
Parallel Generalized Thresholding Scheme for

Live Dense Geometry from a Handheld Camera

Jan Stühmer1,2, Stefan Gumhold2, and Daniel Cremers1

1 Department of Computer Science, TU Munich, Germany
2 Department of Computer Science, TU Dresden, Germany

Abstract. Inspired by recent successes in parallelized optic flow estima-
tion, we propose a variational method which allows to directly estimate
dense depth fields from a single hand-held camera in real-time conditions.
In particular we show how the central ingredient of the corresponding op-
tic flow method, namely a thresholding scheme, can be generalized to the
problem of geometric reconstruction considered in this paper and how
it can be parallelized on recent graphics cards. We compare alternative
parallelization strategies and experimentally validate that high-quality
depth maps can be computed in a few milliseconds from a hand-held
camera.

1 Introduction

1.1 From Optic Flow to Geometric Reconstruction

Over the last years parallel algorithms accelerated by means of graphics hardware
have revolutionized many areas of Computer Vision, bringing computationally
intense challenges within the realm of real-time applications. One of the major
breakthroughs in this context was the acceleration of variational optical flow
algorithms [1] which allow to compute highly accurate dense motion fields at
640× 480 pixels with speeds well above 60 frames per second.

For many computer vision problems the optical flow between two frames pro-
vides a correspondence between pairs of pixels in either image which is then
further processed, for example to track articulated object models [2] or to recon-
struct the depth field of a scene [3]. Yet, in many such cases one is not directly
interested in the estimated flow field: For example when reconstructing a static
scene from a moving camera as recently done in [3], the estimation of a motion
vector field seems entirely unnecessary since apart from the 6-parameter camera
motion everything else is static. One may therefore ask: How can we exploit the
drastic accelerations of such parallel algorithms without actually computing a
flow field?

Recently Stühmer et al. [4] proposed a variational approach to compute dense
depth maps from a handheld camera. The estimation of dense geometry from
a handheld camera is formulated as a variational approach that can be solved
by algorithms that are quite reminiscent of optical flow approaches. Yet rather
than computing a vector field that assigns a velocity to each pixel, the geometry

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 450–462, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 451

of the scene is directly determined in a coarse-to-fine manner. In particular,
the central algorithmic component, namely the thresholding scheme proposed
in [1] for computing the primal variables can be generalized to the geometry
reconstruction problem. In this paper, we revisit this formulation and show how
the arising thresholding scheme can be efficiently implemented on graphics cards.

1.2 Related Work

The reconstruction of dense geometry from images is a major challenge in com-
puter vision. Several methods for stereo reconstruction have been suggested,
that compute a disparity map from two images. By using GPU-accelerated al-
gorithms, some of these approaches are even realtime capable, for example those
based on belief propagation [5]. More precise and very detailed results can be
obtained by using multiple input images [6,7]. Because existing multiview stereo
approaches usually require calibrated input images from known camera positions
and because of the computational complexity, these methods cannot be used in
realtime-applications and therefore have been restricted to offline processing.

Recent developments of keyframe based structure from motion algorithms
allow highly accurate camera pose estimation in realtime [8]. However, these
approaches represent the scene as a sparse point cloud and do not allow a dense
reconstruction of the geometry in front of the camera.

Two early precursors of variational approaches to estimate dense depth maps
were proposed in [9,10] One of the central differences of our approach is that
it makes use of quadratic relaxation and an efficient primal dual optimization
strategy and allows to use robust error norms both for the data term and the
regularizer.

The usage of graphics hardware as processing platform for computer vision
problems has lead to realtime variational approaches in the field of optic flow
computation. By parallelizing the computation on the GPU, even sophisticated
PDE methods can be implemented in realtime. Highly accurate dense optic
flow can be computed by using a total variation regularizer and a robust L1-
norm error measure for the data term [1]. Because both the regularizer and the
data term are not continuously differentiable, the minimization of the energy
functional involves some computational difficulties. For the minimization of the
L1-norm data term, a so called thresholding scheme has to be used.

In this paper we will provide a generalization of the thresholding scheme used
in optic flow computation, that allows live reconstruction of dense geometry from
multiple images. We show in detail how the generalized thresholding scheme can
be parallelized and therefore efficiently computed on the GPU. A combination
of our method with realtime camera tracking allows live dense geometry recon-
struction from the images of a handheld camera.

