, since b′′ < b.

It follows that supλ f
∗∗
λ (x, p) = f(x, p), and we easily deduce that also supλ(f

∗∗
λ )∞ (x, p) =

f∞(x, p). Therefore, for any u with bounded variation, supλ
∫
Ω f

∗∗
λ (x,Du) =

∫
Ω f(x,Du).

Moreover the set K0(λ) of f
∗∗
λ is clearly a subset of K0, so that if Lemma 2.3 holds for f∗∗λ , it

will also hold for f .

We observe eventually that it is not restrictive to assume that f is smooth in the p variable
(a mollification of (f(x, p)− ε)+ will provide a smooth, convex function below f , enjoying the
same properties as f , and arbitrarily close).

To sum up, we are reduced to the case where f is convex, L-Lipschitz (satisfying (A.1)),
and smooth in p, and, moreover, has the spatial regularity (A.2).

Given u ∈ BV (Ω; Γk), we fix δ > 0 and choose a subset Ω′ ⊂⊂ Ω such that
∫
Ω f(x,Du) <∫

Ω′ f(x,Du) + δ. We let ρ be a symmetric mollifier (convolution kernel) and let uε = ρε ∗ u,
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which is well defined in Ω′ if ε > 0 is small enough. Moreover, by lower semicontinuity,∫
Ω′ f(x,Du) ≤ lim infε→0

∫
Ω′ f(x,∇uε(x)) dx so that if ε is small enough,

(A.5)

∫
Ω′
f(x,∇uε(x)) dx >

∫
Ω
f(x,Du)− δ.

Since this new function uε is smooth, we can let for all x (we drop the dependence on (ti)
k
i=1;

i.e., φ is defined as the same value for every t)

(φxi (x))
k
i=1 = ∇pf(x,∇uε(x))

(which is continuous, since by using the convexity one can check that ∇pf is continuous) and
for each i

φti(x) =
1

k
f∗
(
x,∇pf(x,∇uε(x))

)
.

The Legendre–Fenchel identity [36]

(A.6) f(x,∇uε(x)) + f∗
(
x,∇pf(x,∇uε(x))

)
= (∇uε(x)) : (∇pf(x,∇uε(x)))

(denoting by “:” the scalar product of matrices) shows that also φti is continuous. By definition,
using (A.6) again and (A.5),

k∑
i=1

∫
Ω′
φi ·D1uεi =

k∑
i=1

∫
Ω′
φxi (x) · ∇uεi (x)− φti(x) dx

=

∫
Ω′
f(x,∇uε(x)) dx >

∫
Ω
f(x,Du)− δ.

It is enough to observe, now, that (extending φ by the value 0 in Ω \ Ω′)∫
Ω′
φxi (x) · ∇uεi (x) dx =

∫
Ω′
φxi (x) ·

(∫
Ω
ρε(x− y)Dui(y)

)
dx

=

∫
Ω

(∫
Ω′
φxi (x)ρε(x− y) dx

)
·Dui(y) =

∫
Ω
(ρε ∗ φxi )(y) ·Dui(y)

for each i, while, in the same way,
∫
Ω′ φ

t
i(x) dx =

∫
Ω ρε ∗ φti(y) dy for each i. We deduce that

k∑
i=1

∫
Ω
(ρε ∗ φi) ·D1ui ≥

∫
Ω
f(x,Du)− δ,

and Lemma 2.3 follows if we show that ρε ∗ φ is in (or close to) K0. For any y ∈ Ω, p ∈ R
d×k,

one has (including in Ω \Ω′ where φ has been defined as 0) using (A.6) and then (A.2)

k∑
i=1

φti(y) ≥
k∑
i=1

φxi (y) · pi − f(y, p) ≥
k∑
i=1

φxi (y) · pi − f(x, p)− C ′|x− y|(1 + |p|)
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so that, thanks also to (2.18),

k∑
i=1

(ρε ∗ φti)(x) ≥
k∑
i=1

(ρε ∗ φxi )(x) · pi − f(x, p)−C ′ε(1 + |p|)

≥
k∑
i=1

(ρε ∗ φxi )(x) · pi −
(
1 + ε

C ′

C

)
f(x, p)− 2εC ′.

