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Abstract— Micro aerial vehicles (MAVs) are strongly limited
in their payload and power capacity. In order to implement
autonomous navigation, algorithms are therefore desirable that
use sensory equipment that is as small, low-weight, and low-
power consuming as possible. In this paper, we propose a
method for autonomous MAV navigation and exploration using
a low-cost consumer-grade quadrocopter equipped with a
monocular camera. Our vision-based navigation system builds
on LSD-SLAM which estimates the MAV trajectory and a semi-
dense reconstruction of the environment in real-time. Since
LSD-SLAM only determines depth at high gradient pixels,
texture-less areas are not directly observed. We propose an
obstacle mapping and exploration approach that takes this
property into account. In experiments, we demonstrate our
vision-based autonomous navigation and exploration system
with a commercially available Parrot Bebop MAV.

I. INTRODUCTION

Most autonomous micro aerial vehicles (MAVs) to-date
rely on depth sensing through e.g. laser scanners, RGB-D or
stereo cameras. Payload and power capacity are, however,
limiting factors for MAVs, such that sensing principles are
desirable that require as little size, weight, and power-
consumption as possible.

In recent work, we propose large-scale direct simultaneous
localization and mapping (LSD-SLAM [1]) with handheld
monocular cameras in real-time. This method tracks the
motion of the camera towards reference keyframes and at
the same time estimates semi-dense depth at high gradient
pixels in the keyframe. By this, it avoids strong regularity
assumptions such as planarity in textureless areas. In this
paper, we demonstrate how this method can be used for
obstacle-avoiding autonomous navigation and exploration for
a consumer-grade MAV. We integrate our approach on the
recently introduced Parrot Bebop MAV, which is available for
only approx. 500$ and comes with a 30 fps high-resolution
fisheye video camera and integrated attitude sensing and
control.

Our proposed two-step exploration strategy is specifically
and directly suited for semi-dense reconstructions as obtained
with LSD-SLAM. A simple but effective local exploration
strategy, coined star discovery, safely discovers free and
occupied space in a local surrounding of a specific position
in the environment. It specifically takes the depth measure-
ment principle of LSD-SLAM based on motion parallax
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Fig. 1: We propose vision-based autonomous navigation
and exploration for small low-cost micro aerial vehicles
equipped with monocular cameras. Our approach is based
on large-scale direct SLAM which determines a semi-dense
reconstruction of the environment. We integrate our approach
on the commercially available Parrot Bebop MAV.

into account. A global exploration strategy then determines
interesting volume for further local explorations in order to
sequentially discover novel parts of the environment. We
demonstrate the properties of our exploration strategy in
several experiments with the Parrot Bebop.

II. RELATED WORK

Autonomous exploration by mobile robots has been in-
vestigated over many years, mainly relying on laser scan-
ner sensors. Yamauchi [2] proposed in his seminal work
the so-called frontier-based exploration strategy that favors
exploring the frontiers of the unexplored space in the map.
Some methods define a utility function [3], [4], e.g., on
paths or view poses that, for instance, trade-off discovered
area with travel costs. The approaches in [5] combines the
probabilistic measure of information gain with travel cost in
a measure of utility. For exploration in 3D, Joho et al. [6]
proposed an approach that measures information gain in
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multi-level surface maps. In [7], such an approach is made
in a Rao-Blackwellized particle filter framework for SLAM
with 2D laser range finders. The proposed method takes
measurements and travel costs along exploration paths into
account. Rekleitis et al. [8] optimize a utility function that
favors the reduction of uncertainty in the map, and at the
same time tries to achieve a fast exploration of the map.

