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Abstract. We propose a framework for temporally consistent video
completion. To this end we generalize the exemplar-based inpainting
method of Criminisi et al . [7] to video inpainting. Specifically we address
two important issues: Firstly, we propose a color and optical flow inpaint-
ing to ensure temporal consistency of inpainting even for complex motion
of foreground and background. Secondly, rather than requiring the user
to hand-label the inpainting region in every single image, we propose
a flow-based propagation of user scribbles from the first to subsequent
video frames which drastically reduces the user input. Experimental com-
parisons to state-of-the-art video completion methods demonstrate the
benefits of the proposed approach.
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1 Introduction

Videos of natural scenes often include disturbing artifacts like undesired walking
people or occluding objects. In the past ten years, the technique of replacing
disruptive parts with visually pleasing content grew to an active research area
in the field of image processing. The technique is known as video inpainting and
has its origin in image inpainting. While image inpainting has been researched
very active in the past years the problem of video inpainting has received much
less attention. Due to the additional temporal dimension in videos, new technical
challenges arise and make calculations much more complex and time consuming.
At the same time, video completion has a much larger range of applications,
including professional post-productions or restoration of damaged film.

In this work, we focus on two central challenges in video completion, namely
temporal consistency and efficient mask-definition.

1.1 Related Work

The literature on image inpaiting can be roughly grouped into two complemen-
tary approaches, namely inpainting via partial differential equations (PDEs) and
exemplar-based inpainting. PDE-based inpainting was first proposed by Masnou
and Morel [13, 12] and popularized under the name of inpainting by Bertalmio
et al . [4, 3]. The key idea is to fill the inpainting region by propagating isolines of
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Fig. 1: Sketched approach. We propose an efficient algorithm for semi-
automatic video inpainting. In particular, we impose temporal consistency of
the inpainting not by a tedious sampling of space-time patches but rather by
a strategy of flow- and color inpainting. We inpaint the optical flow and sub-
sequently modify the distance function in an exemplar-based image inpainting
such that consistency with corresponding patches in previous frames is imposed.

constant color from the surrounding region. These techniques provide pleasing
results for filling small regions, for example to remove undesired text or scratches
from images. For larger regions, however, the propagation of similar colors creates
undesired smoothing effects. To account for this shortcoming, texture synthesis
techniques were promoted, most importantly exemplar-based techniques [9, 1,
8] which can fill substantially larger inpainting regions by copy-pasting colors
from the surrounding areas based on patch-based similarity. Criminisi et al . [6,
7] presented an approach which combines the two methods to one efficient im-
age inpainting algorithm. The algorithm works at the image patch level and
fills unknown regions effectively by extending texture synthesis with an isophote
guided ordering. This automatic priority-based ordering significantly improves
the quality of the completion algorithm by preserving crucial image structures.

Patwardhan et al . [17, 18] and Werlberger [24] extended and adapted Crim-
inisi et al .’s [7] method for video inpainting. The approach of Patwardhan et al .
is using a 5D patch search and takes motion into account. Their approach leads
to satisfying results as long camera movement matches some special cases. We
are not restricted to specific camera motion.

The idea of using graph cuts for video inpainting was recently introduced
by Granados et al . [11]. They propose a semi-automatic algorithm which opti-
mizes the spatio-temporal shift map. This algorithm presents impressive results
however, the approach only has very limited practicability as the runtime takes
between 11 and 90 hours for 200 frames.

Newson et al . [14, 15] provided an important speed-up by extending the
PatchMatch algorithm [2] to the spatio-temporal domain thereby drastically
accelerating the search for approximate nearest neighbors. Nevertheless, the run-
time for high-resolution videos is about 6 hours for 82 frames.
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1.2 Contributions

We propose a method for video completion which resolves several important
challenges:

+ We propose a method to interactively determine the inpainting region over
multiple frames. Rather than hand-labeling the inpainting region in every
single frame, we perform a flow-based propagation of user-scribbles (from
the first frame to subsequent frames), followed by an automatic foreground-
background segmentation.

+ We introduce temporal consistency not by sampling spatio-temporal patches,
but rather by a combination of color- and flow-based inpainting. The key idea
is to perform an inpainting of the optical flow for the inpainting region and
subsequently perform an exemplar-based image inpainting with a constraint
on temporal consistency along the inpainted optical flow trajectories - see
Figure 1. As a consequence, the proposed video completion method can
handle arbitrary foreground and background motion in a single approach
and with substantially reduced computation time.