1.3 Variational Methods for Realtime Optic Flow

Zach et al. [1] suggested the following energy functional for the estimation of
dense optic flow

452 J. Stühmer, S. Gumhold, and D. Cremers

E(u) =

∫
Ω

{
|∇u|+ λ |I1 (x+ u(x))− I0 (x)|

}
dx, (1)

where Ω is the image domain, I0 and I1 are two given images and u is the sought
vector field that describes the optic flow between both images. The weighting
parameter λ controls the influence of the data term in relation to the total
variation regularizer.

This functional is not continuously differentiable, and therefore cannot be
minimized directly using the Euler-Lagrange formalism. The authors propose to
decouple the data term and the regularizer, as it has been previously suggested
by Aujol et al. [11]. This leads to the following convex approximation

Eθ =

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2 + λ |ρ(v,x)|

}
dx, (2)

where θ > 0 is a small constant. With ρ we denote the residual of the linearized
data term

ρ(v,x) := I1(x+ u0) + 〈∇I1(x+ u0), v − u0〉 − I0(x), (3)

where u0 is a given flow field.
Because the regularizer and data term are decoupled and do not share any

variables, a solution of Eq. 2 can be obtained with an alternating minimization
scheme. The first step of this alternating scheme is the minimization of Eq. 2 for
u. This sub problem is also known as the ROF energy model for image denoising
[12] and can be solved using Chambolle’s algorithm [13]. By minimizing Eq. 2
for v we obtain the update step of the data term. This update can be computed
with a relatively simple thresholding scheme that follows directly from the three
possible cases ρ(v) > 0, ρ(v) < 0 and ρ(v) = 0.

By subsequently solving the convex minimization problem and taking each
new solution as point u0 for the linearization of the data term, the flow field can
be computed in an iterative warping scheme.

2 Dense Depthmap Estimation from Multiple Images

Instead of estimating a vector field of two-dimensional optic flow vectors, we
will provide a method for dense geometry reconstruction from multiple images
by minimizing the functional

E(h) = λ

∫
Ω0

∑
i∈I(x)

|Ii (π (gi(h · x)))− I0 (x)| dx+

∫
Ω0

|∇h| dx (4)

with respect to a scalar depth field h : Ω → R. Here x denotes the 2D image
location in homogeneous coordinates, h · x denotes the corresponding 3D coor-
dinate and gi the rigid body transformation into the camera frame i, and π is
the projection from homogeneous coordinates to pixel coordinates regarding a

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 453

Ω0

Ω2

h·x

Ω1

Fig. 1. The depthmap h is defined for the coordinate frame of camera 0. The 3D-point
h · x lies on the surface of the depthmap.

calibrated camera model, in the simplest case this is the perspective projection
π
(
x y z

)
=

(
x/z y/z 1

)
.

The set I(x) contains the indices of all images for which π(gi(h · x)) is inside
the image boundaries of Ii. In the following we will use the short form Ii(h,x)
for Ii (π(gi(h · x))).

This functional is inspired by variational optic flow methods where a robust
regularizer allows to preserve discontinuities in the displacement field. By using
the L1 error measure also in the data term, outliers can be handled robustly. In
our case we expect similar advantages: The total variation regularizer enables
the reconstruction of dense continuous surfaces while preserving discontinuities
at object boundaries. The sum of L1-norm error measures in the data term
is motivated by robust statistics and provides robustness against outliers that
arise from sensor noise, illumination changes and occlusion. However, using these
robust error norms gives rise to some difficulties when solving the functional, that
we will address in the following.

We linearize the images Ii by using a first order Taylor expansion, i.e.

Ii(h,x) = Ii(h0,x) + (h− h0)
d

dh
Ii(h,x)

∣∣∣
h0

(5)

where h0 is a given depth map. Because this linearization only holds for small
innovations of the depthmap, the whole minimization process is embedded into
a coarse-to-fine warping strategy [14,15].