Very recently, autonomous exploration of the environment
with flying robots has attracted attention. Nuske et al. [9]
explore rivers using an MAV equipped with a continuously
rotating 3D laser scanner. They propose a multi-criteria
exploration strategy to select goal points and traversal paths.
Heng et al. [10] propose a two-step approach to visual
exploration with MAVs using depth cameras. Efficient ex-
ploration is achieved through maximizing information gain
in a 3D occupancy map. At the same time, high coverage
of the viewed surfaces is determined along the path to the
exploration pose. In order to avoid building up a dense 3D
map of the environment and applying standard exploration
methods, Shen et al. [11] propose a particle-based frontier
method that represents known and unknown space through
samples. This approach also relies on depth sensing through a
2D laser scanner and a depth camera. Yoder and Scherer [12]
explore the frontiers of surfaces measured with a 3D laser
scanner. Desaraju et al. [13] use a monocular camera and a
dense motion stereo approach to find suitable landing sites.

We propose an exploration method which is suitable for
light-weight, low-cost monocular cameras. Our visual navi-
gation method is based on large-scale direct SLAM which
recovers semi-dense reconstructions. We take special care of
the semi-dense information and its measurement process for
obstacle mapping and exploration.

III. AUTONOMOUS QUADROCOPTER
NAVIGATION USING MONOCULAR LSD-SLAM

We built on the TUM ARDrone package developed by
Engel et al. [14] which has been originally developed for the
Parrot ARDrone 2.0. We transferred the software to the new
Parrot Bebop platform which comes with similar sensory
equipment and onboard control.

A. Hardware Platform

The Parrot Bebop is equipped with an IMU built from
3-axis magnetometer, gyroscope, and accelerometer. It mea-
sures height using an ultrasonic sensor, an air pressure sensor
and a vertical camera, similar to the Parrot ARDrone 2.0.
The MAV is equipped with a fisheye camera with wide 186◦

field-of-view. The camera provides images at 30 frames per
second. A horizontally stabilized region-of-interest is auto-
matically extracted in software on the main processing unit of
the MAV, and can be transmitted via wireless communication
together with attitude measurements.

B. State Estimation and Control

The visual navigation system proposed in [14] integrates
visual motion estimates from a monocular SLAM system
with the attitude measurements from the MAV. It filters both

kinds of messages using a loosely-coupled Extended Kalman
filtering (EKF) approach. Since the attitude measurements
and control commands are transmitted via wireless commu-
nication, they are affected by a time delay that needs to be
compensated using the EKF framework. Waypoint control of
the MAV is achieved using PID control based on the EKF
state estimate.

In monocular SLAM, the metric scale of motion and
reconstruction estimates are not observable, so the scale must
be estimated from different sensor modalities. On the MAV,
this is achieved by probabilistically fusing ultrasonic and air
pressure measurements and adapting the scale of the SLAM
motion estimate to the observed metric scale.

C. Vision-Based Navigation Using Monocular LSD-SLAM
LSD-SLAM [1] is a keyframe based SLAM approach.

It maintains and optimizes the view poses of a subset of
images, i.e. keyframes, extracted along the camera trajec-
tory. In order to estimate the camera trajectory, it tracks
camera motion towards a reference keyframe. If the camera
moved too far from its reference keyframe, a new keyframe
is generated which becomes a new reference keyframe.
For motion tracking, the current image is aligned with
the reference keyframe using direct image alignment. This
requires depth in either of the images, which we estimate
from stereo correspondences between the two images within
the reference keyframe. We estimate depth in the current
reference keyframe from temporal stereo correspondences
based on the tracked motion. The poses of the keyframes are
made globally consistent by mutual direct image alignment
and pose graph optimization.

A key feature of LSD-SLAM is the ability to close
trajectory loops within the keyframe graph. In such an event,
the view poses of the keyframes are readjusted to compensate
for the drift that is accumulated through tracking along
the loop. This especially changes the pose of the current
reference keyframe that is used for tracking, also inducing a
change in the tracked motion estimate.