+ The inpainting is computed without any pre- or post-processing steps. An
efficient GPU-based implementation provides pleasing video completion re-
sults with minimal user input at drastically improved runtimes compared to
state-of-the-art methods.

2 Interactive Mask-Definition

In [3, 11, 25, 26] manual labeling of the inpainting region in all frames of the
videos is needed. This makes video editing an extremely tedious and somewhat
unpleasant process. We present a simple tool for interactive mask-definition with
minimal user input. The requirements for such a tool include: (i) an intuitive user
interface (ii) a robust mask definition and (iii) a real-time capable algorithm.

The method of Nieuwenhuis and Cremers [16] provides a user-guided image
segmentation algorithm that generates accurate results even on images with dif-
ficult color and lighting conditions. The user input is given by user scribbles
drawn on the input image. The algorithm analyzes the spatial variation of the
color distributions given by the scribbles. Thanks to their parallel implementa-
tion, computation times of around one second per frame can be obtained.

Based on this user input, we (i) automatically relocate the scribbles through-
out the video sequence via optical flow and (ii) frame-wise apply the image
segmentation method according to Nieuwenhuis and Cremers [16].

2.1 Scribble Relocation via Optical Flow

To transport scribbles over time we use the optical flow method of Brox et
al . [5] which computes the displacement vector field (u, v) by minimizing an
energy functional of the form:

E (u, v) = EData + α ESmooth (1)
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with some regularization parameter α > 0. The data term, EData, measures
the global deviations from the grey value and gradient constancy assumption.
The smoothness term, ESmooth, is given by the discontinuity-preserving total
variation.

Figure 2 b) shows the optical flow between two frames of the image sequence
by Newson et al . [15]. We use this flow to transport the scribbles from frame to
frame (Figure 2 a,c). Green scribbles are placed on the region to be inpainted
and yellow ones on the search space for the inpainting algorithm. Optionally, red
scribbles can be used to mark unrelated image parts in order to shrink the search
space. Depending on the user scribbles, a two- or three-region segmentation
according to Nieuwenhuis and Cremers [16] is computed.

a) Frame Ii b) Flow to Ii+1 c) Propag. scribbles d) Segmentation

Fig. 2: Automatic segmentation by scribble propagation via optical
flow. Scribbles are placed on the first frame and propagated to the next frames
by optical flow. Segmentation is computed based on the transported scribbles.

2.2 Segmentation according to Nieuwenhuis and Cremers

Let I : I → Rd denote the input frame defined on the domain I ⊂ R2. The
task of segmenting the image plane into a set of n pairwise disjoint regions Ii:
I =

⋃̇n
i=1Ii, Ii ∩ Ij = ∅ ∀ i 6= j can be solved by computing a labeling

u : I → {1, . . . , n}, indicating which of the n regions each pixel belongs to:
Ii =

{
x
∣∣ u (x) = i

}
. The segmentation time for a video sequence can be speed-

up by initializing the indicator function u with the resulting segmentation of the
previous frame.
We compute a segmentation of each video frame by minimizing the following
energy [16]:

E(I1, . . . , In) =
λ

2

∑n

i=1
Perg (Ii) + λ

∑n

i=1

∫
Ii
fi (x) dx,

where fi (x) = − log P̂
(
I(x), x

∣∣u (x) = i
)
. Perg (Ii) denotes the perimeter of

each set Ii, λ is a weighting parameter. The expression P̂
(
I(x), x

∣∣u (x) = i
)

denotes the joint probability for observing a color value I at location x given
that x is part of region Ii. It can be estimated from the user scribbles. For further
details of the segmentation algorithm we refer to [16].

To summarize, our inpainting method brings along a tool which allows the
user to quickly define the respective regions on the first video frame, and all the
remaining calculations are working automatically. In contrast, state-of-the-art
methods require the user to manually draw an exact mask on each single video
frame [3, 11, 25, 26] or work with an inflexible bounding box [20].
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3 Flow and Color Inpainting for Video Completion

The major challenge in video inpainting is the temporal dimension: The in-
painted regions have to be consistent with the color and structure around the
hole, and additionally temporal continuity has to be preserved. When applying
image inpainting methods frame by frame, the inpainted videos show artifacts,
like ghost shadows or flickering [20]. Several investigations have been done in
the past years towards a temporally coherent video completion. State-of-the-art
methods, however, have some drawbacks: several pre- and post-processing steps
are required [14, 20], only specific camera motions can be handled [11, 14, 18, 26]
and the calculations are extremely time consuming [10, 11, 14, 26].