The derivative d
dhIi(h,x) can be considered as a directional derivative in direc-

tion of a differential vector on the image plane of Ii that results from a variation

454 J. Stühmer, S. Gumhold, and D. Cremers

of h. By using the chain rule, this derivative can be expressed as the scalar
product of the gradient of Ii(h,x) with the mentioned differential vector, i.e.

d

dh
Ii(h,x) = ∇Ii(h,x) · d

dh
π(gi(h · x)). (6)

The differential vector

d

dh
π(gi(h · x)) =

(
d
dhx

′
d
dhy

′

)
(7)

needs to be computed with respect to the chosen camera model.
With above linear approximation for Ii(h,x) we can express the current resid-

ual of the data term for input image i as

ρi(h,x) := Ii(h0,x) + (h− h0)
d

dh
Ii(h,x)

∣∣∣
h0

− I0(x) (8)

Inserting this expression into the original energy functional (Eq. 4) gives

E(h) = λ

∫
Ω

∑
i∈I(x)

|ρi(h,x)| dx+

∫
Ω

|∇h| dx. (9)

This functional is still difficult to minimize, because it is not continuously dif-
ferentiable and therefore the Euler-Lagrange formalism cannot be used directly.
By decoupling the data term and the regularizer [11] we get the following convex
approximation of Eq. 4:

Eθ =

∫
Ω

⎧⎨
⎩|∇u|+ 1

2θ
(u− h)2 + λ

∑
i∈I(x)

|ρi(h,x)|
⎫⎬
⎭ dx. (10)

The proposed approximation Eq. 10 is convex, thus the functional can be mini-
mized using an alternating minimization procedure in u and h:

1. For fixed h solve Eq. 10 for u

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− h)2

}
dx. (11)

This optimization problem is exactly the ROF model [12], with θ as reg-
ularization parameter. We can use Chambolle’s projected gradient descend
method to solve this problem [13].

2. For fixed u solve Eq. 10 for h

min
h

∫
Ω

⎧⎨
⎩

1

2θ
(u− h)2 + λ

∑
i∈I(x)

|ρi(h,x)|
⎫⎬
⎭ dx. (12)

This minimization problem can be solved point-wise, because it does not de-
pend on any spatial derivatives of u any more. We will show in the following,
how this minimization problem can be solved efficiently with a generalized
thresholding scheme.

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 455

3 Generalized Thresholding Scheme

The second step of the alternation scheme offers some difficulties, because the
sum of absolute valued functions results in multiple critical points, where the
whole data term is not differentiable. Thus, a simple thresholding scheme as in
the optical flow problem cannot be used. Nevertheless we will provide a general-
ization of the thresholding scheme that allows a closed-form solution of Eq. 12,
that is a further generalization of the concept presented in [7].

For fixed h0 and x the linearized data term ρi for each image Eq. 8 can be
written in the general form of a linear function

ρi(h,x) = ai h+ bi, (13)

where

ai := Ihi (x) and bi := Ii(h,x0)− h0 I
h
i (x)− I0(x). (14)

In the following we will consider h0 and x as fixed and therefore we simplify our
notation and omit the dependencies of ai and bi from these fixed values.

The absolute valued functions |ρi(h)| are differentiable with respect to h ex-
cept at their critical points, where one of the ρi equals zero and changes its sign.
Let us denote these critical points as

ti := − bi
ai

= −Ii(h,x0)− h0 I
h
i (x)− I0(x)

Ihi (x)
, (15)

where i ∈ I(x).
At these points Eq. 11 is not differentiable, as the corresponding ρi changes

its sign. Without loss of generality we can assume that ti ≤ ti+1, i.e. we obtain
a sorted sequence of {ρi : i ∈ I(x)}, that is sorted by the values of their critical
points. In order to avoid special cases we add t0 = −∞ and t|I(x)|+1 = +∞ to
this sequence.