Hence, the field φ̃, defined by φ̃xi = (ρε ∗φxi )/(1+ εC ′/C) and φ̃ti = (ρε ∗φti+2εC ′/k)/(1+
εC ′/C) for each i, is an element of K0, which is such that

sup
ψ∈K0

k∑
i=1

∫
Ω
ψi ·D1ui ≥

k∑
i=1

∫
Ω
φ̃i ·D1ui

≥
(∫

Ω
f(x,Du)− δ − 2εC ′|Ω′|

)(
1 + ε

C ′

C

)−1

.

We can then send ε and then δ to zero to complete the proof.

Appendix B. Projections.

B.1. Projection onto cones y ≥ α‖x‖2. Let α ≥ 0. For x0 ∈ R
d and y0 ∈ R consider

the projection

(B.1) argmin
x∈Rd, y∈R,
y≥α‖x‖2

(x− x0)
2

2
+

(y − y0)
2

2
.

If already y0 ≥ α‖x0‖2, the solution is (x, y) = (x0, y0). Otherwise set

(B.2) v := max

(
0,

‖x0‖2 + αy0
1 + α2

)
.

The solution is then given by

(B.3) x =

{
v x0

‖x0‖2 if x0 �= 0

0 else

}
, y = α‖x‖2.

Proof. First, for y0 ≥ α‖x0‖2 the projection is obviously (x, y) = (x0, y0). Otherwise, we
set x = tω, t ≥ 0, ω ∈ R

d with |ω| = 1. For fixed t the expression (x − x0)
2 = (tω − x0)

2 is
minimized for ω = x0

‖x0‖2 if x0 �= 0 and with arbitrary ω else. Since (tω − x0)
2 = (t − |x0|)2,

the solution (t, y) is given by the projection (t, y) = πy≥αt
(‖x0‖2, y0). This projection can

be easily computed by projecting onto the line y = αt, respectively, on the point (0, 0),
depending on whether (‖x0‖2, y0) is above or below the corresponding orthogonal line through
the origin.



CONVEX RELAXATION OF VECTORIAL PROBLEMS 333

B.2. Projection onto parabolas y ≥ α‖x‖22. Let α > 0. For x0 ∈ R
d and y0 ∈ R

consider the projection onto a parabola:

(B.4) argmin
x∈Rd, y∈R,
y≥α‖x‖22

(x− x0)
2

2
+

(y − y0)
2

2
.

If already y0 ≥ α‖x0‖22, the solution is (x, y) = (x0, y0). Otherwise, with a := 2α‖x0‖2,
b := 2

3(1− 2αy0), and d := a2 + b3 set

(B.5) v :=

⎧⎨⎩ c− b
c with c =

3
√
a+

√
d if d ≥ 0,

2
√−b cos

(
1
3 arccos

a√−b 3
)

if d < 0.

If c = 0 in the first case, set v := 0. The solution is then given by

(B.6) x =

{
v
2α

x0
‖x0‖2 if x0 �= 0

0 else

}
, y = α‖x‖22.

Remark. In the case d < 0 it always holds that a√−b3 ∈ [0, 1]. To ensure this also numeri-

cally, one should compute d by d = (a−√−b 3)(a+√−b 3) for b < 0.
Proof. First, for y0 ≥ α‖x0‖22 the projection is obviously (x, y) = (x0, y0). Otherwise, we

dualize the parabola constraint using δz≥0 = supλ≥0−λz (for z ∈ R):

(B.7) min
x∈Rd, y∈R

max
λ≥0

(x− x0)
2

2
+

(y − y0)
2

2
− λ

(
y − α‖x‖22

)
.

Since this expression is convex in x, y and concave in λ, we can interchange the ordering of
min and max. The inner minimization problem in x and y is then easily solved, giving the
following necessary representation, with a certain λ ≥ 0:

(B.8) x =
x0

1 + 2αλ
, y = y0 + λ.

For instance, x has the same direction as x0, so only the norm of x is unknown. The solution
must also necessarily satisfy y = α‖x‖22. Plugging this into the second equation of (B.8), as
well as the expression for λ obtained from the first equation by taking the norms, we obtain
the cubic equation

(B.9) 2α2‖x‖32 + (1− 2αy0)‖x‖2 − ‖x0‖2 = 0.

Set a := 2α‖x0‖2, b := 2
3 (1− 2αy0), and t := 2α‖x‖2. Then (B.9) becomes

(B.10) t3 + 3bt− 2a = 0.