Note that the tracked motion estimate is used to update
the EKF that estimates the MAV state which is fed into the
control loop. At a loop closure, this visual motion estimate
would update the filter with large erroneous velocities which
would induce significant errors in the state estimate. In turn
this could cause severe failures in flight control. We therefore
compensate for the changes induced by loop-closures with
an additional pose offset Toffset on the visual motion estimate
T world

cam before feeding it into the EKF, i.e. we use the
modified estimate Toffset T world

cam . The visual motion estimate is
determined from the tracked motion of the camera towards
the reference keyframe T ref

cam and the optimized pose T world
ref

of the keyframe, i.e. T world
cam = T world

ref T ref
cam. Before and after

the loop closure, the visual motion estimate should remain
the same, inducing an update of the offset to

T̃offset = ToffsetT world
ref

(
T̃ world

ref

)−1
, (1)

where T world
ref and T̃ world

ref are the pose estimates for the
keyframe before and after the loop closure, respectively.



Fig. 2: Example of the semi-dense reconstruction by LSD-
SLAM from an initial look-around maneuver.

In order to initialize the system, the MAV performs a
simple look-around maneuver in the beginning by flying a
360◦ turn on the spot while hovering up and down by several
centimeters. In this way, the MAV already obtains an initial
keyframe map with a closed trajectory loop (s. Fig. 2).

IV. AUTONOMOUS OBSTACLE-FREE
EXPLORATION WITH SEMI-DENSE DEPTH MAPS

Autonomous exploration has been a research topic for
many years targeting exploration of both 2D and 3D environ-
ments. In most 3D scenarios an exploration strategy works
with a volumetric representation of the environment, such as
a voxel grid or an octree, and uses laser-scanners or RGB-D
cameras as sensor to build such a representation.

In this paper we devise an exploration strategy that builds
on a fundamentally different type of sensor data – semi-
dense depth maps estimated with a single moving monocular
camera. The difference to previously mentioned sensors lies
in the fact that only for the image areas with strong gradients
the depth can be estimated. This means that especially
initially during exploration, large portions of the map will
remain unknown. The exploration strategy has to account for
the motion parallax measurement principle of LSD-SLAM.

This section first discusses the results of volumetric fusion
of semi-dense depth maps and discusses its properties. We
propose a local exploration strategy that reduces the number
of unknown voxels while navigating in the parts of the
environments that are guaranteed to be free. Finally, we use
this local strategy within a global exploration strategy that
allows for exploring larger environments with a sensor that
provides semi-dense depth maps.

Exploration is started using the initializing scheme for
LSD-SLAM as described in Sec. III. We assume that the
MAV is initialized with sufficiently large obstacle-free space
around it. After the completed look-around maneuver, we in-

(a) frame before (b) frame after

Fig. 3: Example of a LSD-SLAM loop closure.

tegrate all obtained semi-dense depth maps in the keyframes
from their optimized poses into an obstacle map.

A. Occupancy Mapping with Semi-Dense Depth Maps

In this work we use OctoMap [15] that provides an
efficient implementation of hierarchical 3D occupancy map-
ping in octrees. We directly use the semi-dense depth maps
reconstructed with LSD-SLAM to create the 3D occupancy
map. All keyframes are traversed and the measured depths
are integrated via ray-casting using the camera projection
model.

Since LSD-SLAM performs loop closures, keyframe poses
will change from their estimate of when they have been
integrated into the occupancy map. Hence, the map will
become outdated. Thus, we periodically regenerate the map
from scratch using the updated keyframe poses, since there
is no efficient way to correct for the changes directly in the
map. This operation may last for several seconds, but the
MAV can hover on the spot and wait until proceeding with
the exploration.

An alternative approach would be to represent the obstacle
map in multiple local occupancy maps that move locally with
one or several keyframes. This approach, however, would
require a strategy to decide which keyframes should be
subsumed in a local map, and the run-time of the obstacle
look-up would scale with the number of the local maps. In
this work, for simplicity, we decide for using a single map
with acceptably short exploration breaks.