Proposition 1. The minimizer of Eq. 12 can be found using the following strat-
egy: If the stationary point

h1 := u− λθ

⎛
⎝ ∑

i∈I(x):i≤k

Ihi (x) −
∑

j∈I(x):j>k

Ihj (x)

⎞
⎠ (16)

lies in the interior of (tk, tk+1) for some k ∈ I(x), then h = h1. Else the mini-
mizer of Eq. 12 can be found among the set of critical points:

h = arg min
h2∈{ti}

⎛
⎝ 1

2θ
(u− h2)

2 + λ
∑

i∈I(x)
|ρi(h2,x)|

⎞
⎠ . (17)

456 J. Stühmer, S. Gumhold, and D. Cremers

h

t1 t2 t3

f0

f1

f2

f3

h1

Fig. 2. The minimizations problem in the second step of the alternation scheme Eq.
12 (blue) can be written as the sum of a quadratic function and a piecewise linear
function (red). In the interior of the intervals (tk, tk+1) this term is differentiable with
respect to h. In this illustration the minimum is at the critical point h1 that lies in the
interval (t1, t2).

Proof. First we show, that Eq. 12 can be written as the sum of a quadratic
function with a linear function in the interior of each interval (tk, tk+1) with
k ∈ {0, |I(x)|}. This is also illustrated in Fig. 2. We replace the absolute value
function by using the signum function

∑
i∈I(x)

|ρi(h,x)| =
∑

i∈I(x)
|ai h+ bi| (18)

=
∑

i∈I(x)

{
sgn (ρi(h,x)) (ai h+ bi)

}
(19)

=
∑

i∈I(x)

{
sgn (ρi(h,x)) ai

}
h+

∑
i∈I(x)

{
sgn (ρi(h,x)) bi

}
.(20)

In order to write above equation in the general form of linear functions, we need
to eliminate the signum functions. Let us consider the interior of an interval
(tk, tk+1) with k ∈ {0, |I(x)|}. If h′ lies in the interior of the interval (tk, tk+1),
i.e. h′ > tk and h′ < tk+1, then by definition of the sorted sequence {ρi} it holds
that

sgn (ρi(h
′,x)) = +1 if i < k (21)

sgn (ρi(h
′,x)) = −1 if i ≥ k. (22)

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 457

By replacing the signum functions with above expressions the data term can be
written in the general form of a linear function fk for each interval k ∈ {0, |I(x)|}

∑
i∈I(x)

|ρi(h′,x)| = ãk h
′ + b̃k =: fk(h

′) (23)

with
ãk =

∑
i∈I(x):i<k

ai −
∑

j∈I(x):j≥k

aj (24)

and
b̃k =

∑
i∈I(x):i<k

bi −
∑

j∈I(x):j≥k

bj . (25)

As a result Eq. 12 can be written as

1

2θ
(u− h′)2 + λ fk(h

′), (26)

where h′ lies in the interior of (tk, tk+1).
By differentiating above equation with respect to h′ we get the stationary

point

h1 = u− λ θ ãk (27)

= u− λ θ

⎛
⎝ ∑

i∈I(x):i<k

ai −
∑

j∈I(x):j≥k

aj

⎞
⎠ (28)

= u− λ θ

⎛
⎝ ∑

i∈I(x):i≤k

Ihi (x)−
∑

j∈I(x):j>k

Ihj (x)

⎞
⎠ (29)

Such a stationary point h1 exists, if it stays inside the interval (tk, tk+1) for
some k ∈ {0, |I(x)|}. If no stationary point can be found for any of the intervals,
the minimizer of Eq. 12 resides on the boundary of one of the intervals, i.e. the
minimizer can be found among the set of critical points {ti}.
�

4 Generalized Thresholding Scheme on the GPU

We implemented the proposed method on the GPU using the CUDA (Compute
Unified Device Architecture) framework. For the computation of the generalized
thresholding scheme first we need a sequence of the coefficients of ρi, that is
sorted by the critical points ti. This sorting operation needs to be performed
only once for each linearization of the data term, because the values of ti and the
coefficients do not depend on the further iterations. This step can be computed
in a parallel-sequential manner on the graphics hardware, i.e. for each pixel of
the depthmap, one thread (x, y) sorts the coefficients of all ρi at this point (x, y).
Because the number of images is rather small a simple bubblesort algorithm is
used in each thread.

458 J. Stühmer, S. Gumhold, and D. Cremers

The output of this sorting step is the sorted sequence of critical points tk, the
sum of the derivatives

ek :=
∑

i∈I(x):i≤k

Ihi (x)−
∑

j∈I(x):j>k

Ihj (x) ,

and
fk :=

∑
i∈I(x)

|ρi(x, tk)| , (30)

the residuals of the data terms at the critical points. With these coefficients
the values of h1 (Eq. 16) and h2 (Eq. 17) can be computed efficiently in every
iteration of the minimization scheme.