Since the derivative 3t2 + 3b of the left-hand side is monotonically increasing for t ≥ 0, the
t we are looking for is the unique nonnegative solution of (B.10) for x0 �= 0 (so that a > 0).
This cubic equation can be solved using the method of elementary hyperbolic/trigonometric
function identities [30], yielding the claimed solution. The second case in (B.5) corresponds
to “x2” in equation (23) of [30].

For x0 = 0, because of the assumed inequality y0 < α‖x0‖22 = 0 we have the first case in
(B.5), which leads to the correct solution (x, y) = (0, 0).
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B.3. Projection for Huber-TVJ . Let α > 0 and λ > 0. For x0 ∈ R
d×k and y0 ∈ R

consider the projection

(B.11) argmin
x∈Rd×k, y∈R,

y≥α‖x‖2∗, ‖x‖∗≤λ

(x− x0)
2

2
+

(y − y0)
2

2

with the nuclear norm ‖·‖∗ in (3.42). Here we will consider only the case of two-dimensional
color images, i.e., d = 2 and k = 3. Let x0 = U0Σ0V

−1
0 be the singular value decomposition of

x0, with some U0 ∈ SO(2) and V0 ∈ SO(3), and with the matrix Σ0 ∈ R
2×3, Σ0 = diag(σ01 , σ

0
2),

containing the singular values σ01 ≥ σ02 ≥ 0. Using the definition (3.42), the projection (B.11)
can be reformulated in terms of the singular values σ1, σ2 of x:

(B.12) argmin
x∈Rd×k, y∈R,

y≥α(σ1+σ2)2, σ1+σ2≤λ

2∑
i=1

(σi − σ0i )
2

2
+

(y − y0)
2

2
.

Having a (σ1, σ2, y) which solves (B.12), the solution (x, y) of (B.11) can be obtained by
x = U0 diag(σ1, σ2)V

−1
0 . Finally, the solution (σ1, σ2, y) of (B.12) is (σ01 , σ

0
2 , y

0) if this point
already satisfies the constraints, and otherwise, with δ := σ01 − σ02, is given by

(B.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ, 0, max(αλ2, y0)

)
if δ ≥ λ and y0 ≥ αλ2 − σ01−λ

2αλ ,(
λ+δ
2 , λ−δ2 , max(αλ2, y0)

)
if δ ≤ λ and y0 ≥ αλ2 − σ01+σ

0
2−λ

4αλ ,(
x̂√
2
+ δ

2 ,
x̂√
2
− δ

2 , ŷ
)

with (x̂, ŷ) := πy≥2αx2

(
σ01+σ

0
2√

2
, y0

)
if δ ≤ λ and y0 ≥ αδ2 − σ02

2αδ ,

(x̂, 0, ŷ)

with (x̂, ŷ) := πy≥αx2(σ01 , y0) otherwise.

Proof. First, let us establish the equivalence of (B.11) and (B.12). For candidate solutions
(x, y) of (B.11), let x = UΣV −1 with U ∈ SO(2), V ∈ SO(3), Σ ∈ R

2×3, Σ = diag(σ1, σ2)
be the singular value decomposition of x. By Mirsky’s inequality [31] we have (x − x0)

2 ≥∑2
i=1(σi − σ0i )

2 with equality if U = U0, V = V0. Thus, an optimal x for (B.11) will have the
form U0ΣV

−1
0 , where the singular values σ1, σ2 satisfy the constraints of (B.12).

The derivation of (B.13) is rather lengthy, but straightforward, The third case corresponds
to the projection onto the paraboloid segment y = α(σ1 + σ2)

2, σ1, σ2 ≥ 0, σ1 + σ2 ≤ λ, and
is active when there is an outer surface normal passing through the point (σ01 , σ

0
2 , y

0). The
fourth case is the projection onto the parabola line y = α(σ1 + σ2)

2 = ασ21 , 0 ≤ σ1 ≤ λ,
σ2 = 0, active when there is an orthogonal line on it passing through the given point. The
second case projects onto the plane segment y ≥ α(σ1 + σ2)

2 = αλ2, σ1, σ2 ≥ 0, σ1 + σ2 = λ,
and the first case projects onto the line y ≥ α(σ1 + σ2)

2 = αλ2, σ1 = λ, σ2 = 0.
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