Each voxel in the occupancy map stores the probability
of being occupied in log-odds form. In order to determine
if a voxel is free or occupied, a threshold is applied on
the occupancy probability (0.86 in our experiments). During
the integration of a depth measurement, all voxels along
the ray in front of the measurement are updated with a
probability value for missing the voxel. The voxel at the
depth measurement in turn is updated with a hit probability
value. Note that LSD-SLAM also outputs the variance of
each depth estimation. Although measurements with a high
variance can be very noisy, they still contain information
about the vicinity of the sensor. Therefore we insert free
space at a reduced distance for these pixels and do not
perform a hit update. Fig. 9 shows an occupancy map
obtained using LSD-SLAM.

By using semi-dense reconstructions, we do not make
strong assumptions such as planarity about the properties of
the environment in textureless areas. On the other hand, the
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Fig. 4: Left: With LSD-SLAM, only semi-dense depth mea-
surements at edges and high-texture areas can be obtained.
It provides no depth in textureless areas such as walls. This
creates indentations of unknown space in the occupancy map
(red line). Lateral motion towards the measurable points,
however, allows for reducing the indentations. Right: Local
star discovery exploration strategy.

use of semi-dense reconstruction in visual navigation leads to
indentations of unknown volume (s. Fig. 4, left). Importantly,
these indentations can be removed through lateral motion
towards the measurable structures – an important property
that we will exploit in our exploration strategy.

B. Obstacle-Free Local Exploration through Star Discover-
ies

One possible approach for an exploration strategy would
be a variant of next best view planning which measures
the discovered unknown voxels on the path. This procedure
would be computationally very expensive, since for each
potential view poses many ray-casting operations would
need to be performed. We propose a simpler but effective
local exploration strategy that we call star discovery, which
discovers the indentations in the unknown volume around a
specific position in the map.

In star discovery, the MAV flies a star-shape pattern (s.
Fig. 4, right). In order to generate motion parallax for
LSD-SLAM and to discover indentations in the unknown
volume, the MAV flies with a 90◦ heading towards the
motion direction. Clearly, the MAV can only fly as far as
the occupancy map already contains explored free-space.

The star-shape pattern is generated as follows: We cast m
rays from a specific position in the map at a predefined
angular interval in order to determine the farest possible
flight position along the ray. The traversability of a voxel
is determined by inflation of the occupied voxels by the size
of the MAV. In order to increase the success of the discovery,
we perform this computation at l different heights and choose
the result of maximum size. With n being the maximum edge
length of the bounding box in voxels, the runtime needed for
calculating the star discovery is in O(n ·m · l +n3). First the

(a) The exploration starts
at the blue circle. After
an initial look-around, the
green volume is marked
as free. The black lines
illustrate the paths of the
first star discovery.

(b) All voxels that are
free and in line-of-sight
from the origin of the
star discovery are marked
light green. The remain-
ing voxels (dark green)
are marked interesting. A
path towards an interest-
ing voxel is determined
(blue line).

(c) A second star discov-
ery (black lines) is exe-
cuted at the new origin
(blue).

(d) The dark green volume
marks again the interest-
ing volume. The algorithm
finds a way out of the
room.

Fig. 5: Four steps of the proposed exploration strategy.

inflated map is created which takes O(9n3) = O(n3). The
process requires m · l raycasts, each taking O(n) time.

One important property of this local exploration strategy
is that it allows for precomputing several exploration moves
in advance. Only if the star discovery is fully executed,
we redetermine the occupancy map from the updated LSD-
SLAM keyframe map. This also enables to postpone loop-
closure updates towards the end of the exploration process,
and provides a full 360◦ view from the center position of the
star discovery.

Another simple strategy one might think of is flying an
outward facing ellipse of maximum size. This however will
result in LSD-SLAM loosing tracking in most cases because
the drone will only see few or no gradients when it flies
close to an obstacle while facing it. When performing a star
discovery the drone is in most cases able to see a much
bigger part of its surroundings and is therefore less likely to
loose tracking.