We propose a novel approach inspired by the exemplar-based image inpaint-
ing by Criminisi et al . [7] overcoming these problems. We apply inpainting to the
optical flow and define a refined distance function ensuring temporal consistency
in video inpainting. No additional pre- or post-processing steps are required.

3.1 Inpainted Flow for Temporal Coherence

In a temporally consistent video sequence, the inpainted region follows the flow of
its surrounding region. Figure 3 a) shows a person who should be removed from
the video sequence. The desired patches clearly should not follow the hand of the
person, but the flow of the sea. To find the best matching patches, Criminisi et
al . [7] consider the colors around the hole. We additionally claim a similarity
to the patch which naturally flows into this position. This flow is obtained by
inpainting the original flow - see Figure 3 d).

a) Overlayed frames b) Inpainted frames c) Optical flow in a) d) Inpainted flow c)

Fig. 3: Inpainted flow ensures temporal consistency. In order to ensure
temporal consistency, we propose to inpaint the optical flow and additionally
request the found patch to be similar to its origin. The inpainted flow d) should
be approximately the flow of the inpainted video sequence.

3.2 Flow Inpainting

For the inpainting of the optical flow we extended the Telea-Inpainting [21] to
optical flow. Telea-Inpainting is a fast PDE based approach and hence particu-
larly suited to fill missing parts in optical flow images. Let Ω denote the hole in
the optical flow z which has to be replaced, δΩ the contour of the hole and Ωc

the search region (complement of Ω). Telea-Inpainting approximates the value
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of a pixel p on the boarder of the fill-front δΩ by a first order Taylor expansion
combined with a normalized weighting function w(p, q) for q ∈ Bε(p) and ε > 0:

ẑ(p) =

∑
q∈Bε(p)∩Ωc w(p, q)[z(p)−∇z(q)(p− q)]∑

q∈Bε(p)∩Ωc w(p, q)
.

The pixel values are propagated into the fill region along the isophotes by solv-
ing the eikonal equation: |∇T | = 1 on Ω, T = 0 on δΩ using the Tsitsiklis
algorithm [19, 22]. The solution T of the eikonal equation describes the distance
map of the pixels inside Ω to its boundary δΩ.

3.3 Exemplar-Based Inpainting

For the general inpainting, we focused on the exemplar-based inpainting method
for region filling and object removal by Criminisi et al . [7]. This well known best-
first algorithm uses texture synthesis and successfully propagates continuities of
structures along isophotes to the inpainting region.

Computation of the filling priorities Let Ω denote the hole to be replaced
and δΩ the contour of the hole. For each pixel p along the contour δΩ, a filling
priority P (p) is computed. P (p) is defined as the product [7]:

P (p) = ((1− ω)C(p) + ω)D(p). (2)

ω ∈ R is a weighting factor. C(p) :=

∑
q∈Ψp∩(I−Ω) C(q)

|Ψp| is called the confidence

term and D(p) :=
|∇I⊥p ·np|

α the data term. |Ψp| denotes the area of the patch Ψp,
α is a normalization factor and np is a unit vector orthogonal to δΩ in the point p.

The confidence term C(p) measures the amount of reliable information sur-
rounding the pixel p. The intention is to fill first those patches which have more
of their pixels already filled. Wang et al . [23] introduced the weighting factor ω
to control the strong descent of C(p) which accumulates along with the filling.
The data term D(p) is a function of the strength of isophotes hitting the con-
tour of the hole. This factor is of fundamental importance because it encourages
linear structures to be synthesized first. The pixel p̂ with the highest priority:
p̂ = arg maxp∈δΩ P (p) defines the center of the target patch Ψp̂ which will be
inpainted.

Search for the best matching patch In the next step, the patch Ψq̂ which
best matches the target patch Ψp̂ is searched within the source region Φ. For-
mally [7]:

Ψq̂ = arg min
Ψq∈Φ

d (Ψp̂, Ψq) , (3)

where the distance d (·, ·) is defined as the sum of squared differences (SSD) of
the already filled pixels in the two patches.
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This distance, however, is only designed for image inpainting. For the problem
of video inpainting the additional temporal dimension is not considered. We
present a refined distance function, modeled explicitly to maintain temporal
consistency along the video frames. The detailed definition follows in the next
Section 3.4.