5 Experimental Results

We evaluated two different GPU implementations of the general thresholding
scheme. The first (implementation A) is a parallel sequential implementation,
where one thread is assigned to each pixel of the depthmap. This thread takes
the data of the views I1 . . . In as input and iteratively determines the minimizer
by sequential processing of the data of each view.

Because each thread can stop any further computation when the first sta-
tionary point is found, the amount of computation varies for each thread. This

Iteratively load
coefficients and
compute v1

Load u

Load tk, ek
and fk

Parallel com-
putation of v1

1 2 3 4k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

x 0 1 2 3 4

0 1 2 3Thread index 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1
2
3
4

0

1
2
3
4

0

Minimize and
write out v

1
2
3
4

0

x 0 1 2 3 4

x 0 1 2 3 4 y

20 21 22 ...

1 2 3 ...

Load u

Minimize and
write out v

x 0 1 2 3 4

0 1 2 3 4 Thread index

x 0 1 2 3 4

x 0 1 2 3 4

5 6 7 ...

Fig. 3. Two different implementations of the generalized thresholding scheme. The
implementation on the left is higher parallelized and allows a better performance bal-
ancing when the number of views increases. In the implementation on the right each
thread processes the data sequentially.

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 459

usually results in suboptimal performance and lower occupancy of the GPU.
Therefore we evaluated a second implementation, that is highly parallelized and
has a deterministic computational load for each thread. By assigning multiple
threads to each pixel of the depthmap, the data of all views Ii can be processed
in parallel. While all necessary computations to find the stationary points can
be performed highly parallelized, only the last step, the determination of the
minimal value, involves sequential processing. In the following we will refer to
this kind of implementation as implementation B. The difference of both imple-
mentations is depicted in Fig. 3.

5.1 Comparison of Different GPU Implementations

We optimized the block sizes for both algorithms by searching values of the power
of two for the block-width and -height. For the parallelized implementation A, we
expected that the optimal block-size would depend on the amount of data that
is processed in parallel, in this case on the number of input images. The results
show, that the optimal block-size is determined by the size of the small block
in Fig. 3, that contains the pixels of the depthmap. While the size of the bigger
block where the values of h1 are actually computed depends on the number
of images, the optimal size of the small block stays constant. The dependency
between runtime performance and the size of this small block is shown in Fig. 4a
for different number of input images. A size of 32×1 outperforms all other tested
configurations on a NVidia Tesla C1060. On a recent GTX 480 the optimal size
is 64× 1.

●
●

● ●

●

●
●

●

Blocksize

A
ve

ra
ge

 ti
m

e
pe

r
fr

am
e

[s
]

●

●

●

●

●

32x1 64x1 128x1 16x1 32x2 64x2 16x2 32x4

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

●

●

8 Images
7 Images
6 Images
5 Images
4 Images
3 Images

(a)

●

●

●

●

●

●

Number of images

A
ve

ra
ge

 ti
m

e
pe

r
fr

am
e

[s
]

3 4 5 6 7 8

0.
5

1.
0

1.
5

2.
0

●

A: Parallel sequential (Tesla C1060)
B: Parallel (Tesla C1060)
A: Parallel sequential (GTX 480)
B: Parallel (GTX 480)

(b)

Fig. 4. (a) Performance of algorithm B on a Tesla C1060 for different sizes of the part
of the depthmap that is processed in parallel. (b) Comparison of both implementa-
tion strategies for different number of input images. When the amount of input data
increases, the higher parallelized algorithm B is faster than algorithm A.

460 J. Stühmer, S. Gumhold, and D. Cremers

(a) Reference camera image (b) Reconstructed geometry (c) Synthesized View

Fig. 5. Dense depthmaps estimated from a single moving camera

(a) Reference camera image (b) Reconstructed geometry

Fig. 6. Note the accurate reconstruction of small-scale details like the network socket
and cords.