C. Global Exploration

Obviously, a single star discovery from one spot is not
sufficient to explore arbitrarily shaped environments, as only



positions on the direct line-of-sight from the origin can
be reached (s. Fig. 5). This induces a natural definition
of interesting origins for subsequent star discoveries. We
denote a voxel interesting if it is known to be free, but it
is not in line-of-sight of any origin previously used for a
star discovery.

We determine the interesting voxels for starting a new star
discovery as follows: For every previously visited origin of
a star discovery, we mark all free voxels in direct line-of-
sight as visited. Then all free voxels in the inflated map are
traversed and the ones that have not been marked are set
to interesting. With m being the number of star discovery
origins, the whole algorithm runs in O(n3 · (m+hor2 · ver)),
where hor and ver are the number of voxels inflated in the
horizontal and vertical directions. We bound n by the number
of voxels along the longest direction of the bounding box of
the occupancy map.

Afterwards, we use Dijkstra’s algorithm in the occupancy
map to reach one of the interesting voxels. We look at sev-
eral random voxels within the largest connected component
of interesting voxels and choose the one from which we
can execute the largest star discovery afterwards. Running
Dijkstra’s algorithm takes O(n3log(n3)+27n3) as there are
n3 nodes and less then 27n3 edges. This is equal to O(n3 ·
3log(n)) = O(n3log(n)).

V. RESULTS

We evaluate our approach on a Parrot Bebop MAV in two
differently sized and furnished rooms (a lab and a seminar
room). We transmit the live image stream of the horizontally
stabilized images of the Bebop to a control station PC via
wireless communication. The images are then processed on
the control station PC to implement vision-based navigation
and exploration based on LSD-SLAM.

All experiments were executed completely autonomous.
We recommend viewing the accompanying video of the

experiments at https://youtu.be/fWBsDwBJD-g.

A. Qualitative Evaluation of the Exploration in Real-World
Environments

1) Star Discovery: In a first experiment, we demonstrate
autonomous star discovery in our lab room. There was no
manual interaction except triggering the discovery and the
landing at the end. At first, the MAV performs a look-
around maneuver. In Fig. 6a one can see the semi-dense
reconstruction of the room obtained with LSD-SLAM at this
point. Fig. 7a shows the corresponding 3D occupancy map.
Although the look-around already discovered a lot of free
voxels, from Figs. 8a and 8c indentations in the unknown
volume can be observed which are typical to the occupancy
map after just a look-around. Based on this occupancy map,
a star discovery is planned (s. Fig. 9). Figure 10 depicts the
free voxels in the map inflated by the size of the Bebop. In
this case, we used three voxels in horizontal direction and
one voxel in vertical direction to inflate the map.

Fig. 11 shows the planned waypoints of the star discovery
overlaid with the actual trajectory estimate obtained with

(a) before star discovery

(b) after star discovery

Fig. 6: Semi-dense reconstruction before and after the star
discovery in the first experiment.

LSD-SLAM. As can be seen from Fig. 6b the reconstruction
becomes much denser through the star discovery.

2) Full Exploration Strategy: In a second experiment, we
demonstrate a star discovery with subsequent repositioning
at an interesting voxel in a larger seminar room.

First, the MAV took off, intialized the scale, and performed
a look-around maneuver. The resulting occupancy maps with
free and traversable voxels are shown in Fig. 12. Afterwards,
the MAV executed a star discovery. Fig. 13 shows the
planned discovery motion and the flown trajectory estimated
with LSD-SLAM. We explain the differences by LSD-SLAM
pose graph updates.

After the star discovery, we obtain the maps and interesting
voxels in Fig. 14. The largest connected component found
by our algorithm is the one outside the room. The MAV
planned a path towards it and autonomously executed it. In
Fig. 15 we depicted the planned path and the actually flown
trajectory estimated with LSD-SLAM.