Copy and refresh When the search for the best matching patch Ψq̂ is com-
pleted, the target region Ψp̂ ∩ Ω is inpainted by copying the pixels from Ψq̂ to
the target patch Ψp̂. Besides, the boundary of the target region is updated.

The above steps are done iteratively until the target region is fully inpainted.

3.4 Flow Preserving Distance Function

The main difficulty of generalizing classical exemplar-based inpainting to videos
is maintaining temporal consistency. Therefore, we modify the distance func-
tion (3) by Criminisi et al . [7]. The key idea of our approach is that scenes do
not change vastly and changesets can be determined by optical flow. So we as-
sume to already have a well inpainted frame and for further frames to inpaint we
demand similarity to this reference frame. The connection between the reference
frame and the current inpainting point is obtained via the inpainted optical flow
ẑ of the original scene (compare Section 3.2).

The corresponding distance function reads as follows:

d̂(Ψp̂, Ψq) := d(Ψp̂, Ψq) +
β

|Ψp̂ ∩ Φ|
d(Ψẑ−1(p̂), Ψq). (4)

The first term ensures local consistency, as proposed by Criminisi et al . The
second one enforces similarity to a previous inpainted frame and hence tempo-
ral consistency. Ψẑ−1(p̂), using inverse optical flow, points back to the already
inpainted image and ensures temporal consistency.

This distance function enables us to reduce complexity of the patch match
since we do not have to choose a set of 3D patches. Our algorithm can greedily
choose the best patch for the current hole to fill yet can select from all frames
to exploit time redundancy. An illustration is shown in Figure 1.

3.5 Overview of the Algorithm

Interactive Mask Definition. Let I[k] denote the k’th video frame. The user
is asked to roughly scribble (see Section 2) the desired regions in the first frame
I[0]. These scribbles are propagated via optical flow (Figure 2 b) throughout
the video. Depending on the user scribbles a two-region segmentation in ob-
ject Ω (green) and search space Φ (yellow) or a three-region segmentation with
additional region Φr (red) for neglecting parts is computed: I = Ω ∪̇ Φ ( ∪̇ Φr).

This processing gives an accurate mask in an easy and quick manner. State-
of-the-art methods do not tackle how to obtain an accurate mask definition.
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Video Completion by Flow and Color Inpainting. In the proposed image
inpainting algorithm one can choose the number of frames to be inpainted at
the same time. This allows to exploit redundancy in the video sequence.

Using the inpainted optical flow ẑ of the original video sequence we fill the
target region Ω step by step according to Criminisi et al . using our new distance
function (4). Our distance function ensures, that the chosen patch is both locally
consistent and similar to its origin in a previous inpainted frame. This leads to
a temporal consistent inpainted video sequence without any flickering.

4 Experiments and Results

In the following we will show results on various datasets and compare our results
to state-of-the-art approaches for video inpainting. The evaluations show that
we can handle different object and camera motions.

Depending on the video size we choose a patchsize between 8×8 and 12×12
and inpaint 3 to 8 frames at the same time to exploit time redundancy. We
choose β around 1.1 to weight local and temporal consistency.

In Figure 5 we compare two adjacent frames with and without our proposed
consistency term. Without the flow consistency term the results have large de-
viations from one frame to the next one. In the final video such deviations are
observed as disruptive flickering. In contrast, the video sequence inpainted with
our proposed term shows smooth transitions between the frames. We obtain
great results for complex scenes with detailed structures and different types of
camera motions at substantially reduced runtime. Figures 4 and 6 compare our
results to the results of Patwardhan et al . [18] and Newson et al . [15]. Table 1
compares the runtime of our method with the state-of-the-art methods [11, 14,
15, 18, 26].

Table 1: Runtimes. Although our approach includes an interactive mask-
definition we outperform state-of-the-art methods up to a factor of five.