We also compared the performance of both implementations for different num-
ber of input images. While the parallel sequential implementation A is faster for
smaller number of input images, the parallelized implementation B shows a bet-
ter performance for higher numbers. The exact number of input images, for
which implementation B performs better than A, depends on the specific hard-
ware configuration. The parallelized algorithm B shows a linear dependency
between runtime performance and the number if input images. The images and
the reconstructed depthmap in both experiments are of size 450× 375.

5.2 Real World Data

The combination with a recently proposed method for realtime camera tracking
[8] allows the reconstruction of dense geometry with a single hand-held cam-
era. Figure 5 shows the input image of the reference camera, the reconstructed
geometry and a synthesized view. Another example is shown in figure 6. The
proposed method computes a dense geometry rather than the location of sparse

Parallel Thresholding for Live Dense Geometry from a Handheld Camera 461

(a) 3 images (b) 4 images (c) 5 images

(d) 6 images (e) 7 images (f) 8 images

Fig. 7. Multiple images allow a more detailed reconstruction.

feature points. Increasing the number of input images allows a finer and more
detailed reconstruction as shown in figure 7.

6 Conclusion

In this paper we adapted state-of-the-art variational optic flow algorithms so as
to directly generate dense depth maps in a coarse-to-fine primal dual algorithm.
The algorithm runs on a single GPU and allows to compute highly accurate dense
geometric information within fractions of a second. In particular, we present a
GPU implementation of the generalized thresholding scheme arising in the com-
putation of the primal variables. We experimentally compare two alternative
strategies of parallelization that differ with respect to the amount of balancing
assured across different threads. Experimental results show that one implemen-
tation shows a higher performance when the number of views is rather small,
while the other strategy is better suited when the input data increases. Highly
accurate and detailed results from real world image data are presented.

References

1. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1
Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007.
LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

2. Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region- and motion-
based 3d tracking of rigid and articulated objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2009)

462 J. Stühmer, S. Gumhold, and D. Cremers

3. Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving
camera. In: Int. Conf. on Computer Vision and Pattern Recognition (2010)

4. Stühmer, J., Gumhold, S., Cremers, D.: Real-Time Dense Geometry from a Hand-
held Camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.)
DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010)

5. Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., Nistér, D.: Real-time global
stereo matching using hierarchical belief propagation. In: British Machine Vision
Association, BMVC, pp. 989–998. (2006)

6. Kolev, K., Cremers, D.: Continuous ratio optimization via convex relaxation with
applications to multiview 3d reconstruction. In: Int. Conf. on Computer Vision and
Pattern Recognition, pp. 1858–1864 (2009)

7. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1

range image integration. In: IEEE Int. Conf. on Computer Vision, Rio de Janeiro,
Brazil. LNCS, IEEE (2007)

8. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR 2007), Nara, Japan (2007)

9. Robert, L., Deriche, R., Faugeras, O.D.: Dense depth recovery from stereo im-
ages. In: ECAI 1992: Proceedings of the 10th European Conference on Artificial
Intelligence, pp. 821–823. John Wiley & Sons, Inc., New York (1992)

10. Robert, L., Deriche, R.: Dense Depth Map Reconstruction: A Minimization
and Regularization Approach which Preserves Discontinuities. In: Buxton, B.F.,
Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 439–451. Springer, Heidelberg
(1996)

11. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image
decomposition–modeling, algorithms, and parameter selection. Int. J. Comput. Vi-
sion 67, 111–136 (2006)

12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60, 259–268 (1992)

13. Chambolle, A.: An algorithm for total variation minimization and applications. J.
Math. Im. Vis. 20, 89–97 (2004)

14. Nagel, H., Enkelmann, W.: An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Trans. on
Patt. Anal. and Mach. Intell. 8, 565–593 (1986)

15. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric
and piecewise–smooth flow fields. Comp. Vis. Graph. Image Proc.: IU 63, 75–104
(1996)

	Parallel Generalized Thresholding Scheme for Live Dense Geometry from a Handheld Camera

	Introduction
	From Optic Flow to Geometric Reconstruction
	Related Work
	Variational Methods for Realtime Optic Flow

	Dense Depthmap Estimation from Multiple Images
	Generalized Thresholding Scheme
	Generalized Thresholding Scheme on the GPU
	Experimental Results
	Comparison of Different GPU Implementations
	Real World Data

	Conclusion
	References