After reaching the interesting point the battery of the drone
was empty and it landed automatically. The step that our
algorithm would have performed next is the star discovery
depicted in Fig. 16.

B. Quantitative Evaluation

Table I gives results on the run-time of various parts of our
approach and properties of the LSD-SLAM and occupancy

https://youtu.be/fWBsDwBJD-g


(a) before star discovery

(b) after star discovery

(c) free voxels that were unknown before the star discovery

Fig. 7: 3D occupancy map before and after the star discovery
in the first experiment as well as the difference between them.
Occupied voxels are shown blue, free voxels green.

mapping processes for the two experiments. The creation
of the occupancy map is visibly the most time-consuming
part of our method, especially at later time steps when
the semi-dense depth reconstruction becomes large. In the
second experiment modified parameters were used for the
creation of the occupancy map and for marking interesting
points. While they proved to perform better for finding ways
to a new center point, they also further increased the time
consumption. The remaining parts are comparatively time
efficient and can be performed in a couple of seconds.
Our evaluation also shows that star discoveries significantly
increase the number of free voxels in the map.

(a) before star discovery (b) after star discovery

(c) before star discovery (d) after star discovery

Fig. 8: Indentations in unknown volume before and after the
star discovery in the first experiment. Occupied voxels are
blue and unknown voxels are yellow.

Fig. 9: Exploration plan of the star discovery in the first
experiment. Occupied voxels are blue, approached voxels
are red and numbered according to their approach order (0:
origin).

VI. CONCLUSIONS

In this paper, we proposed a novel approach to vision-
based navigation and exploration with MAVs. Our method
only requires a monocular camera, which enables low-cost,
light-weight, and low-power consuming hardware solutions.
We track the motion of the camera and obtain a semi-dense
reconstruction of the environment in real-time using LSD-
SLAM. Based on these estimates, we build 3D occupancy
maps which we use for planning obstacle-free exploration
maneuvers.

Our exploration strategy is a two-step process. On a local
scale, star discoveries find free-space in the local surrounding
of a specific position in the map. A global exploration
strategy determines interesting voxels in the reachable free-
space that is not in direct line-of-sight from previous star
discovery origins. In experiments, we demonstrate the per-
formance of LSD-SLAM for vision-based navigation of an



TABLE I: Quantitative results on run-time and occupancy map statistics for the two experiments.

experiment 1 2

look-around star discovery look-around star discovery new origin
occupancy map 5.65 13.06 4.25 38.43 41.09
inflating map 0.69 0.76 1.40 2.15 2.86

mark voxels in sight 0.19 0.20 1.42 4.93 4.52/6.63
way to new origin 0.0065 0.0087 0.016 0.024 0.065

#voxels in bounding box 195048 211968 449565 728416 1312492
#free voxels 36071 46021 75113 106944 159294

#num occupied voxels 8259 11477 6102 9673 10816
#free ÷ #known 0.81 0.80 0.92 0.92 0.94

#free ÷ #bounding box 0.18 0.22 0.17 0.15 0.12
#keyframes (approx.) 66 162 54 236 257

total #points 15411528 37828296 3152358 13776972 15002889

Fig. 10: Inflated free-space map before the star discovery in
the first experiment. Free voxels are depicted in green.

MAV. We give qualitative insights and quantitative results on
the effectiveness of our exploration strategy.

The success of our vision-based navigation and exploration
method clearly depends on the robustness of the visual
tracking. If the MAV moves very fast into regions where
it observes mostly textureless regions, tracking can become
difficult. A tight integration with IMU information could
benefit tracking, however, such a method is not possible
with the current wireless transmission protocoll for visual
and IMU data on the Bebop.

Also a more general path planning algorithm based on the
next best view approach is desirable. This however requires a
more efficient way to refresh the occupancy map when pose
graph updates happen.

In future work we will extend our method to Stereo LSD-
SLAM [16] and tight integration with IMUs. We may also
use the method for autonomous exploration on a larger MAV
with onboard processing.
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