Beach Umbrella Jumping Girl Stairs Young Jaws

264× 68× 98 300× 100× 239 320× 240× 40 1280× 720× 82

Wexler et al . [26] 1h - - -
Patwardhan et al . [18] ≈ 30 min ≈ 1h 15min ≈ 15 min -
Granados et al . [11] 11 hours - - -
Newson et al . [14] 21 min 62 min - -
Newson et al . [15] 24 min 40 min - 5h 48 min

proposed approach 4.6 min 8 min 5 min 20 sec 3h 20min
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Input Frames (Sequence Stairs)

Results by Patwardhan et al . [18]

Our Results

Fig. 4: Comparison to Motion SSD dataset with slight camera movement.

a) Frame 1 b) Frame 2a c) ∆1 d) Frame 2b e) ∆2

Fig. 5: Transition comparison.∆1 shows the transition between a) and b). The
transition is computed without regularization and shows strong video flickering.
In contrast, the transition ∆2 with our approach between a) and d) is smooth
and does not show disruptive flickering.

4.1 Implementation & Runtime

Runtime is a big challenge to all video inpainting algorithms. Especially on high
resolution videos a large amount of data has to be processed. Our parallel imple-
mentation takes around 2 to 150 seconds per frame, depending on the resolution
of the input video on a NVIDIA GeForce GTX 560 Ti. This outruns state-of-the-
art algorithms, requiring much more computing power (like Granados et al . [11]
on a mainframe with 64 CPUs) and runtime (compare Table 1).

5 Conclusion

We propose an interactive video completion method which integrates two in-
novations: Firstly, we replace the tedious hand-labeling of inpainting regions in
all video frames by a semi-automatic procedure which consists of a flow-based
propagation of user scribbles from the first to subsequent frames followed by an
automatic foreground-background segmentation. Secondly, we propose a novel
solution for assuring temporal consistency of the inpainting. Rather than per-
forming a computationally intense sampling of space-time patches, we perform
an optical flow inpainting followed by a flow-constrained image inpainting. An ef-
ficient GPU implementation provides a semi-automatic video inpainting method
which requires substantially less user input and provides competitive video in-
painting results which is around five times faster than competing methods.
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Input Frames (Sequence Fountains)

Results by Newson et al . [15]

Our Results

Input Frames (Sequence Les Loulous)

Results by Newson et al . [15]

Our Results

Input Frames (Sequence Young Jaws)

Results by Newson et al . [15]

Our Results (different boats removed)

Fig. 6: Our results compared to state-of-the-art methods. Evaluations on
the sequences Fountains, Les Loulous and Young Yaws by [15] show that we
obtain the same precision of results, whereas our runtime is much faster. Fur-
thermore, we are not restricted to a static mask and can easily remove different
objects - see our results of the Young Jaws sequence.
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of complex scenes (January 2014), http://hal.archives-ouvertes.fr/hal-00937795

16. Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive
multi-label segmentation. IEEE Trans. on Patt. Anal. and Mach. Intell. 35(5),
1234–1247 (2013)

17. Patwardhan, K., Sapiro, G., Bertalmio, M.: Video inpainting of occluding and
occluded objects. In: IEEE International Conference on Image Processing. vol. 2,
pp. 69–72 (Sept 2005)



12 Michael Strobel, Julia Diebold, Daniel Cremers

18. Patwardhan, K.A., Sapiro, G., Bertalmo, M.: Video inpainting under constrained
camera motion. IEEE Transactions on Image Processing 16(2), 545–553 (2007)

19. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

20. Shih, T., Tang, N., Hwang, J.N.: Exemplar-based video inpainting without ghost
shadow artifacts by maintaining temporal continuity. IEEE Transactions on Cir-
cuits and Systems for Video Technology 19(3), 347–360 (March 2009)

21. Telea, A.: An image inpainting technique based on the fast marching method.
Journal of graphics tools 9(1), 23–34 (2004)

22. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control 40(9), 1528–1538 (1995)

23. Wang, J., Lu, K., Pan, D., He, N., kun Bao, B.: Robust object removal with an
exemplar-based image inpainting approach. Neurocomputing 123, 150–155 (2014),
contains Special issue articles: Advances in Pattern Recognition Applications and
Methods

24. Werlberger, M.: Convex Approaches for High Performance Video Processing. Ph.D.
thesis, Institute for Computer Graphics and Vision, Graz University of Technology,
Graz, Austria (June 2012)

25. Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: Int. Conf.
on Computer Vision and Pattern Recognition. vol. 1, pp. 120–127 (June 2004)

26. Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of video. IEEE Trans.
on Patt. Anal. and Mach. Intell. 29(3), 463–476 (March 2007)


